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Abstract

This paper deals with the calculation of
attached and separated flow using turbulent
integral boundary layer theory, a law of the wall
and wake form of velocity profile and a strong
coupling equation based on the combined boundary
layer and transpiration velocity equations.

Emphasis is placed on the velocity profile and
the governing equations which are applicable to
both two and three—-dimensional flow.

I. Introduction

At the present time there is much interest in
calculating the separated flow over aircraft wings
in order to determine the all important buffet
boundaries and maximum lift. So as to provide
practical and fast design methods, the current
trend is to match an inviscid calculation for the
flow external to the shear layers with a boundary
layer type calculation for the flow within the
shear layers. This is the now classic viscous—
inviscid coupling approach. However, when
separated flow is involved this imposes particular
difficulties not only on the coupling algorithm
but also on the boundary layer method; which has
to be able to handle flow reversal at the wall and
in the wake. In this paper, it is shown that these
difficulties can be overcome using formulations
based on a modified form of the law of the wall
and wake velocity profile, which allows for non-
equilibrium flow distortion.

II. The Velocity Profile

Traditionally approximate forms of velocity
profile, or an equivalent abstraction, have been
used for integral boundary layer methods. Such
approximations however, are a serious limitation
if second order effects are to be included, or if
three—dimensional flow is to be considered. 1In
the latter case the additional integral thick—
nesses place greater emphasis on the precision of
the velocity profile. All this, together with the
requirement to handle separated flow, makes the
law of the wall and wake particularly attractive
for turbulent integral boundary layer calculation
and this section of the present paper describes a
modified form suitable for both two and three—
dimensional calculations.

The profile can be extended to comprefsible
flow, using the transformation of Spence™, but in
the interest of brevity only the incompressible
form is described here.

Attached Flow

The law of the wall is derived from Prandtl's
mixing length hypothesis, the assumption of
constant shear stress close to the wall and by

matching the law of the wall to the laminar sub
layer. The wall flow is dominated by the wall
shear stress with the skin friction coefficient
becoming the primary independent variable. The
matching of the wall flow with the laminar sub
layer after suitable length and velocity scaleg,
are specified results, as shown by Schlichting”,
in the Reynolds number dependence of the law of
the wall. The wake region away from the wall is
daninated, as may be expected, by the external
flow inertia rather than wall friction and Coles
introduced a wake term with a weighting function
related to the longitudinal or streamwise pressure
gradient. The law of the wall and wake can be
written as:-

X
o _ . I
5 =% [m(raad)+a]+msin(3]) (1)

With the Coles formulation the wake exponent X
takes the value of 2 while the effect of pressure
gradient is allowed for in the wake weighting
function B. One of the prime disadvantages with
the Coles formulation is that the velocity profile
is not fully compatible at the outer edge of the
boundary layer where it meets with the external
inviscid flow. In order to include such a profile
in an integral calculation method, it is essential
to match the outer edge boundary condition Q = Qe
at y=d and this requires that Coles weighting
function reverts to a simple scale factor with a
value given by:~

B=l—%[Ln(qu)+A]

(2)

It is then necessary to reappraise the way in
which pressure,gradient is included and it was
shown by Cross™ that the wake exponent could be
related to a departure from equilibrum flow
through a relative pressure gradient parameter TIr.
Thus, by consideration of the difference between
the streamwise pressure gradient parameters of the
actual flow and the equivalent equilibrium flow we
have:-

X = F(Or) (3)
(4)

o =(e dQe) _(e dge

where Oe ds =

Qe ds )EQ

Many studies have been made of turbulent
boundary layers developing under conditions of
equilibrium, or self preservation and it is found
that they can be characterised by an equilibrium
locus relating the shape parameter of the velocity
defect profile to a pressure gradient parameter.
The equilibrium locus can be used here to define
the equilibrium term of Equation 4 and so complete
the description of X. Very good results have been
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obtained using the locus proposed by Green et als,
which after some rearrangement gives:-

_ 2
5% Bw = ¥ F (E&Sx)) (5)

Figure 1, is taken fram Reference 4 and shows
the correlation, with the relative pressure
gradient parameter, of the values of X that give
the optimum velocity profile f£it to experimental
data. It can be seen immediately from the figure
that for equilibrium flow, that is Tr = 0, the
Coles value still applies and so the velocity pro—
file remains applicable to the wealth of data
collected for equillibrium layers, for which the
original law of the wall and wake is known to work
well. However, for very strong pressure gradients
values of X very different to the Coles value are
required and this can be interpreted as a
distortion of the profile related to the departure
from equilibrium.
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Figure 2. Velocity profiles; [] experiment,

—————— equilibrium flow theory,
general theory.

