Greener by Design

J E Green
Chief Scientist, Aircraft Research Association Ltd
Chairman, Greener by Design Technology Sub-Group

Aviation, Atmosphere and Climate Graf-Zeppelin-Haus, Friedrichshafen 30 June – 3 July 2003

Objectives:

to assess and progress options for mitigating the environmental impact of aviation

Objectives: to assess and progress options for

mitigating the environmental impact

of aviation

Members: Royal Aeronautical Society

Society of British Aerospace Companies

British Air Transport Association

Airport Operators Association

Department of Trade and Industry

Objectives: to assess and progress options for

mitigating the environmental impact

of aviation

Members: Royal Aeronautical Society

Society of British Aerospace Companies

British Air Transport Association

Airport Operators Association

Department of Trade and Industry

Sub-Groups: Operations

Technology

Market-Based Options

Scope In:

Noise Local Air Quality (LAQ) Climate Change

Scope

Noise In:

Local Air Quality (LAQ)
Climate Change

Supersonic Transports ATC & NAV Out:

Ground Movements

Manufacture and Disposal

Scope

In: Noise

Local Air Quality (LAQ)

Climate Change

Out: Supersonic Transports

ATC & NAV

Ground Movements

Manufacture and Disposal

Time Horizon: 2050 (fourfold traffic growth)

Scope

In: Noise

Local Air Quality (LAQ)

Climate Change

Out: Supersonic Transports

ATC & NAV

Ground Movements

Manufacture and Disposal

Time Horizon: 2050 (fourfold traffic growth)

Full Report: published July 2001 and re-

published in The Aeronautical

Journal, February 2002

Scope

In: Noise

Local Air Quality (LAQ)

Climate Change

Out: Supersonic Transports

ATC & NAV

Ground Movements

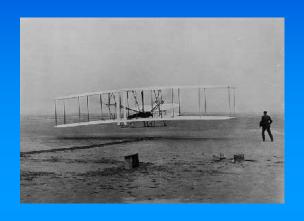
Manufacture and Disposal

Time Horizon: 2050 (fourfold traffic growth)

Full Report: published July 2001 and re-

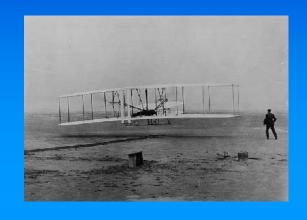
published in The Aeronautical

Journal, February 2002


New paper: Aeronautical Journal June 2003

Technology perspective 2 years on

- regulation and economic instruments
- conflicts and trade-offs
- focus on climate change
 main contributors
 challenges to technology
 reducing contrails
 reducing NO_X
 reducing CO₂
- design questions
- conclusions and recommendations


Emergence of the dominant configuration

Emergence of the dominant configuration

- Highly evolved
- Strictly limited scope for improvement
- Commercial forces alone unlikely to break the mould

Regulation and economic instruments

Noise ICAO Annex 16 Chapters 3 & 4 (2006)

Local (eg Heathrow, Washington)

LAQ ICAO CAEP/2 & CAEP/4 (2004)

Local (eg Zurich)

Regulation and economic instruments

Noise ICAO Annex 16 Chapters 3 & 4 (2006)

Local (eg Heathrow, Washington)

LAQ ICAO CAEP/2 & CAEP/4 (2004)

Local (eg Zurich)

Climate Change Kyoto (excludes international flights)

ICAO)

EU) considering options

HMG)

Regulation and economic instruments

Noise

ICAO Annex 16 Chapters 3 & 4 (2006)

Local (eg Heathrow, Washington)

ICAO CAEP/2 & CAEP/4 (2004)

Local (eg Zurich)

Climate Change

Kyoto (excludes international flights)

ICAO)

EU) considering options

HMG)

 climate proposals tend to be focussed on CO₂ emissions (with factor of 2.7 or 3 multiplier): this is likely to prove counter-productive

Annual external costs of UK civil aviation (from recent HM Treasury/DfT discussion paper)

Annual external costs of UK civil aviation (from recent HM Treasury/DfT discussion paper)

- Climate change
- LAQ
- Noise

£1,400 M

£119 - 236 M

£25 M

Annual external costs of UK civil aviation (from recent HM Treasury/DfT discussion paper)

