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mitigating the environmental impact 
of aviationof aviation
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British Air Transport Association
Airport Operators AssociationAirport Operators Association
Department of Trade and Industry

• Sub-Groups: Operations
Technology
Market-Based Optionsp
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Technology perspective 2 years onTechnology perspective 2 years on

• regulation and economic instruments
• conflicts and trade-offs
• focus on climate change

main contributors
challenges to technology

reducing contrails
reducing NOX

reducing CO2

• design questions
• conclusions and recommendations 
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• Highly evolvedg y
• Strictly limited scope for improvement
• Commercial forces alone unlikely to break the mouldCommercial forces alone unlikely to break the mould



Regulation and economic instrumentsRegulation and economic instruments



Regulation and economic instrumentsRegulation and economic instruments

Noise ICAO Annex 16 Chapters 3 & 4 (2006)
Local (eg Heathrow Washington)Local (eg Heathrow, Washington)

LAQ ICAO CAEP/2 & CAEP/4 (2004)
Local (eg Zurich)Local (eg Zurich)



Regulation and economic instrumentsRegulation and economic instruments

Noise ICAO Annex 16 Chapters 3 & 4 (2006)
Local (eg Heathrow Washington)Local (eg Heathrow, Washington)

LAQ ICAO CAEP/2 & CAEP/4 (2004)
Local (eg Zurich)Local (eg Zurich)

Climate Change Kyoto (excludes international  flights)
ICAO )
EU ) considering options
HMG )



Regulation and economic instrumentsRegulation and economic instruments

Noise ICAO Annex 16 Chapters 3 & 4 (2006)
Local (eg Heathrow Washington)Local (eg Heathrow, Washington)

LAQ ICAO CAEP/2 & CAEP/4 (2004)
Local (eg Zurich)Local (eg Zurich)

Climate Change Kyoto (excludes international  flights)
ICAO )
EU ) considering options
HMG )

• climate proposals tend to be focussed on CO2 emissions 
(with factor of 2.7 or 3 multiplier):  this is likely to prove ( p ) y p
counter-productive 
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Annual external costs of UK civil aviation 
(from recent HM Treasury/DfT discussion paper)

• Climate change £1,400 M
• LAQ £119 236 M• LAQ £119 – 236 M
• Noise £25 M

“Aviation’s principal externality, which can beAviation s principal externality, which can be 
translated into monetary terms, arises from the effect 
of greenhouse gases and the impact they have on 
climate change”climate change”
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Conflicts and trade-offsConflicts and trade-offs

d i d i i i f l• on modern engines, reducing noise increases fuel 
burn, CO2 emissions and costs 

• reducing fuel burn and CO2 emissions by increasing 
engine thermal efficiency increases NOXg y X

• operational measures to reduce contrails and cirrus 
l d ld i f l b d CO i icloud would increase fuel burn and CO2 emissions  
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Lifetimes of greenhouse gases and aircraft 
i i

Lifetimes of greenhouse gases and aircraft 
i iemissionsemissions

Carbon Dioxide 50 – 100 yearsCarbon Dioxide 50 100 years
Methane 8 – 10 years
Water days (sea level)Water days (sea level)

weeks (tropopause)
Ozone week (sea level)Ozone week (sea level)

months (topopause)

NOX days (sea level)
weeks (tropopause)weeks (tropopause)
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R d i i t f NO• Reducing impact of NOX

• Reducing CO2
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• Increasing propulsive efficiency reduces the mean 
exhaust temperature and increases the altitude 
range over which contrails will formrange over which contrails will form
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reducing persistent contrails and cirrus cloudreducing persistent contrails and cirrus cloudreducing persistent contrails and cirrus cloud
• Persistent contrails can be avoided by flying above, 

below or around ice-saturated regions: this will g
increase fuel burn and CO2 emissions

• To minimise the economic penalty of such aTo minimise the economic penalty of such a 
strategy, future aircraft design should aim for 
flexibility in economic cruise altitude

• Further advances in atmospheric science, air traffic 
management and meteorology are needed before 

h b j ifi d d dsuch a strategy can be justified or adopted

• Nevertheless, reducing persistent contrails might g p g
prove to be the single most powerful means of 
reducing the impact of aviation on climate, even 
though it would increase CO emissionsthough it would increase CO2 emissions
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General Electric Snecma Pratt and Whitney

