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Abstract

A time—marching explicit finite volume method with multigrid scheme is presented for
solution of steady, two—dimensional, transonic flows in turbomachinery cascades. The tech-
niques for both Euler and Navier—Stokes solvers are the same. A new method for
discretization of viscous terms is suggested. A body—fitted coordinate system is generated by
a simple grid generation technique based on the staffs—springs system analogy method.Nu-
merical solution results for two turbomachinery cascades are presented and compared with

experimental data to demonstrate the accuracy,

computational efficiency of the present method.

Introduction

The flows past through turbomachinery are very com-
plex. In most instances, they are imcompressible or
compressible, three—dimensional unsteady viscous and fre-
quently separated flows. The flows may be subsonic,
transonic or supersonic, with or without rotation, curva-
ture, heat transfer, phase—changes, leakage and
shock—boundary layer interaction. Because the progress
has been made during the past decade in the area of com-
puter science, numerical computational techniques, turbu-
lence modeling, grid generation technique etc. The numeri-
cal computations provide an efficient tool for
turbomachinery design and analysis. There are various
numerical techniques used for numerical aerodynamics so-
lution of turbomachinery flows. In these techniques
time—marching methods ™ | which may be either implic-
it or explicit, are widely used in external and internal flows.
In the present paper are presented only the numerical com-
putations by using the explicit finite volume time—march-
ing method with multigrid scheme. In this paper the tech-
niques for the solution of the Euler and the Navier—stoker
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equations are the same, They are discretized by finite vol-
ume approximation. The discretized algebraic equations
are solved by Runge—Kutta techniqe *® . The multigrid
scheme ¢® is also used in the present method for acceler-
ating iteration convergence procedure. The various terms
of the full Navier—Stokes equations are expressed and
discretized by a more efficient method compared with pre-
vious ones. In this paper a grid generation technique is util-
ized for obtaining a body—fitted coordinate system. It is a
special method based on the concept similar to that used
for constitution of self—adaptive coordinate system. Calcu-
lations for both turbine and compressor cascades are car-
ried out and compared with experiments.

Governing Equations and Boundary Conditions

The governing equations can be found in most
references and text books. In the present paper the
two—dimensional  Reynolds—averaged  Navier—Stokes
equations, neglecting body force and heat sources, are
written in finite volume formulation as:
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where: V denotes a fixed volume with boundary S, Wrepre-

sents volocity vector, p,p,e represent density, pressure and
total energy per unit volume, respectively.k is ratio of spe-

-

cific heats. t is the viscous stress acted on the surface with

-

outer normal n.
3
P

, and P denote laminar and turbulent Prandtl num-
bers, respectively. 4, and u, dehote molecular and tur-
bulent dynamic viscosities, respectively. Molecular

viscosity,u, , is determined by Sutherland’s law. Turbulent

viscosity is estimated by turbulence model.

In solution of governing equations specification and
enforcement of proper boundary conditions are essential to
accurately capture the physics phynomena of the flow in
turbomachinery. The unknown variables to be solved are
velocity components, pressure, density, temperature or to-
tal energy per unit volume, etc. If there is no injection, a
noslip boundary condition is imposed on velocity for the
Navier—Stokes equations on the solid walls. For inviscid
fluid flow, i.e. for solution of Euler equation, the velocity
vectors are parallel to the blalde walls. The pressure at the
wall can be obtained by assumption of zero normal gra-
dient to the surface or by solution of the normal momen-
tum equation. For temperature, either the blade surface
temperature or the normal temperature gradient is given.
For the heat transfer condition the temperature at blade
surface is derived by heat transfer analysis of blade. For
adiabatic wall of the present paper the normal temperature
gradient is set to be zero.

The prescription of the conditions at inlet and exit
boundaries far enough from the blade row depends on the
flow regime, subsonic or supesonic. Here the total tempera-
ture and pressure and either the velocity components or the
flow angles are given at inlet in the subsonic inlet case. The
exit pressure is prescribed for cascade flow and its distribu-
tion is assumed to be uniform. The other flow variables are
extrapolated from the interion point grid. For upstream
and downstream regions enforcement of periodic boundary
conditions is used.

Turbulence Model

Turbulence model is one of the essential ingredients
for and accurate computation of turbomachinery flows.
For turbulent flow the independent variables, excluding ve-
locity components and thermodynamics parameters, in the
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equations are pW:. W’j ,pW;e'. They are five additional

variables have to be evaluated for two—dimensional flow.
The most general transport equations for turbulence are
the Reynolds stress equations. Many of the terms in these
equations have to be modeled. Although the algebraic
eddy—viscosity model, as indicated by many authors, is
strictly valid only for two—dimensional flows with a mild
pressure gradient, but for simplicity in the present paper is
still used the Baldwin—Lomax ¥ algebraic eddy viscosity
turbulence model.