Climate change

LAQ

Noise

£1,400 M

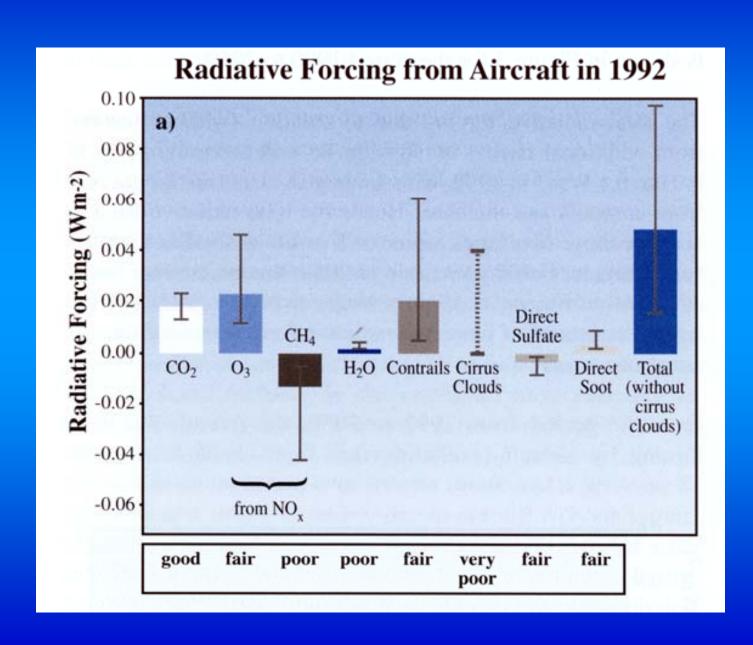
£119 - 236 M

£25 M

"Aviation's principal externality, which can be translated into monetary terms, arises from the effect of greenhouse gases and the impact they have on climate change"

Conflicts and trade-offs

• on modern engines, reducing noise increases fuel burn, CO₂ emissions and costs


Conflicts and trade-offs

- on modern engines, reducing noise increases fuel burn, CO₂ emissions and costs
- reducing fuel burn and CO₂ emissions by increasing engine thermal efficiency increases NO_X

Conflicts and trade-offs

- on modern engines, reducing noise increases fuel burn, CO₂ emissions and costs
- reducing fuel burn and CO₂ emissions by increasing engine thermal efficiency increases NO_X
- operational measures to reduce contrails and cirrus cloud would increase fuel burn and CO₂ emissions

Contributions of aviation to climate change

Lifetimes of greenhouse gases and aircraft emissions

Carbon Dioxide

Methane

Water

Ozone

NOX

50 - 100 years

8 - 10 years

days (sea level)

weeks (tropopause)

week (sea level)

months (topopause)

days (sea level)

weeks (tropopause)

Challenges to technology

Reducing persistent contrails and cirrus cloud

Reducing impact of NO_X

Reducing CO₂

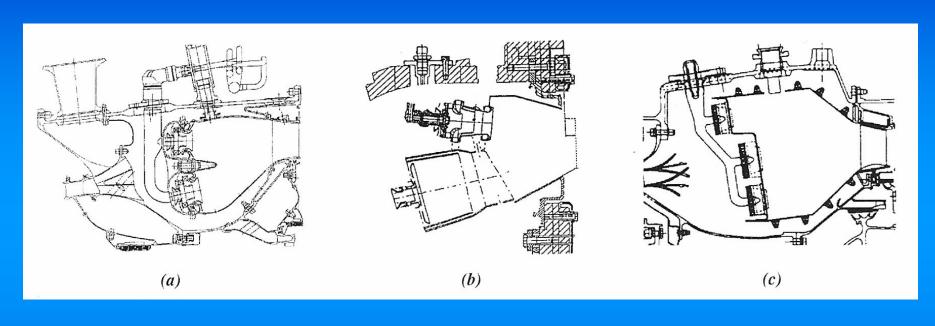
 Persistent contrails form only in air which is saturated with respect to ice: the conditions for formation and persistence are reasonably well understood

- Persistent contrails form only in air which is saturated with respect to ice: the conditions for formation and persistence are reasonably well understood
- There is no prospect of preventing contrail formation in an ice-saturated atmosphere by technological means

- Persistent contrails form only in air which is saturated with respect to ice: the conditions for formation and persistence are reasonably well understood
- There is no prospect of preventing contrail formation in an ice-saturated atmosphere by technological means
- Increasing propulsive efficiency reduces the mean exhaust temperature and increases the altitude range over which contrails will form

