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fibstract

The paper analyses the artificial viscosity model used in
the explicit aultistage finite voluse methods for the solu-
tions of the Euler equations, and suggests an alternative
uay to determine the coefficients contained in the model.
The nodified approach is applied to calculate transonic flows
around airfoils, and the dependence of the numerical results
on the aagnitude of the artificial dissipations is examined.
In addition, the effects of iamplementation of boundary con”
ditions are discussed.

1. Introduction

The explicit sulti-stage finife'volule sethods developed
by Jameson, Schaidt, and Turkel are in wide use for nuserical
sinulations of many cosplicated transonic flows. The 2D Euler
equations in integral form are written as

%squ dv + Xﬁ.ﬁ ds = 0 (1)
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To discretize Eq.{1) , central differences are applied to
the spatial derivatives, and the resulted semi-discretized
teaporary differential equations are

3

A tha)+Q-Da=0 {2
where h stands for the area of an elementary quatrilateral
cell in the flow field, Q stands for the central difference
operator, and the artificial viscosity ters Dq is explicit-
{y added to maintain the numerical stability and elisminate
nonphysical solutions. The additional dissipation » 2 blend
of the second™ and forth~order differences, is cosposed of
tuo separate 1D operatorss respectively . along subscripts
isj. For instance, in i's direction, it follows as
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shere hais the area averaging of two neighbouring cells for
the cell edge Siw;, and the introduction of the factor
hag/atﬁxi preceding to the square bracket is » according to
Ref. [11 , reasoned as to sake the artificial dissipation
teras dimensionally consistent with others. The time interval
&SMis deterained so that it brings about 2 local Courant
nusber of unity . But a question arises as that for the above
established scheme applied to the multi-dimensional Euler
equations, no forsula is rigoriously aiven to define Courant
nuaber, via which to determine At, and it seems worse that
for some other references using Jameson et al. schemes. two
tise steps, one occurring in the artificial wviscosity ters
and another used for the time integration, are sisunderstood
as the same, and this would lead to an erroneous ispression
that owing to the dependence of the converged steady~state
sofutions on both the spatial central differences and the
artificial viscosity terms, and the inclusion of the time
parching step at in the later, the wvariation of the arti-
ficial viscosity due to the change of at will result inevi-
tably the change of the converged steady-state solutions. In
order to avoid such misunderstanding, in the present rpaper,
we built up the nuserical apdoximate fluxes, instead of two
parts the central differences and the artificial dissipa-
tions in the Jameson et al. schemes - to discretize the
spatial derivatives in Eq.{1), and the factor preseding to
the equivalent dissipation difference terss in so-defined
nuserical fluxes is evaluated by analogy to the physical
based upwind schemes. In addition, the effects of the
different isplementation of  the wall boundary conditions
on the numerical results are discussed.



2. Numerical fipproximate Fluxes

Fron the point view of physics, upwind schemes based upon
the assusption of the characteristics theory and wave propa-
gation latntaln the flow inforsation transfer in reality.
Pullian’ ’analysed the common points of upwind schemes and
central difference one, and concluded that for the discreti-
zation of the spatial derivatives of the Euler eqations, the
application of the second-order upwind scheses has the same
function as using central differences with the addition of 2
forth-order dissipation ters, and the first-order upwind
schemes equivalent to the central differences plus 2 second”
order dissipation. The coefficients of the appended viscosity
terss should be some sort of flux Jacobian scaling. The cos-
prehensive numerical experilentsr‘hsins central difference
schemes with addition of the artificial viscocity tera , and
some recent(:yrk applying flux [imiters to upwind schele§52nd
TUD concepts suggest that the optisised approaches to estab-
Iish the efficient shock-capturing schemes are to use a local-
ly first order schemes at shock waves and the second-order
elsenhere. For the alaorithe using central differences to dis-
cretize the spatial derivatives, this can be accomplished by
4 suitch operator to control the action of the second~ and
forth-order dissipation as appiied to finite volune methods,
such appended artificial dissipation can be introduced by
corrected nuserical fluxes, instead of the standard second-
order difference ones, for the Euler fluxes in Eq.(1).Consi-

der flux throush 4Ssyj, an edge of cell i,§, F. It can be
nuserically calculated as
Foy= 3 (FagoFiy ) +
o L €000 ) " q3005 4305 “a1 )

where ¥{Fa; 1Ry ) is some symmetric averaging of Fy and Fuys
and for the purpose of numerical efficiency, a sisplist
tveraging is used as

*(Fiule-‘J‘ Y= 1/2 (ﬁj +F;»j)

the second term is the appended dissipation, the coeffi-
cients of which, as stated before, is taken as the spectral
radius of local flux Jacobian B, i.e.,
=P =lulta (&)

ind »

A=A e;& B e{ '

Uy =u e +ve]
where n=(¢, +¢] )} is the unit norsal to 88wy, + 4 s speed
of sound and A,B Jacobians of the flux functions F .and 6 .
It is worthihile to note that the determination of o here

differs from the forsula

o= pH) + pE)
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as suggested in Ref.[2). In the arbitrary non-orthogonal
curvilinear coordinates, it seems reasonable to use forsula
{4). The testing functions of wy In the artificial dissi-
pations make possible that the resulted algoriths is the
first-order at shock waves and the second-order esewhere,
and the introduction of the scaling of local pressure grad-
ient  further enhances the numerical stability.