Expressions of Viscous Terms

Though the solution techniques for both N.S. and
Euler equations are the same, but the main difference of
expences between the numerical solutions of these two
equations is essetial to estimate the viscous terms included
in the Navier—Stokes equations. For improving solution ef-
ficiency a new method to discretize the viscous terms is
proposed. It will be explained below.

The shear stress on the surface can be decomposed in-

to two directions, i.e. normal and tangential, as follows:
ay

T
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where w..w ¢ are the velocity components in normal, n,
and tangential, ¢, directions, respectively.
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By setting a new pressure parameter p to be the sum

of p+ % udivW  and treating it as a separate term similar

to the pressure in computation.
Then, the remainder of shear stress is

-

aw
T= u—a;l— + pgradw (5)

From the Cartesian coordinate system, x, y, adopted
here, i.c.

Wn=W'n=anx+nyWy (6)
and

aW - aW -~ aW
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we have the formulas for expressing the gradient of normal
velocity component, grad W , and the first derivative of

velocity vector on normal direction,a W / an:

gradW =n_gradW + nygradWy 8)
3W - - - -

—— =y (negradW )+ u (n - gradW ) )
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Then, the remainder of shear stress can be rewritten
as:

t=p (n_gradw +n,gradW +u (n-gradW )
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+ uy(n ° gradWy)

(10)
According to the difinition of gradient of a scalar, £,
gradfz Il/ Y fAS, an

I=1

where:'is order of surface of a control volume, V, nis
number of surfaces, in general speaking, nequals four for
two—dimensional and six for three—dimensional flow
problems, respectively. Applying Eq.(11) to the velocity
components,

4 -
gradw =:—, Y0+ Cu (W_AS),

=1

+u (W,AS),)

(12)
and denoting \
i1
Gi—Vg‘(WiASj)l (13)
and i,j=1,2=x,y,
we have:

2 -
gradWl, = ZGfuj
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(14

Finally, the shear stress remainder can be expressed by
the following expression:

-

aW
T=p + pgradW

(15)
i=1
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=r2(Xn,G )u,
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where: \
1
G:j=7E(WiAS1+ WjAS,.), (16)
From the above—mentioned derivation procedure it is
obviously seem that only the following three
G—parameters, G, ,G . ,G

120 1,5G 5, » for two—dimensional prob-

lem, are necessary to be estimate and stored for each con-
trol volume.

A
Now we are coming back to the pressure perameter, p.
According to the definition of divergence of velocity

-

vector, W, we have:
. £ne Wds
5
divW = lim
L7
1 4
=I—/,=l LW _AS ), +(WyASy),]
1 2
== )G, 17
; L0, (17)
Then, the pressure parameter can be obtained as:
A
p=p++36, (18)
V =1

It is enable to summalize up that the computation of

shear stress is mainly only the calculation of the
G—parameters.

Fig.2. Principle scheme of ASSS method

Grid Generation Technique

In pgeneral speaking, grid cell formulation much

influents the convergency and accuracy of computations,
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Fig.1. Principle scheme of generating x'- coordinate lines
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Fig.3. Grid system of a turbine cascade generated by ASSS method
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In the present paper a noval method (ASSS method), based
on analogy of staffs—springs system, for generating a
body—fitted coordinate system is proposed. The body-fit-
ted coordinate system generated by this method at the wall
approximately keeps to be orthogonal. The first step is to
obtain the geometrically central x'—coordinate line. Then
the x'—coordinate lines are formed by proportion of the
straight lines connecting the grids points of the central line
with the corresponting grid points of both suction and
pressure surfaces (see Fig.1). These x'-coordinate lines are
fixed in the later grid generation procédure. The third step
is to generate the x*~coordinate lines. On the one of the
x'—coordinate lines, for example the j-th x'—coordinate
line, the spacings between two grid points are replaced by
springs. The effect of the approprite grid points at both
walls on the position of the grid point of j-th x'~coordinate
line is similar to the effect of two bended staffs, the other
ends of them are fixed at the pressure and section surfaces
with the bending angles of X, and a, , respectively. The
following balance equation for each grid point we have

_Ci—l(Si _Si~1)+Ci(Si+l _Si)

