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Abstract

The present paper introduces a new methodology
for computation of all speed flows in complex
geometry. The proposed method follows the
semi-implicit pressure correction concept but
incorporates for the first time in this framework
the so called ENO schemes, approximate
Riemann solvers and characteristic interpolation
practices. The method also uses the deferred
correction technique for the stabilization of the
iterative procedure and the Strongly Implicit
Method for matrix inversion of the segregate
discretized equations. Simulation of flows in
different regimes: incompressible, compressible
subsonic, transonic, and supersonic proved the
method SIMPLENO to be robust, accurate and

self adaptive to local flow characteristics.
Introduction

In recent years, considerable efforts have been
made towards the unification of numerical
methods developed for incompressible and
compressible flows(1-4). The main aim consists in
the development of methods for computation of

viscous flows at all Mach numbers that are as
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good as the current compressible flows solvers
that employ density as a primary variable and
those for incompressible flows based in a
pressure-velocity formulation. Yet to fully attain
these goals some puzzle in the formalism of these
methods have to be settled, e.g. how to account
for the spreading of acoustic waves and the
Riemann problems in the framework of the
pressure-correction ? These problems translate
themselves into insufficient shock capturing
properties and have so far prevented its wider use
in applications.

In the present work a first positive answer
to these questions is provided by means of a new
method — called SIMPLENO for SIMPLE-
Essentially Non-Oscillatory. This method
incorporates for the first time in a pressure
,correction framework the ENO technique for the
reconstruction of the characteristic variables,
together with the use of a Riemann solver for
computation of the fluxes at the interfaces. The
main steps for its derivation are presented in turn
bellow (for the sake of clarity the Cartesian

coordinates are considered)
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Governing Equations

The continuum steady flow at thermodynamic and
chemical equilibrium is considered. The flow is
described by the Conservation Laws of mass,
momentum (linear and angular), and energy. The
resulting system of equations are a summarized in
the Navier-Stokes equations, which in the integral
form reads,

$(M—R)dy-§(N-S)dx=0 (1)
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where the stress terms and the heat flux are
expressed by Stokes and Newtons assumption,
and the Fourrier Law, respectively, i.e.,
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Discretization Procedure

The finite-volume method is employed for the
numerical approximation of the governing
equations. In this method the surface integrals in
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(1) are approximated by their average values over
all faces of the control volume. The discrete form
in 2D reads,

(M+R)pyp —(M+R),_, 12)4y

%)
H(N+8)j10 ~(N+8), 45 )Ax =0
Evaluation of the fluxes at the interfaces are
performed selectively: 1) the viscous terms, R and
S, are evaluated by the 2Md order centered-
difference scheme, ii) the inviscid terms, M and

N, are computed by an upwind technique.

For the latter two (M and N) distinct
procedures are employed depending on the local
Mach number:

a)ifMa<0.3

Then the mass flux is obtained by PWIM formula
of Rhie and Chow(5), and reconstruction operates
over the primitive variables p, u, v, h. Their

interface value is obtained by upwind with
convective velocity, e.g. for i+1/2,

+ + - -
Gin12 = Fiv2®ivi2 + Fimp i (6)

where ¢ = (p, u, v, h); F gives the flow direction

at the interface, i.e.,

£ _ (Wi ® l(”)m/z‘ 7
o 2(u)i 1172
Oiv1/2 = R\ Xip1/230
12 = R(xi2:9) ©

$12 = R(X11/2;¢)

where R is the reconstruction polynomial. On the
other hand the value of the pressure at the



interfaces are interpolated by the non-oscillatory
polynomial Hy (©) je.,

Hy(x;0) = ¢; +£&1‘iﬁ‘(x - x;)

disip
2h?