In order, to show the effect of this non-
equilibrium distortion to the law of_the wall and
wake the experiment of East and Hoxy is now
considered. Figure 2 shows two theoretical
velocity profiles compared with the experimental
data; one profile for the Coles equilibrium value
of X and one profile using the value determined
from Figure 1. In both cases the measured skin

friction coefficient and boundary layer thickness
were used to construct the theoretical profiles
and the effect of non-equilibrium flow distortion
is clearly evident.

It is informative when considering velocity
profiles for turbulent flow to examine the nature
of the shape parameter relation H1 - H. The shape
parameter Hl was introduced originally by Head
for entrainment type integral boundary layer
calculation, while H is the more commonly known
shape parameter. For the revised law of the wall
and wake this shape parameter relation is a
function of both Reynolds number and pressure
gradient, with the former effect due to the wall
flow and the latter due to that of the wake.

Figure 3 illustrates the effect on the shape
parameter relation, of the law of the wall and
wake, due to varying the Reynolds number at the
equilibrium flow condition. The figure shows that
the effects of Reynolds number are largely
confined to low values of H. At the equilibrium
flow condition, separation, as defined by zero
skin friction, occurs with H = 4 and the figure
shows the Reynolds number effect there to be
negligible. This behaviour is explained by the
logarithmic wall region vanishing at separation to
leave only the wake term remaining.
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Figure 3. Shape parameter relation.

Reynolds
number variation for equilibrium flow; ————
Rd = 100, 1000, 10000, 1000000, infinity

An important consequence of the Reynolds number
effect can be seen at the low values of H, where
Reynolds number limits the minimum value of H att-
ainable. This limit plays a very significant role
in flow recovery due to a favourable pressure
gradient and is amply de@onstrated using the exp-
eriment of Chu and Young . This experiment was
for the flow over a flat plate with the suction
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peak type pressure distribution shown in Figure 4.
Figure 5 compares the experimental values of H
with two entrainment integral method predictions;
one using the modified law of the wall and wake
and one using an empirical shape parameter
relation in place of a velocity profile. The limit
to the minimum value of H is clearly seen in the
experiment and the law of the wall and wake
calculation agrees very well with this. However,
the calculation using the other method fails to
predict this flow feature.
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Figure 4. Pressure coefficient
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202 e g m g g
1 | ! \
2.0 ;L.,., i S S -...,,ﬂj
i \ |
‘ !
1.8 -
1.6 | . ———
1.4 VU S
1.2 — ~
1.0 e B R R
0.0 0.2 0.4 0.6 0.8 1.0
x/c
Figure 5. Shape parameter predicition; ({]

Chu and Young, law of wall and wake
method, = = - ~ = method of Green et al.

For non-equilibrium flow at constant Reynolds
nunber, Figure 6 shows that the distortion of

the shape parameter relation due to pressure
gradient effects occurs mainly at high values of H
and this is due to the dominance of the wake at
these conditions. The main point to notice is that
second order pressure gradient effects, that is
those in addition to the direct effect in the
boundary layer momentum equation, are likely to be
important at separation.
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Figure 6. Shape parameter relation. Wake

exponent variation at Reynolds number of
1 million; X=.5tcd, - -~ ~= =~ Zero
skin friction locus.