+Muppauw o/ -7 -M,, 0, e0-1)=0 (19)

where: €, ,,C, denote the elasticity coefficients of the
i—th and (i+1)-th springs, respectively. M - and M tow

denote moments of force from upper and lower walls,
respectively. ¢ (J—jland ¢(J—1)are damping coefficients of
upper grid point, J, and lower grid point, 1. Because the
bending angles, & p® o 2 and position of §, are related
each to other, iterations for solving the above equations
require greater CPU time consume. It can be simplified by
the following approximation.

o
upp

o

=(S1upp"Si)/Dup
=(5 -5

low i

P

/D, (20)
where S, op and §,,  are the crosssection points between
the j-th x'-coordinate line and the normals to upper and
lower walls, respectively. Then the Eq.(19) can be rewritten
as:

i low

N M, o —))

_Ci—l,jSi—l,j+ [Ci—l,j+Ci,] o
uppi,j
M, o(—1)
low !
+—-—Dlwu 18,~CiSin
M, o~ ) M, o(j—1)
= 8, t S @n
uppi,j lowi,j
(i=2,.,0—1; j=2,.,0-1)

The coefficient C”. is chosen to be an average value

of Ciio and C _— “for smoothness of the coordinate
lines generated, i.e.
C, .= l(C L+ C )
L V-1 Lj+1
or
-C,,,*+2¢,—C, ., =0 (22)
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The bonndary coditions at lower and uppar walls of
above equation are

Ci,jzl/(SH-l -5

Cu=1/(Si+1—Si)J (23)
respectively.

The values of C ., are obtained by solution of
Eq.(22).

Finally, The x?—coordinate lines are obtained by solv-
ing Eq.(21). In this method iteration procedure is not re-
quired. The final grid system of a turbine blade cascade is
shown in Fig.3. It is shown the the x>~coordinate lines is
closed to the normals.

Discretization and Solution
The integral equations, Eq.(1), can be discretized with

summation around the four sides (numbered as 1) of the
rhombus cell and the variables are defined at the cell

center, i.e.
do _ 1y oA
o = IS,
deW ) 1 ¢ -
F7aat EE("W")'(W * AS),
A 4
+ 2 (PAS ), + Y (x ,AS),]
I=1 1=y
dlpW ) 1 .o -
= Ty CLeW ), - AS),
A 4
+ X (pAS ), + Lz AS),) (24)
=1 lmt
de 1 : - -
il Ez(e + p),(W = AS),

4 - -
+ 2 (1 W),A8,]
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where V' is cell area, AS ; =(AS ASy,)T is the length

x1?
vector of cell surface for twodimensional problem. w.
and Wy are the velocity components in x,y directions,
A

. T .
respectively. =(1:x,ry) and p are viscous stress and
pressure parameter, respectively, They will be discussed
later,

Eq.(24) can be written in general form as:

-

4 T2=0

(2%

Since the variables are stored at the cell center, their
values at cell surfaces are found by simple averaging of the
quantities @ from the adjacent cell centers. This kind of fi-
nite volume spatial discretization reduces to central differ-
ence scheme which is formally second order accurate for
smooth grid. In order to suppress its well~known tendency
for odd—even points decoupling, to capture shocks and to




minimize pre— and post—shock oscillation, an adaptive dis-
sipation term D is added to the system, i.e.

do

o +0-D=0

(26)

The discretization equations, Eq.(25), are solved using
the modified multi-stage Runge—Kutta time—marching
method ' . In the present paper the multigrid scheme is
also applied to solve the algebraic equations. The auxiliary
meshes are formed by doubling the mesh spacing and the
informations of the flow variables are transfered to a
coarser grid py the following principle:

@ =Y (V,®0,/V,) @7
t=1

where the subscripts denote the values of mesh spacing
parameter. Then a forcing function is defined as:

©)
2h

4
©
Py = ‘-ZI(Q,,(D,, -D,®,), —(Q,,, —D,0,)28)
The final equation, updating on a coarse grid, can be
rewritten as
do

T HO—D+P=0

(29)

The process is repeated on successively coarser grids.
Finally, then correction calcalated on each grid is passed
back to the next finer grid by bilinear interpolations.

Results

Numerical solution method for transonic turbine and
supersonic compressor cascades are presented and com-
pared with experimental data. The computational grids are
generated by the use of ASSS method.