“for x € (x;,x;41)

+ (x=x)x=x1), (9

and, pi+1/2 = Ha(xi+1/2;p). This technique avoids
creation of new extrema in the solution domain
and in addition it is of third order where the

pressure is smooth

b)ifMa =03

In this case reconstruction operates over the
characteristic variables and a Riemann solver is

used for the evaluation of the interface flux, i.e.,
1 1
M = —Z’(ML +Mp)- Ezakllkkk (10)
k

where «, A, and e are the characteristic variable
strengths, and eigenvalue and the eigenvector of
the linearized Jacobian A, respectively. The
values of the left and right states, My, and Mg,
respectively, are evaluated by the reconstruction

on the characteristics, i.e.,

R(x;0)=¢; + b ) zak,iéka
h % (11)

for x e (xi—1/2’xi+1/2>

where 2 is computed with the variables averaged
as proposed by Roe(?), and ois defined as,

o, =M(c},0;)

i

-7
t _ itl/2
O, =yt

i

(12)
Tisig = M(Ti’ Tij:l)

13

T, =0~ G

i

Similar expressions follow for the other cell faces
(note that the index j of the second direction was

omitted for simplicity).

Substitution of these fluxes into the discrete
equations gives rise to algebraic equations for
each dependent variable. These equations are
highly non-linear and strongly coupled.
Decoupling of these equations is achieved by the
segregate approach, characteristic of the pressure-
correction schemes, and retained in the
SIMPLENO algorithm (see below). Linearization
is performed by the method proposed by Orzag(®)
in conjunction with implicit Spectral methods,

i.e.,
L™ = Loypo™ +7(L8" -b) (13)

where the expression under parenthesis denotes
the original higher order system of equations and
the operator Lap is a lower-order, robust
approximation of L (in the present work the first
order upwind scheme was employed).

SIMPLENO Algorithm

The SIMPLENO algorithm is a predictor-
corrector scheme, in which at the end of each
outer iteration the variable fields satisfy some
discrete form of the governing equations. A brief
description of these steps is presented bellow.
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Predictor Step

In this step the velocity and enthalpy are
calculated by using the available values of the
dependent variables for the evaluation of the
coefficient matrix. The predicted values, u*, v*

and h* are computed as follow,

* _oauf * u
Lll',j‘-—A (ui,j)+Q,~,jp+Su

v =A"(vi;)+Qp+S, (14)
h:j =Ah(h:j)+5h
where, e.g. AU is defined as,
Za:bunb
A{u; ) = el — as)

ai'j
in which, I is the index set relative to the
neighboring points involved in the interpolation

u . . . . .
and a_ 1s the coefficient multiplying um; S stands

for all other terms that are explicitly computed
(source terms, known values, etc.) and e.g. Q‘iJ i

is defined by,

5.
Ofjp =ity

i,f

(16)
In this equation, 6 denotes the second order
central differencing operator.

Similar definitions follows for the operators
in Bq. (14).

Corrector Step

Usually, these values of the velocity and density
do not satisfy the mass balance, i.e.,
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S = U: s U N —V: .
m i+1/2,) i-1/2,] i,j+1/2 i 1/2(17)
S, #0

Correction of these values is performed so that
the corrected velocity and density fields satisfy
the discrete mass balance equation and some
linearized form of the momentum equation, in
symbols:

wn+1 = LC(W*) (18)
where w = (p, u, v, h, p) and Lc the abstract
corrector operator defined by:

SIMPLE, if Ma<0.3
L.= SIMPLE + Projection of the corrections

on the vector fluxes space, if Ma=0.3

The projection step is essential: it avoids a new
computation of the approximate the Riemann
solver within the same outer iteration for Mach
greater or equal 0.3 (with the consequent
excessive increase in the computational effort)
while not affecting the accuracy of the converged
solution (since at convergence all correction
values are zero). In this procedure the inviscid

n+l

fluxes are corrected, e.g. for M) »,

M,‘Tll/z: ;1/2*';0‘&1&61: (20)

where the arithmetic mean is used between the
corrected and the predicted values of the
variables, and first order upwind (with the
convective velocity) is employed for
determination of the corrections at the interfaces.

Similar expressions follow for the other fluxes.