Separated Flow

The law of the wall and wake can be applied to
fully separated flow, though its original devel-
opment was for attached flow with perhaps
incipient separation. This extension is achieved
by allowing the friction velocity to have negative
values and so model flow reversal close to the
wall. The first requirement is to avoid problems
with the logarithmic term when the friction
velocity goes negative and this is best achieved
by writing the law of the wall and wake in the
following form:-

X

1 2 Srn (6)
8 -8} wlma§)® 2] omn(}Y
Figures 7 and 8 show the effect on the shape
parameter relation when using the law of the wall
and wake for separated flow. Figure 7 shows the
influence of Reynolds number to be relatively
small beyond separation in comparison to varying
the relative pressure gradient parameter, and so
wake exponent X as illustrated in Figure 8.
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Figure 7. Extended shape parameter relation.
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Figure 8. Extended shape parameter relation.
Wake exponent variation at Reynolds number
of 50000; X = 1.5 to 3.5

Theoretical results are campared, in Figyre 9,
with the experimental data of Simpson et al’. The
theoretical results are calculated for the
appropriate experiment Reynolds number, using in
one case the equilibrium value of wake exponent
and in the other the values determined from the
experimental values of pressure gradient and the
correlation of Figure 1. The influence of the
relative pressure gradient parameter is clearly
evident beyond separation and produces the right
effect, though the experiment suggests the effect
ought to be stronger. Similar results are shown in
Figure lgofor the experiment of Hastings and
Williams™ . This agreement is most encouraging,
especially considering the velocity profile was
developed originally for attached flow.

The results so far indicate a need for higher
values of wake exponent at separation, than those
given by Figure 1, Later, when three~dimensional
flow is considered, it will become evident that at
positive values of TIr, appropriate to fully deve-
loped separated flow, there is independent and
direct evidence for revision of the correlation of
Figure 1. This evidence, in the form of Figure
11, is consistent with the requirement for impro-
ved accuracy in the Figures 9 and 10. Further and
just as important, the new evidence is not
inconsistent with the two~dimensional data of

Figure 1 as that was derived almost entirely from
zero and negative values of the relative pressure
gradient parameter.

13
Hl
9
o
5 — = a
M,//‘ a
1 : |
1 3 5 7 9 H 11
Figure 9. Extended Shape parameter relation;
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Figure 10. Extended Shape parameter relation;

[] Hastings and Williams, - - = - ~ equilibrium
flow theory, general theory

Three-Dimensional Flow

The law of the wall can be extended to three-
dimensions by considering the logarithmic wall
region to lie in the direction of the surface
streamline or so-called limiting streamline. This
interpretation of a three-dimensional law of the
wall is now quite widely recognised and can be
verified by consigeration of the experimental data
of East and Hoxey for highly three—di_TTnsional
flow and the data of Berg and Elsenaar =~ for
sheared wing and plane flow. However, the law of
the wake cannot be extended quite so easily into
three—dimensions as it is twisted, or skewed
throughout its thickness as was demonstrated in
some detail in Reference 12.

As a first step towards extending the law of
the wall and wake to three-dimensional flow, Equa—
tion 6 can be applied directly to the magnitude of
the velocities in the three-dimensional turbulent
boundary layer. This ignores the skewed nature of
the wake but enables the effect of non-equilibrium
flow distortion to be explored in exactly the same
way as for the previously discussed two—
dimensional case. Thus by analysing the data of
East and Hoxey, together with that of Berg and
Elsenaar, optimum values of the wake exponent for
three-dimensional flow can be correlated against
the departure from equilibrium, Figure 11 shows
the results which are in good agreement with the
original two-dimensional correlation of Figure 1.
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Figure 11. Non-equilibrium flow distortion
for three dimensional flow.

To proceed further it is convenient to consider
the three-dimensional form of the law of the wall
and wake in streamline and crossflow components.
The wall region simply resolves through the
limiting streamline angle Bo, while in order to
allow for a skewed wake separate streanwise and
crogssflow wake functions must be considered. Thus
the profile can be written in the form:-

Xs

2
—8—:—=%§ [%Ln(RDq%)+A]+Bssin (%}%) 7
2
%=§S [%Ln(qu§)+A]+Bc s>1(§:1 (%%) 8)
where gs = g cosBo (9)
gc = g sinBo (10)

and where the wake exponents Xs and Xc are introd-
uced to provide the necessary wake skewing. In
addition, at the outer edge of the boundary layer,
by definition of the streamline co-ordinate system
we have:—