 Persistent contrails can be avoided by flying above, below or around ice-saturated regions: this will increase fuel burn and CO₂ emissions

- Persistent contrails can be avoided by flying above, below or around ice-saturated regions: this will increase fuel burn and CO₂ emissions
- To minimise the economic penalty of such a strategy, future aircraft design should aim for flexibility in economic cruise altitude

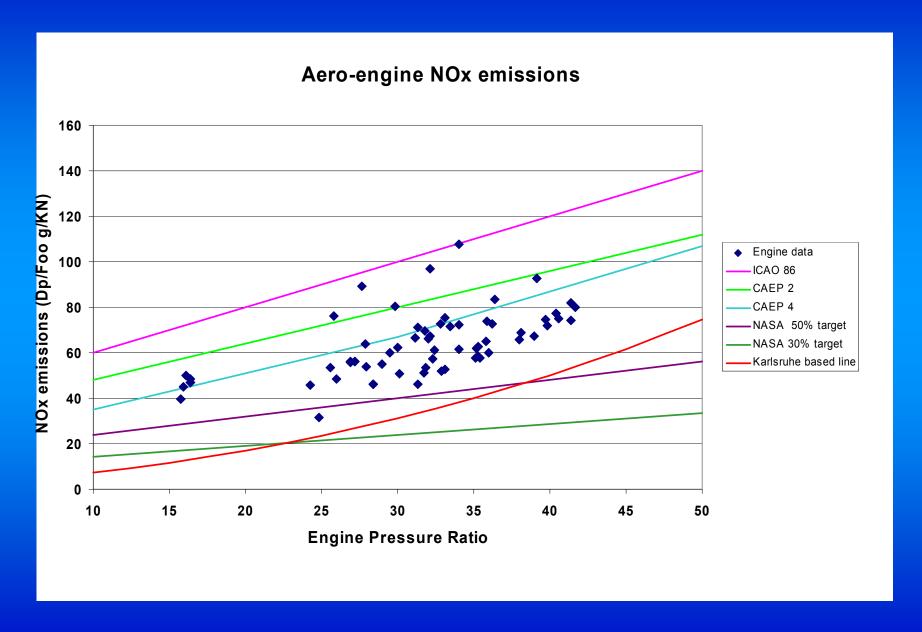

- Persistent contrails can be avoided by flying above, below or around ice-saturated regions: this will increase fuel burn and CO₂ emissions
- To minimise the economic penalty of such a strategy, future aircraft design should aim for flexibility in economic cruise altitude
- Further advances in atmospheric science, air traffic management and meteorology are needed before such a strategy can be justified or adopted

Challenges to technology: reducing persistent contrails and cirrus cloud

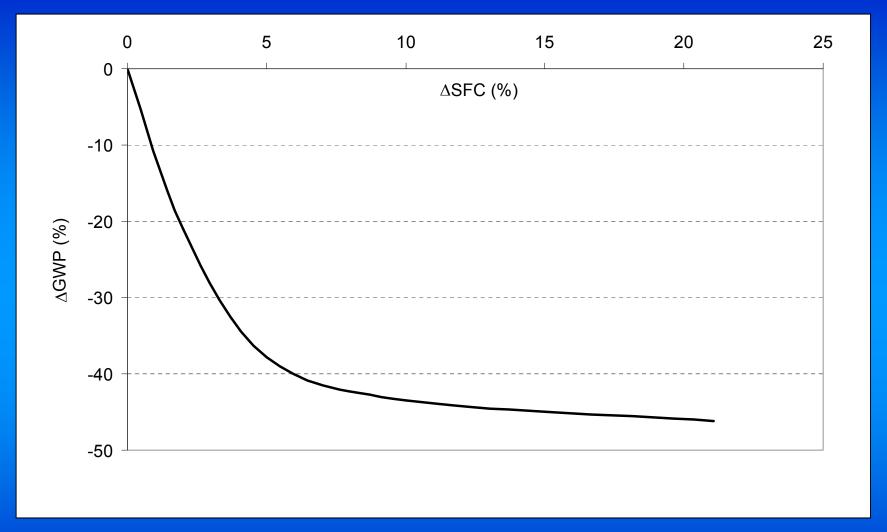
- Persistent contrails can be avoided by flying above, below or around ice-saturated regions: this will increase fuel burn and CO₂ emissions
- To minimise the economic penalty of such a strategy, future aircraft design should aim for flexibility in economic cruise altitude
- Further advances in atmospheric science, air traffic management and meteorology are needed before such a strategy can be justified or adopted
- Nevertheless, reducing persistent contrails might prove to be the single most powerful means of reducing the impact of aviation on climate, even though it would increase CO₂ emissions