Staged Combustors
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Aero-engine NOx emissions
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where X = HηL/Dη
H = calorific value of fuel
η = overall propulsive efficiency
L/D lift/d tiL/D = lift/drag ratio
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Challenges to technology: 
reducing CO2 by reducing empty weightreducing CO2 by reducing empty weightreducing CO2 by reducing empty weight

• Increased use of CFRP and other light structural• Increased use of CFRP and other light structural 
materials: cost is a significant inhibitor (1983 
forecasts for use of composites by 1995 ranged from p y g
25% to 65% by weight – actual composite weight in 
A330 and B777 is around 15%)

• More efficient structural design – flying wing for 
larger aircraftg

• Reduced system weight – the More Electric Aircraft

• Design parameters – design range, cruise Mach 
number
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Overall propulsive efficiencyOverall propulsive efficiency

η = η ηη = ηEηP

where ηE = thermal efficiencywhere      ηE  thermal efficiency

and          ηP = jet propulsive efficiencya d ηP jet p opu s e e c e cy
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reducing fuel burn by increasing propulsive 

efficiency - Joule cycle turbofan

• Increasing thermal efficiency 
requires increases in both 
overall pressure ratio and p
turbine entry temperature: 
these increase NOX
production

• Most large turbofans have            
Fuel
Burn

Economic 
Optimum g

specific thrust around the 
optimum for fuel burn: 
reducing specific thrust 
below this optimum in order

Aircraft
Weight

Operating
Costs

p

below this optimum in order 
to meet noise targets 
increases fuel burn and CO2Approximate

Bypass Ratio

Noise

6789

10 15 20 25 30 35 40
Specific thrust 
(take-off (lb/lb/s))
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The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image  
and then insert it again.

• Dominant configuration 
with hybrid laminar flow 
controlcontrol

• Blended wing body
• All laminar flying wing• All laminar flying wing

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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Payload fuel efficiency versus design range for kerosene fuelled aircraftPayload fuel efficiency versus design range for kerosene fuelled aircraft
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Payload Fuel Efficiency versus Range and Design Range
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Distribution of Fuel Burn over Range 
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Design questionsDesign questions
• Design range

• multi-segment long distance travel ?g g
• Cruise altitude

• contrail avoidance reducing NOX impact ?contrail avoidance, reducing NOX impact ?
• Engine pressure ratio

trade off increased CO for reduced NO ?• trade-off increased CO2 for reduced NOX ?
• Cruise Mach number

• reduce fuel burn & CO2, enable unducted fans ?
• Design for minimum impact on climate

• trade off between operating and environmental 
costs ?
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• In the long term, impact on climate change is the 
most important environmental effect of aviationmost important environmental effect of aviation.

• Reducing NOX and persistent contrails are probablyReducing NOX and persistent contrails are probably 
the two most potent means of reducing this impact: 
in each case, the best environmental result is likely 
to entail some increase in CO2 emissions.to entail some increase in CO2 emissions. 

• Because CO2 is such a long lived greenhouse gas, 
d i it i i i k l t l dreducing its emission is a key long-term goal: drag 

and weight reduction are the two most potent 
technologies.  Aircraft design parameters – design 
range, cruise Mach number and altitude – are also 
significant factors.
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• To achieve large reductions in CO2 requires radical 
changes a departure from the dominantchanges - a departure from the dominant 
configuration and the use of laminar flow control as 
a minimum.  

• Regulatory and economic measures should be 
framed so as to promote the greatest possibleframed so as to promote the greatest possible 
reduction in impact on climate:  measures based 
solely on CO2 emission will probably do more harm 
than goodthan good.

• The challenge to technology is severe: the 
atmospheric science is not yet robust: the 
timescales for introducing new technology and new 
design concepts are long:  the need for research and g p g
demonstration is urgent. 
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RECOMMENDATIONS – The Next StepsRECOMMENDATIONS – The Next Steps
Research priorities
• Atmospheric sciencep
• Ultra low NOX combustion

Technology demonstration
• Hybrid laminar flow control in airline service
• Low NOX combustors
• Intercooled recuperative engine cycle
• Blended wing body concept

D i t diDesign studies
• Design to minimise impact on climate
• Design to increase cruise altitude flexibility• Design to increase cruise altitude flexibility
• Multi segment long-range travel