Qs = Qe, Qc = 0, y=4d

and for the wake scale factors this requires:~

Bs=1-2] %Ln(qu)z +A ] 2
Bc = - %g [ %— Ln(qu)2 + A ] (12)

We now consider the two wake functions. If the
wake profile was not skewed it could be simply
resolved, as for the wall flow, and this would
effect the wake scale factors only so that we
would have:=-

Xs = Xc = X

However, the wake is skewed and the degree of
twist can be expected to relate to the orientation
of the wall and wake components of the velocity
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Figure 12. Streamwise wake exponent correlation,
[] experiment, correlation curve.
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Figure 13.
[] experiment,

profile. The orientation of the wall region is of
course given by Bo while that of the wake is
detenmined by:—
-1
¥ = tan (Bc/Bs) (13)

In addition to the orientation of the laws of the
wall and wake, the wake exponents also relate
directly to the exponent X of the previously
determined scalar, or two-dimensional wake and so
we anticipate correlations of the form:-

Xs
Xc

Xs (X, Bo, ¥ ) (14)
Xc (X, Bo, ¥ ) (15)

I

Any correlation should also be consistent with the
two~-dimensional form of velocity profile which
when the flow is attached requires:-

Xs =X, Bo=0, §=0
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Whilst, two-dimensional separated flow requires:-—
Xs = X, Bo = 180°,¥= 0

By further consideration of the experiments of
References 6 and 11 correlations have been
obtained for the wake exponents and these are
shown in Figures 12 and 13.

1.0
Os/Qe
0c/Qe

A
0.6 N
0.4 Miv S

ér B

,D_c_.n-q——Lﬂﬂn—m QC
0.2 o
0.0 : !
-8 -7 -6 -5 Ln(y) -3
Figure 14. Theoretical velocity profiles

compared with experiment; 4 = 40mm, Cf = ,0017,
Bo = 29,0 degrees; [] experiment, theory.
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Figure 15. Theoretical velocity profiles
compared with experiment; d = 48.5mm, Cf = .0015,
Bo = 35.2 degrees; [} experiment, theory.

Finally, Figures 14 and 15 show the results of
fitting the three-dimensional law of the wall and
wake profile to the experimental data of Berg and
Elsenaar. The figures are for limiting streamline
angles of 29 and 35.2 degrees respectively and the
latter case is a particularly severe test as it
was identified by Berg and Elsenaar as near the
condition for a sheared wing form of separation.
The main points to notice are that the streamwise
flow components are similar to the two-dimensional
velocity profile and that good agreement with

experiment is obtained for both the streamwise and
crossflow components.

Though the profile of Figure 15 is close to
separation the value of the streamwise shape
parameter is only 1.7 and the skin friction is far
from zero. This illustrates the important
difference between this type of separation and its
two-dimensional counterpart. However the proposed
velocity profile can model both these forms of
separation.

III, The Coupling Equation

Starting with the three-dimensional boundary
layer equationf3in streamline co—ordinates,lis
used by Myring~~ and more recently by Smith™~ for
compressible flow, we may also add the equatioT5
for the transpiration velocity, or Lighthill's
equivalent source. The velocity profile is then
introduced to produce a system of equations in
terms of velocity profile parameters and the
external stream velocities. By using the
three-dimensional form of the law of the wall and
wake these equations can be written in the
following quasi-linear form:-

Aij g_gl + Bij g_f‘lj_ C; +D; (16)

where i = 1, 2, 3 and 4 refers to the entrainment,
streamwise momentum, crossflow momentum and trans—
piration velocity equations respectively; where

F) =4, F2=qs,F3=qc,F4=§e.§
C; =Ce, C, =q.gs, Cy =q. qc, C4=6e.('s'xﬁ)

and where the coefficients Di are the collected
streamline curvature terms.

