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Abstract

In this paper an efficient design program for
the elastic solids (UHSH1) is developed. The pro-
gram can efficiently design complex three dimen-
sional structure under multipleloading cases.
There are three different objective functions
which may be selected by users. They are minimum
weight, minimum maximum stress, and weighted ob-
jective function. The program can deal with mul-
tiple constraints, such as static stress, dis-
placement, the prohibited band of frequency and
side constraints. A family of rectangular type of
elements such as 8-noded isoparametric element,
20-noded isoparametric element and 9-19 variable
noded isoparametric elements are used, in order to
consider the distortion of the elements during the
optimizing process, a triangular type of elements-
«=15 noded isoparametric element is included. The
efficiency of the program is enhanced by different
ways, such as 1) by improving the efficiency of
the FEM subroutines; 2) by deriving an analytical
sensitivity technique for these elements; 3) by
developing some approximate reanalysis techniques
as well. The optimization techniques used here are
with improved movelimit methods of sequential
linear programming and sequential quadric program-
ming. The constraint deletion techniques are in-
volved also. The techniques for numerical shape
representation are super curve technique and
superposition of shape technique. Examples of the
application of the program to a number of three-
dimensional structures demonstrate its efficiency
and accuracy.

Introduction

The shape optimum design is a new branch of
optimal structural design. In 1973, Zienkewicz
and Campbell presented the first paper 1) in this
field. Several authors have investigated the pro-
blem since then, References 2--14 list some of the
published works. All the research work in these
publications was limited to two-dimensional pro-
blems. {2)1982, M. Hasan Imam published the first
pqwr(
It investigated the fundamental problems associa-
ted with shape optimization of elastic solids. The
basic concepts and techniques of numerical shape
representation suitable for shape optimization are
developed.

But the techniques developed in this paper
were only demonstrated on simple cantilever beam
problems. The structural member was only modeled
by the 20-noded three- dimensional isoparametric
element. Thus it could not threat the distortion
of the elements during the optimizing process.
The approximation methods were not developed for
three dimensional isoparametric elements yet,
the responses were evaluated every time by full
finite element analysis and the derivatives were
evaluated by finite difference using the results
of finite element analysis. Therefore its effici-
ency was rather low.

In order to design some complex elastic solid
aircraft comporents efficiently, we have developed
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three dimensional shape optimization Program UHSHI.

The program can design efficiently complex
three dimensional structure under the multiple
loading cases.

in this program, there are three different
objective functions, which may be selected by
users. They are:

Minimum weight;

Minimum maximum stress;

weighted objective function;

The multiple constraints are stress constraints,
displacment constraints, frequency-prohibited bands
and the upper and lower bounds of each variable.

In order to awoid the distorsion of the ele-
ments during optimization, a triangular type of
elements-~15 noded isoparametric elements are in
cluded, besides rectangular type of elements such
as 8-noded isoparametric elements, 20-noded iso-
parametric elements and 9-19 variable noded iso.
parametric elements.

To enhance the efficiency of the program, we
have done the following research work:

1. Improve the methods of analysis to reduce
the time taken by each finite element analysis.
The analysis efficiency of the Program UHSH1 is
evidently higher than that of the Program SAPS.

2. Enhance the efficiency of the sensitivity
analysis by developing analytical sensitivity tech-
nique for the three dimensional isoparametric ele-
ments.

3. Reduce the number of the finite element
analyses by developing an approximate reanalysis
techniques for the three dimensional isoparametric
elements.

In the Program UHSH1l, there are three reana-
lysis techniques:

1) the sub-structuring technique

2) the combined Taylor series-Iterative tech.
nique

3) the reduced dimensional technique

In the Program, the following two efficient
optimization techniques are inculded:

1) Sequential linear Programming technique with
improved movelimit;

2) Sequential quadric programming technique
with improved movelimit;

The constraint deletion technique is also in-
cluded.

In the program, the techniques of numerical
shape representation are super curve technique and
superposition of shape technique, which were deve-

loped in Reference(15),

Some three dimensional shape optimization exame
ples were solved by the program and the program has
already been used in practical design.



Formulation

The shape optimization problems for three di-
mensional structures may be represented as varia-
tional problems with variable domain mathematically.
Due to the complexity of the three dimensional
structures in practical engineering, Finite Element
Method is usually applied to solve these problems.
Thus, the domain shape optimization problems are
turned into the optimization boundary problems for
the finite element models.

In the Program UHSH1l, the techniques of numer-
ical shape representation used are super curves
and superposition of shapes. Thus, the design
variables (shape variables) can be either the co-
ordinates of finite element model nodes or the
some parametric variables describing the shape of
the three dimensional structures.

A three dimensional shape optimization problem
can be formulated as:
To determine X
Min F(x)
s. t. gj(x) £ 0,

(1)

J=1,2,ccc00eem
where X is a (nxl) design vector.