Challenges to technology: reducing NOX

Challenges to technology: reducing NO_X


General Electric

Snecma


Pratt and Whitney

Staged Combustors

Challenges to technology: reducing NO_X

Challenges to technology: reducing NOX

Trade off between reduced Global Warming Potential and increased SFC relative to minimum SFC datum (Whellens and Singh)

Challenges to technology: reducing CO₂ = reducing fuel burn per passenger km

Challenges to technology: reducing CO₂

Fuel burn per passenger kilometre: -

$$\frac{W_{f}}{RW_{p}} = \left(1 + \frac{W_{E}}{W_{p}}\right) \left(\frac{\exp\left(\frac{R}{X}\right) - 1}{R}\right)$$

Breguet range equation

where
$$X = H\eta L/D$$

 $H = \text{calorific value of fuel}$
 $\eta = \text{overall propulsive efficiency}$
 $L/D = \text{lift/drag ratio}$

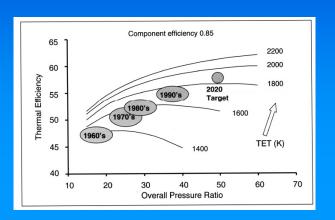
 Increased use of CFRP and other light structural materials: cost is a significant inhibitor (1983 forecasts for use of composites by 1995 ranged from 25% to 65% by weight – actual composite weight in A330 and B777 is around 15%)

- Increased use of CFRP and other light structural materials: cost is a significant inhibitor (1983 forecasts for use of composites by 1995 ranged from 25% to 65% by weight – actual composite weight in A330 and B777 is around 15%)
- More efficient structural design flying wing for larger aircraft

- Increased use of CFRP and other light structural materials: cost is a significant inhibitor (1983 forecasts for use of composites by 1995 ranged from 25% to 65% by weight – actual composite weight in A330 and B777 is around 15%)
- More efficient structural design flying wing for larger aircraft
- Reduced system weight the More Electric Aircraft

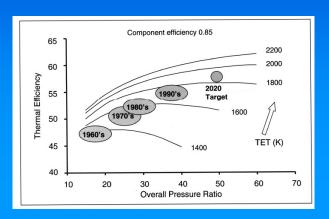
- Increased use of CFRP and other light structural materials: cost is a significant inhibitor (1983 forecasts for use of composites by 1995 ranged from 25% to 65% by weight – actual composite weight in A330 and B777 is around 15%)
- More efficient structural design flying wing for larger aircraft
- Reduced system weight the More Electric Aircraft
- Design parameters design range, cruise Mach number

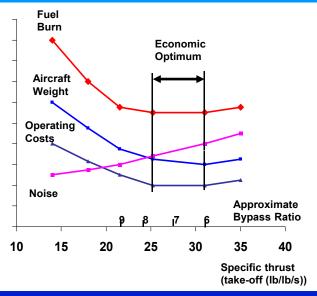
Challenges to technology: reducing CO₂ by increasing propulsive efficiency


Overall propulsive efficiency

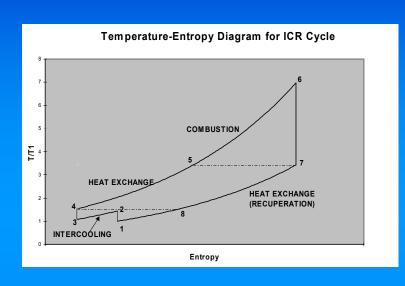
$$\eta = \eta_E \eta_P$$

where
$$\eta_E$$
 = thermal efficiency

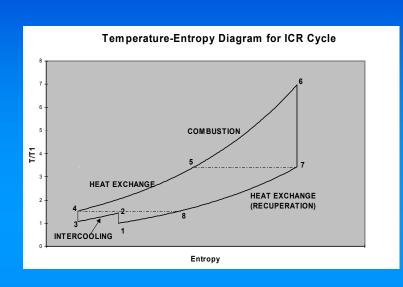

and
$$\eta_P$$
 = jet propulsive efficiency


Challenges to technology: reducing fuel burn by increasing propulsive efficiency - Joule cycle turbofan

 Increasing thermal efficiency requires increases in both overall pressure ratio and turbine entry temperature: these increase NO_X production