By combining the four equations, streamwise
derivatives of boundary layer parameters can be
eliminated and the result can be written in the
following linearised form:-

s O (Ge. 8) |\ 9(Qe. 5) +c (De. 5)
s an - - -
=dQe. (s xn) (17)

This equation can be seen to involve only the
inviscid velocity external to the boundary layer
and so can be interpreted as a viscous boundary
condition for the external flow. Solutions of the
boundary layer equations enable the coefficients
of this equation to be calculated and as these
vary much more slowly than either displacement
thickness or transpiration velocity, then rapid
convergence results for viscous-inviscid coupled
flow solutions. For convenience, Equation 17 will
be referred to as the strong coupling equation
throughout the remainder of this paper.

When the external flow is irrotational the
strong coupling equation can be further simplified
using the irrotational flow equation, which for
the streamline co-ordinate system can be written
as:—

Kn (0e.5) =9 (8e.s) (18)
on
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IV. Calculations

The velocity profile, boundary layer equations
and strong coupling equation previously described
have been used to provide the viscous routines for
two and three-dimensional viscous flow methods.
This viscous ggckage has been used in conjunction
with Petrie's™ three-dimensional subcritical
panel method, itg two-dimensional equivalent and
with Sinclair's™’ two-dimensional field panel
method for solution to the full potential
equation.

The calculations presented in this paper are
for the two dimensional panel method which has
been used to explore the convergence properties of
the strong coupling equation. The calculations
include wake relaxation and wake displacement
effects but do not include normal pressure
gradient terms, or indeed wake curvature, other
than that obviously implied by wake relaxation.

The test case chosen ygs the NACA 4412 aerofoil
of Williams and Hastings™ . This test case is
particularly useful as Williams provides a known
target for computational methods following the
calculations performed using his semi-inverse
method.

In order to provide a critical test of the
viscous method, the aerofoil section has been
modelled with a sharp trailing edge and no
smoothing, or other manipulation of data, has been
introduced at the trailing edge, or indeed
anywhere else in the flow. Thus calculations
presented represent genuine solutions to the
coupling problem with errors associated only with
the validity of the mathematical model and the
discrete treatment of the geometry involved.

Basic calculations involving the panel method
were performed using a 60 point cosine
distribution of control points on the aerofoil and
a half cosine distribution of 30 control points in
the wake. The wake extended a full chord distance
downstream of the trailing edge with comparable
control point spacing on the aerofoil and wake in
the trailing edge region. In addition the
calculations were performed allowing for the
presence of a solid wall wind tunnel so that
comparisons could be made with uncorrected wind
tunnel data. Such comparisons are desirable as
they are free of any dependence on wind tunnel
corrections which are particularly uncertain at
high lift.

Transition was fixed in the calculations at the
nearest control points to the actual trip
positions used in the experiment. Further, in
accordance with the findings of Williams, a
naminal jump in momentum thickness of .0002m was
used at the upper surface trip to simulate the
effect of a very coarse tripping device.

In order to demonstrate convergence, the lift
coefficient and the trailing edge values of the
boundary layer shape parameter have been recorded
at each iteration of the calculations. As a
further more critical guide to convergence the
maximum external flow velodity change, E, between
successive iterations has also been recorded. This
quantity is particularly useful as its logarithm
gives a direct measure of the order of accuracy.

In addition to the basic calculations the
effect of a doubling of the number of control
points has been demonstrated. Finally, calcula-
tions are shown for the separated flow conditions
appropriate to the experiment and a comparison

" made between experiment and theoretical results.

Convergence of solutions

Preliminary calculations showed that the method
could produce solutions in the absence of any use
of relaxation factors. In some cases, over-
relaxation could be used to accelerate convergence
and for these cases the relaxation was applied to
the singularity strengths, or the velocities
calculated by the panel method. A degree of
under-relaxation was sometimes necessary during
the first three or four iterations, when changes
were most rapid. However the degree of under-
relaxation, required during the early iterations,
was not very significant and a relaxation factor
of 0.9 overcame any difficulties.

Convergence has been examined at 8, 10 and 12
degrees of incidence. Figures 16, 17 and 18 show
the effects on convergence of calculations at 8
degrees of incidence. The figures show a regular
convergence after the initial few iterations and
four figure accuracy was obtained after 12
iterations.
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Figure 16. Convergence history of lift
coefficient. Calculations at incidence
8° and Reynolds number 4170000.
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Figure 17. Convergence history of shape
parameter. Calculations at incidence 8°

Reynolds number 4170000.