3. Boundary Condition Iaplementation
For inviscid flows around airfoils. slipping condition
is imposed on wall, i.e.,
.5 =0 (5)
where = (n*,n”) is the outward norsai to the wall. fipplied
to the finite volume sethods, it makes flux function become

°
o
H.n ={¥:?\v]
4]

where pw is the wall pressure, which can be calculated froa
the foraula

§%= Kyu§ (6)

where K stands for the wall curvature, and ue approxisated as
the velocity component in the neighbouring cell along the
nall tangent. For an airfoil profile defined by a closed ana-
lytical function, it is easy to calculate the curvature value
of the wall. But for the airfoil profile stirulated by a set
of discrete values, such as RAE2822, difficulties arise to
evaluated accurately curvature vaiues by somse fora of polyno-
sial functions because of the existence of geometrical singu-
larities of the airfoil near the leading edge. An alternative
to deternine the wall pressure is to arply the normal somen-
tun equation,nhich takes the form.in curvilinear coordinates
(8,0 as follows

x »
pE BT, oy )R
»

+(n"[,+n’q,)3;,ll n

Hhen the curvilinear coordinates are nearly orthogonal in
the neighbourhood of the wall, which means that

ng, 475, 50
Eq.(7) can be siaplified as
pUud B

U=u§,+v§, [
RS M e

{8}

and



Khere n={ Ner Wy 3/r is the unit normal of the wall, and J
the Jacobian value of the coordinate transformation. Using
the first-order difference quotient to approxisate %;}.and
detersining other values in the same way as before, the
pressure on the wall can be easily evaluated.

4, Nuserical Results and Discussion

Three pairs of different values k™ & are serarately
used to calculate the transonic flow around NACAQOIZ airfoil
at M =0.8 and ALFA=1.25deg., shere ALFA stands for the angle
of attack. In Tab.1, aerodynamic coefficients and the maxi-
sus and sinisus of the pressure coefficients are given, and
Fig. 1 displays the pressure coefficient along the
chorduise direction. It is clear that the  position
of shock maves obtained using different values of K™ k™ are
nearly the same, where x =0.624 for the shock wave on the
upper surface. When the large value of K are taken, the
profile of shock waves are slishtly smoothed, and for the
present case it spans six grids. Post-expansion of Inviscid
flow just downstreas of the shock wave is dasped out. Khen
taking the smaller values of & evidently there exist
preshock and postshock oscilations. When the adequate values
are taken, for instance the second pair values, such spu”
rious oscilations are cospletely elisinated, and the profile
of the shock waves on the upper surface, seanning only four
grids, is satisfactory. Just downstreas of the shock wave
occurs the post expansion, which shows clearly the behaviour
of inviscid flous through shock waves steaming from a curved
wall,

_ NACAQO12 airfoil M=.8, A=1.25
k k  Cpmin Cpmax OL CD
5,005 -1.1357 1.1319 3479 0215,
1.0 .032 -1.1146 1,174  .3925 .0226!
2.0 .064 -1.1213 1,2091 .3571 ,0238;

Tab.1 Computed results for NACAOO12
airfoil witn M=.8, A=1.2%eg.

|
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B. C. Cpmin Cpmax CL Cb

_ _Eq.(5) -1.0101 1.1823 3548 0556
Eq.(8) -1.0111 1.1792 .3438 .0v42

Tab,2 Computeé results for NACAQO12
with M=.85, A=1.0 deg.

A

M Cpmin’ CL  CD

725 2.59 =1.4453 1,084%9 .6341 .0384

L75 3.0 -1.4826 1.084f.'1.0316“.0422

Cpmax

Tab.3 Computed results for RAE2822
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Tuo different ways to isplesent the boundary condition on
the wall are used to calculate the transonic flow around
NACAOD12 airfoil at M =.85 and ALFA= 1.0, Tab. 2 gives aero”

dynamic coefficients and the wsaxisus and wminisus of  the
pressure coefficient and, Fig.2 displays the pressure
coefficient along the  chordeise direction. Tno

results are nearly equivalent. Some other examples using
Eq.(8) to evaluate the mail pressure are the transonic flows
around RAE2822 airfoil. Their results are given in Tab. 3
and Fig 3. All of these examples show that the approaches
used in the present paper to isplement the wall boundary
conditions are suitable.
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