Challenges to technology: reducing fuel burn by increasing propulsive efficiency - Joule cycle turbofan

- Increasing thermal efficiency requires increases in both overall pressure ratio and turbine entry temperature: these increase NO_X production
- Most large turbofans have specific thrust around the optimum for fuel burn: reducing specific thrust below this optimum in order to meet noise targets increases fuel burn and CO2


Challenges to technology: reducing CO₂ by increasing propulsive efficiency

Intercooled recuperative engine cycle

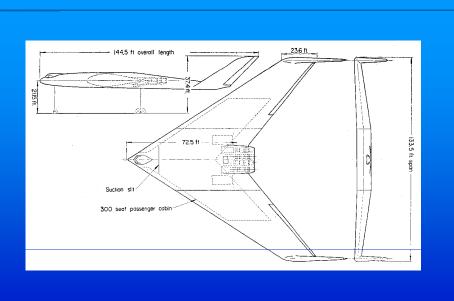
- reduced fuel burn & CO₂
- reduced NO_X
- capable of podded installation
- increased weight and complexity

Challenges to technology: reducing CO₂ by increasing propulsive efficiency

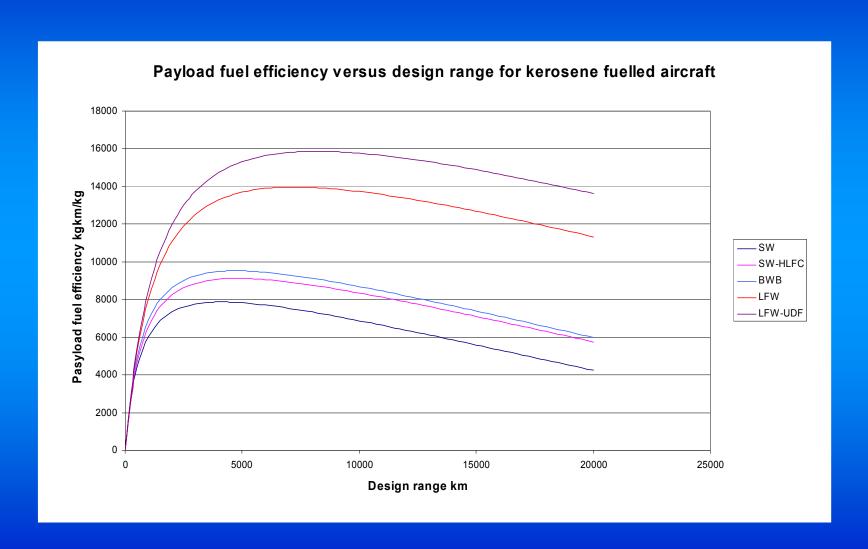
Intercooled recuperative engine cycle

- reduced fuel burn & CO₂
- reduced NO_X
- capable of podded installation
- increased weight and complexity

Unducted fan


- reduced fuel burn & CO₂
- reduced cruise Mach number
- complexity and flight safety issues

Challenges to technology: reducing CO₂ by reducing drag



Blended wing body model
NASA Langley Research Center 2/20/1998 Image # EL-1998-00245

- Dominant configuration with hybrid laminar flow control
- Blended wing body
- All laminar flying wing



Challenges to technology: reducing CO₂ by reducing drag

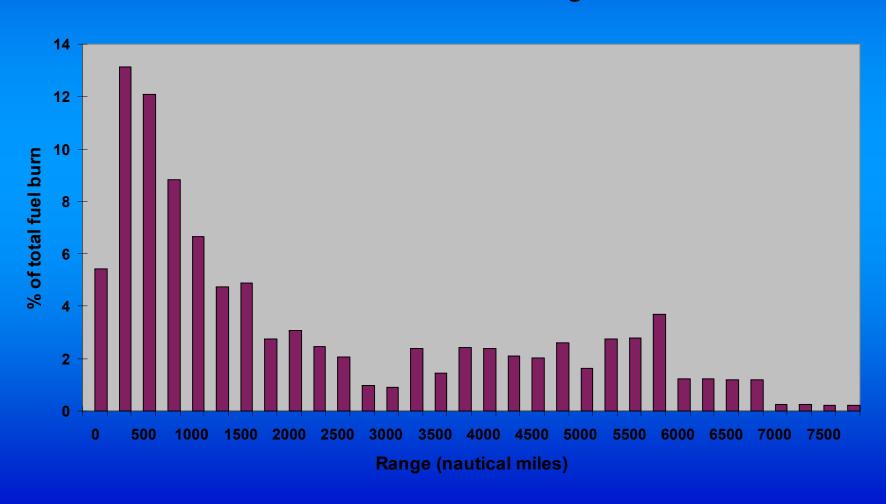
Challenges to technology: reducing fuel burn – effect of range