508



-1n(E) o i

o |

12 16
Iteration number

Figure 18. Convergence rate of the external
flow velocities. Calculations at Incidence
8°, Reynolds number 4170000.
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For the next part of the investigation it was
decided to examine the effect of doubling the
numbers of control points used to represent the
aerofoil afg wake and solgefine the solution. For
the Carter™ and Balleur ™~ type of coupling scheme
this would normally require a large reduction in
the under-relaxation parameter of the coupling
equation with an increase in the number of
iterations to achieve convergence. In addition to
the camputation refinement the calculations for
this exercise were performed at a more critical
incidence of 10 degrees. Two calculations were
produced with one using the original geametry and
one with the refined geometry. In every other
respect the calculations were identical.
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Figure 19. Convergence history of 1lift
coefficient. Calculations at incidence
10° and Reynolds number 4170000; [] coarse
geametry, O refined geometry.
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Figure 20. Convergence history of shape
parameter. Calculations at incidence
10°, Reynolds number 4170000; [] coarse
geametry, O refined geometry.
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Figure 21. Convergence rate of the external
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flow velocities. Calculations at Incidence
10°, Reynolds number 4170000; [] coarse
geometry, O refined geometry.

The results of the calculations are shown in
Figures 19, 20 and 21. The refined calculation not
surprisingly converges to a different solution to
that of the calculation using the original
goemetry but this difference is somewhat larger
than would normally be expected. The difference
was investigated and traced to slight differences
in the transition position due to transition being
fixed at the nearest control point to the actual



trip position used in the experiment. Together
with the required momentum thickness jump at
transition, this shows that for high lift cases

solutions are quite sensitive to the conditions at

transition.
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Figure 22. Convergence history of lift
coefficient. Calculations at incidence 12°
and Reynolds number 4170000; [] relaxation
factor 0.9, O relaxation factor 1.1.
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Figure 23. Convergence history of shape
parameter. Calculations at incidence 12°
Reynolds number 4170000; [] relaxation
factor 0.9, O relaxation factor 1.1.

The crude and refined solutions both converge
at similar rates but are slower to converge than

the 8 degree incidence case previously shown. This

time the calculations indicate 20 iterations to
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achieve an accuracy of four significant figures.
Surprisingly the refined solution converges at a
slightly better rate and in a more regular fashion
than the crude solution.

As a final test of convergence behaviour,
further calculations using the refined geametry
have been undertaken at 12 degrees of incidence.
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Figure 24. Convergence rate of the external
flow velocities. Calculations at Incidence

12°, Reynolds number 4170000; {] relaxation

factor 0.9, O relaxation factor 1.l.
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Figure 25. Pressure coefficient distributions;
NACA 4412 aerofoil, incidence 12.25°, Reynolds
number 4170000; {] experiment, ————— theory.

Figures 22, 23 and 24 show the results of this
exercise. For one calculation the default
relaxation factor of 0.9 was used while in a
second calculation a relaxation factor of 1.1 was
used from the fifth iteration onwards. The results
show that over-relaxation does in fact improve
convergence rate with four figure accuracy being



obtained after 26 iterations as opposed to 30
iterations using under-relaxation.

Comparison with experiment

Now we turn our attention to the particular
incidence case for which Williams and Hastings
report measurements. This was at an incidence of
12.25 degrees at a Reynolds number of 4,17 Million
and at a Mach number of 0.176. Figure 25 shows the
calculation results, in temms of pressure
coefficient distribution, compared with
experiment. As the calculation includes the
effects of the tunnel walls the experimental data
has been left in its uncorrected form and there
are no worries about the uncertainties of tunnel
corrections. The results are thought to be in
reasonable agreement considering that normal
pressure gradient and wake curvature effects have
not been included at this stage.
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Figure 26. Tunnel wall Pressure coefficients;
NACA 4412 section, incidence 12.25°, Reynolds
number 4170000, tunnel height 2.74m, model
height 1.37m; [], 0 experiment, theory.
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Figure 27. Integral thicknesses; NACA 4412
section, incidence 12,25°, Reynolds number
4170000; [1, O experiment, theory.