Mach
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Fig.4. Mach number distributions on suction and pressurc sur-
faces for the case of My, =0.8
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Fig.5. Mach number distribution on suction and pressure suffaces
for the case of M,;,=0.985

Fig.6. Density contour calculated (88 x 24)

VKI-LS59 turbine cascade "¢

The first example solution is for a transonic turbine
cascade shown in Figs.3. This blade cascade was tested in
four European wind tunnels ' | Its relative pitch is 0.71,
inlet flow angle is —30 ° . The inlet total temperture, total
pressure and turbulence intensity are 290K, 103360 Pa and
1%, respectively. The outlet isentropic Mach number are
about 0.8 and 0.985, respectively. The grid number is 124 X
32. The comparisons between the Mach number distribu-
tions on suction and pressure surfaces, calculated and test-
ed, for isentropic outlet Mach numbers, 0.8 and 0.985, are
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Fig.10. Convergence histories of multigrid scheme.

plotted in Fig.4 and Fig.5. The density contours of the
Mach number of 0.85 for grid points 88 x 24 and 124 x 32
are shown in Fig.6 and Fig.7, respectively. The body—fitted
coordinate lines in the vicinity of the trailing edge are
shown in Fig.8. The velocity vector scheme in the same re-
gion as Fig.8 is plotted in Fig.9. It is seem that the flow
deviates from the geometric outer angle. There is a pair of
vortexes just behind the trailing adge. The large one is lo-
cated on the left side and the small one on the right side.
The convergence histories, shown in Fig.10, have shown
the rapid convergence of using multigrid scheme.

Supersonic inlet flow compressor cascade

The socond example is a supersonic inlet flow
compressor cascade tested in the supersonic compressor
wind tunnel of the Institute of Engineering Thermophysics,
Chinese Academy of Sciences. The inlet Mach number is
1.3. The inlet flow angle and blade stagger angles are 61.9
and 57.75 deg., respectively. The pressure ratio is 1.463 and
the Reynolds number is 3.4 % 10%. The grid system, shown
in Fig.11, is also generated by the ASSS method. The grid
number is 112x 48 for both Euler equation and
Navier—Stokes solutions, respectively. Fig.12 shows the

Fig.11. Grid system of compressor cascade
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Fig.12. Calculated Mach number distributions on pressure and
suction sutfaces in comparison with experiment

Fig.13. Density contour calculated by Euler solver

isentropic Mach number distributions of both solutions in
comparison with experimental data. Figs. 13, 14 arc the
calculated density contours of both solutions. Fig.15 is a
schlieren picture taken by Professors Yu Shen and Chen
Jiagang of the Institute of Engineering Thermophysics. The
mumerical solution of the Navier—Stokes solver agrees
more better with the experiment than of the Euler solver.
The shock of the Buler solver locates near trailing edge of
suction sutrface and hits on pressure surface in a post-mid
position. The calculated and the experimental results are
looking fairly similar. As shown in Figs. 12, 14 and 15 the
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actual passage shock presents a A—type shepe. Due to the
shock wave separations are appeared on either side of the
blade passage. Because of Shock—boundary layer
interaction starting from point S of the suction surface the
pressure have greatly increased (see. Fig. 12) and separa-
tion has occured (see. Fig. 16). Fig.12 apparently shows the
picture of separation. On the pressure surface boundary
layer has slightly separated from point S; and reattached
at point R,. At a distance from first reattachment pressure
is increased again, then the slight separation and
reattachment are reapeared. It can be found from the en-
larged velocity vector scheme (Fig. 17).

Fig.15. Schlieren picture of supersonic inlet flow compressor cas-

cade
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Fig.16. Velocity vector scheme in the region of the rear portion of
blade

Conclusions

A time—marching explicit finite volume method with
multigrid scheme has been presented for solving both Euler
and Navier—Stokes equations with application to steady
two—dimensional transonic flows in turbomachinery cas-
cades. A new method expressing viscous terms of the Na-
vier—Stokes equations has been also proposed. The method
is more simple in comparison with previous methods.
Based on analog of staffs—springs system a rapid grid gen-
eration technique of a body—fitted coordinate system with
approximately normal coordinate lines to the walls has
been suggested. The discretized algebraic equations with
multigrid scheme are solved by Runge—Kutta method.

Numerical solution results for two turbomachinery
cascades have been presented and compared with experi-
mental data to demonstrate the accuracy and
computational efficiency of the analysis method. The
method has good capability of capturing shock waves.

For simplicity, the presentation of the numerical
method was applied to planar, two—dimensional cascade
flows. The method, however, can be applied to
three—dimensional turbomachinery flows.
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