Results

Arc Bump Flow

This is an inviscid flow test case with strong
interactions of oblique shocks: shock-shock
interaction and shock reflection. The
configuration correspond to a wall mounted
circular arc bump with an approaching Mach
number of 1.65 (details can be found in Eidelman
et al.(®). Fig. 1 shows the grid used in the

computations comprising 80x30 control volumes.

Figure 1

Fig. 2 depicts the results obtained using the
standard SIMPLE method together with a third
order interpolation for u, v and h and the first
order upwind scheme for density. Apart form the
interpolation of primitive or conservative
variables this is the standard approach with
pressure correction(1-4), This figure clearly
indicates the inadequacy of this methodology for
solving shocks: the shock are too smeared or not
resolved at all. This situation can be improved by
using a second order non-oscillatory procedure
for all variables, including density, as was done
by the authors in Ref. 10. Fig. 3 reproduced from
the later, shows the results obtained with the

improved technique and the Minmod

reconstruction. In this case it was possible to
ameliorate the shock resolution. However, the
use of a non-conservative discretization and of the
convective velocity as upwind velocity still smear

the shocks and creates spurious oscillations.

Figure 4
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Fig. 4 shows the results obtained with the
new methodology SIMPLENO (using the
UNQ?2(6) reconstruction). As can be seen from
this figure all shock structures are very well
resolved: their representation is crispy and non-
oscillatory The solution field has no spurious
oscillations while the high accuracy of the ENO
technique is evident. This figure let no doubt
about the capability of the SIMPLENO method to

resolve shock waves or thelr interactions.

Double Throat Nozzle

This flow problem has been the subject of a
workshop(11) on numerical computation of
compressible viscous flows. The workshop
produced very accurate data that can serve as
reference values.

Figure 5

Fig. 5 shows the geometry and the grid
comprising 80x20 control volumes used in the
simulation. Fig. 6 depicts the results obtained
with  SIMPLENO UNO2(6)

reconstruction). Again the new methodology

(using

predicts a very sharp shock profile and in general
captures all flow features: shock wave, shear
layer, viscous/inviscid interaction, separation. In

particular it can provide an answer to the natural

question on the effect of the flux limiters on the
viscous layer, where strong, yet continuos
gradients arise. This is provided in Fig. 7 which
shows the comparison of the present results with
reference values (the later was obtained in a much
finer grid). It is evident from this figure that the
flux limiters do not prevent the high accuracy of
the method in viscous flows neither in the shock
region nor in the shear layers. This quantitative

comparison corroborates the qualitative findings

above.
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Figure 7

Lid Driven Cavity Flow

To complete the presentation of the results in this

sub-section the standard test case of the
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incompressible flow induced by a moving wall is
considered. A mammoth number of data
concerning this flow exists. The reference values
selected are those of Ghia et al.(12) who used very

fine grids and a second order accurate scheme.

Figure § -

Fig. 8 depicts the streamlines obtained
using  SIMPLENO (using SONIC-Q(13)
reconstruction) for Re=1000. The stretched grid
used comprises 60x60 points, roughly a quarter
of the points used by Ghia et al. Despite this fact
the results display very good qualitative
agreement with the reference values: good
resolution of the separated zones, both in its
location and its extension.
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Figure 9

The quantitative comparison is provided in
Fig. 9 where the present results are plotted
together with the reference values of Ghia et al..
They only confirm the above assertive.

Conclusions

The SIMPLENO algorithm introduces an array of
new features, the implementation of the
characteristic interpolation through the
approximation of the non-linear operator, the use
of an approximate Riemann solver for the
computation of the cell face fluxes and the
projection of the correction on the fluxes space in
the framework of the segregated pressure-
correction algorithm. Simulation of flows under
severe conditions (shock/shock interaction, shock
reflection, shock/viscous layer interaction, etc)
has proven the method to be as accurate as its
counterparts which use density as a primary
dependent variable in the hyperbolic regions of
the flows while extending its range of
applications to the limit of very low (zero) Mach

number flows.
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