Figure 26 campares the calculated pressures
with experimental data for the tunnel roof and
floor. The main points to notice are that the
shape of the two distributions are very similar
but that they differ in magnitude with the
calculated results suggesting the stronger wind

tunnel interference and blockage effect. The
results are consistent with the increased lift of
the calculation that can readily be inferred from
Figure 25. Figure 27 shows the boundary layer
integral thicknesses for the upper surface of the
aerofoil compared with the experimental data. The
main difference is in the displacement thickness
that consistently under estimates the experiment
throughout the calculation. Part of this may be
due to nommal pressure gradient effects in the
boundary layer.
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Figure 28. Shape parameter; NACA 4412 section,
incidence 12.25°, Reynolds number 4170000, []
experiment, theory.
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Figure 29. Skin friction coefficient;
NACA 4412 section, incidence 12.25°
Reynolds number 4170000; theory.

Finally Figures 28 and 29 show the shape
parameter and the skin friction coefficient for
the upper surface of the aerofoil. The shape
parameter is in broad agreement with experiment
and otherwise unremarkable but the distribution of
skin friction coefficient is particularly
interesting as after an initial rapid fall the
values flatten out to produce a gradual creep
through the separation point. In the experiment
separation was found to occur at about the 80%
chord position while the calculation shows
separation, based on zero skin friction, to occur
at the 90% chord position. However, the skin
friction creep associated with separation starts
near the 80% chord position and this agrees with
the start of the separated 'pressure plateau’
region in the pressure distribution; the words
'pressure plateau' are used here somewhat loosely
as the pressures show a slight dip at separation
when plotted to the scale as used in Figure 25.



V. Conclusions

A modified form of the law of the wall and wake
is presented for three-dimensional turbulent
attached and separated flow. It is also shown that
by combining the boundary layer equations with the
transpiration velocity equation that a so-called
strong coupling equation can be produced for
viscous~inviscid interactions.

Solutions to the strong coupling equation have
been demonstrated for a two-dimensional aerofoil
using a subcritical panel method and a lag
entrainment boundary layer method based on the
modified law of the wall and wake. Solutions
converge rapidly without the need for smoothing or
other manipulation of data in strong interaction
regions. Doubling the numbers of control points
used to define the aerofoil and wake results in a
slight improvement in convergence rate and this is
a complete reversal of the trend associated with
Carter and Balleur type coupling Schemes.

Over-relaxation of the external flow velocities
can be used to speed convergence as can using
initial conditions appropriate to previous lower
incidence solutions.

Results have been compared with experiment for
the NACA 4412 separated flow aerofoil test case of
Hastings and Williams. The calculations include
the presence of the tunnel walls and so direct
comparison has been possible with uncorrected wind
tunnel data. This is important as the standard
wind tunnel corrections are in same doubt at high
lift. The agreement with experiment is considered
quite good considering that important second order
effects are not included at this stage.

VI. List of Symbols

Law of the wall constant

Wake scale factor

Reference length - aerofoil section chord
Entrainment coefficient

Skin friction coefficient

Error parameter: maximum velocity change
between successive iterations

Shape parameter

Head's shape parameter - (d - d*)/@
Prandtl's mixing length proportionality
constant

Streamline curvature

Cross flow displacement

Cross flow unit displacement vector
Non-dimensional friction velocity
Streamwise Velocity

Reynolds number based on boundary layer
thickness

Streamwise displacement

Streamwise unit displacement vector
Chordwise displacement

Normal to wall distance

Limiting streamline angle

Wake orientation angle

Boundary layer thickness

Boundary layer displacement thickness
Boundary layer momentum thickness
Relative pressure gradient parameter
Wake exponent
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In addition to the above symbols, the suffix (e)
is used to denote values at the outer edge of the
boundary layer while the suffix (EQ) is used to
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denote equilibrium values. Further, for three-
dimensional flow the suffices (s) and (c) are used
respectively for streamwise and crossflow
components of variables.
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