Payload Fuel Efficiency versus Range and Design Range

Reducing fuel burn: effect of design range

Design range	Payload	Fuel	Max TOW	Empty Weight	Fuel for 15,000
km	tonne	tonne	tonne	tonne	km tonne
15,000	44.8	120.4	300.0	134.8	120.4

Multi-Sector Long Distance Travel?


Reducing fuel burn: effect of design range

Design range	Payload	Fuel	Max TOW	Empty Weight	Fuel for 15,000
km	tonne	tonne	tonne	tonne	km tonne
15,000	44.8	120.4	300.0	134.8	120.4
5,000	44.8	28.6	169.0	95.6	85.8

Multi-Sector Long Distance Travel?

Significance of range

Distribution of Fuel Burn over Range 1998 Scheduled Flights

- Design range
 - multi-segment long distance travel ?

- Design range
 - multi-segment long distance travel?
- Cruise altitude
 - contrail avoidance, reducing NO_x impact?

- Design range
 - multi-segment long distance travel?
- Cruise altitude
 - contrail avoidance, reducing NO_x impact?
- Engine pressure ratio
 - trade-off increased CO₂ for reduced NO_x?

- Design range
 - multi-segment long distance travel?
- Cruise altitude
 - contrail avoidance, reducing NO_x impact?
- Engine pressure ratio
 - trade-off increased CO₂ for reduced NO_x?
- Cruise Mach number
 - reduce fuel burn & CO₂, enable unducted fans ?

- Design range
 - multi-segment long distance travel?
- Cruise altitude
 - contrail avoidance, reducing NO_x impact?
- Engine pressure ratio
 - trade-off increased CO₂ for reduced NO_x?
- Cruise Mach number
 - reduce fuel burn & CO₂, enable unducted fans ?
- Design for minimum impact on climate
 - trade off between operating and environmental costs?

• In the long term, impact on climate change is the most important environmental effect of aviation.

- In the long term, impact on climate change is the most important environmental effect of aviation.
- Reducing NO_X and persistent contrails are probably the two most potent means of reducing this impact: in each case, the best environmental result is likely to entail some increase in CO₂ emissions.

- In the long term, impact on climate change is the most important environmental effect of aviation.
- Reducing NO_X and persistent contrails are probably the two most potent means of reducing this impact: in each case, the best environmental result is likely to entail some increase in CO₂ emissions.
- Because CO₂ is such a long lived greenhouse gas, reducing its emission is a key long-term goal: drag and weight reduction are the two most potent technologies. Aircraft design parameters design range, cruise Mach number and altitude are also significant factors.

 To achieve large reductions in CO₂ requires radical changes - a departure from the dominant configuration and the use of laminar flow control as a minimum.

- To achieve large reductions in CO₂ requires radical changes - a departure from the dominant configuration and the use of laminar flow control as a minimum.
- Regulatory and economic measures should be framed so as to promote the greatest possible reduction in impact on climate: measures based solely on CO₂ emission will probably do more harm than good.

- To achieve large reductions in CO₂ requires radical changes - a departure from the dominant configuration and the use of laminar flow control as a minimum.
- Regulatory and economic measures should be framed so as to promote the greatest possible reduction in impact on climate: measures based solely on CO₂ emission will probably do more harm than good.
- The challenge to technology is severe: the atmospheric science is not yet robust: the timescales for introducing new technology and new design concepts are long: the need for research and demonstration is urgent.

Research priorities

- Atmospheric science
- Ultra low NO_X combustion

Research priorities

- Atmospheric science
- Ultra low NO_x combustion

Technology demonstration

- Hybrid laminar flow control in airline service
- Low NO_x combustors
- Intercooled recuperative engine cycle
- Blended wing-body concept

Research priorities

- Atmospheric science
- Ultra low NO_x combustion

Technology demonstration

- Hybrid laminar flow control in airline service
- Low NO_x combustors
- Intercooled recuperative engine cycle
- Blended wing body concept

Design studies

- Design to minimise impact on climate
- Design to increase cruise altitude flexibility
- Multi segment long-range travel