The constraints here involved are stress cons-
traints, displacment constraints under multiple
loading cases, frequency-prohibited bands, and the
upper and lower bounds of each variable. So, equa=-
tion (1) may be expressed as follows:

To determine X

Min F(X) (2)

(3)

k=1,2.000¢*KZ(kp)
Kp=1,2,+¢ %% *MP

j=1,2,00v 0 J(kp)
kp=l,2,0sv0sMP

s.T. € , <o’b
(4)

(5)
(6)
(7)
(8)
(9)

(10)

i=1,23+***n

whereL( is the structural stiffness matrix, M is
the structural mass matrix, U is nodal displace~
ment matrix of finite element model, V is the na-
tural mode, 2 2
@ is the natural angular frequency, ¥j¥*, Wi¥ ig
the ith and jth eigenvalues of eqution (9), w » &
is the lower and upper bounds of the frequency-
prohibited band, 6'k,kp is the kth controling
point stress of three dimensional structures under
kpth loading case. The stress is the principle
stress 0 4:

04= J (B =6y) 2+ Oyl )%+ (0-0x)2+6 (tiyqizqu) (11)
6)(’ dyy 621

ponents.

0,, is the stress limit. Uj,kp is the jth displace-
b jo P 1S P

ment under kpth loading case. U.,kp is the jth dis.
placement limit under kpth loading case.

Txys Tyz, Tzx are the six stress com-

—

Xi is the ith design variables, Xi», Xj is the lower
and upper bounds of Xj, n is the number of inde-
pendent design variables. KzZ(kp) is the number of
stress controling points under the kpth loading
case. J(kp) is the number of displacement control-
ing points under the kpth loading case. Mp is the
number of the loading cases.

The specification of the frequency prohibited
band is accord to the demand of avoiding resonance.
Once w and@has been determined, an experienced
engineer is usually able to judge the orders i* and
J* resonably, If the judgement is difficult under
some cases, they may be deternined by the program
also,

In the Program UHSH1, there are three different
objective functions which may be selected by users.
(1) Minimum weight
The objective function is
F(x)=W(x) (12)
W(x) is the weight of the three dimensional
structure.
(2) Minimum maximum stress
The objective function is
F(x)=Max Oi,kp (%)
i=1,2,+¢+2«°KZ(kp)
kp=1,24¢<%***Mp

(13)

It is easy to show that eqution (1) can be
transformed into the following minimum problem:

To determine X

Min

S.T. 6},kp$P

gi(x)€0 (14)
where g}(x):s 0 (j=1,2,3+++++m) are displacement,
weight, frequency and side constraints.

(3) Weight objective function
The objective function is

W %(6_6 )2ds
F(x):cl—mg +Cy (60-35)’ds

where W is the weight of three dimensional struce
ture, Wo is the weight of the, three dimensional
structure at initial shape. $(o-0a)2ds is stress
leveling term for the initial shape. € is the
maximum principal stress and0a is average stress
at initial shape. 0o corresponds to stresses at
initial shape. The integration is carried out
numerically using stresses at the controling points.
c1, ¢y are the weighted coefficients, and
cp=l-C1 (16)
If c1=cp=0.5, then equation (15) is transformd
into a weighted objective function having equal
weight-age for volume minimization and stress

leveling, which was presented in reference(2),

i=1,2,0c00c«KZ(kp)
kp:l’z,nconoaMp
j=1,2,00000°m

(15)

Finite element analysis

In the program UHSH1, the stress, displace-
ment and frequency analysis of the three dimen.
sional structures is carried out by finite element
analysis with three dimensional isoparametric ele-
ments.

In order to consider extreme distortion of the
elements during the optimization, in the program,
the triangular type of elements—-15-noded isopara-
metric elements are included, besids rectangular
type of elements such as 8.noded isoparametric
elements, 20-noded iscparametric elements and 9-.19
variable noded isoparametric elements. They are
showed in Fig. 1.
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Fig. 1 Finite elements

The program UHSH1 is developed from the program
*FEM3 which is an efficient three dimensional finite
analysis program. Its efficiency is higher than
SAPS5 evidently., For example, for a same problem,
the computer time taken by the Program SAPS5 is
about three times over that of the Program FEM3,

Therefore, the Program UHSHl has high effi-
ciency for behavior analysis also, so that this
reduces the time taken by each finite element
analysis during the optimization.

Besids, the stress smoothing technique is used
in the program, thus the accuracy of the stress at
the nodes of the elements is high.

The

sensitivity analysis

For the three
the efficiency of
great importance.

dimensional shape optimization,
the sensitivity analysis is of
In order to enhance the effici-

ency of the sensitivity analysis in the Program
UHSH1, an analytical sensitivity technique for the
three dimensional isoparametric elements is deve-
loped.

1. Displacement sensitivity analysis

For the displacement sensitivity analysis, both
pseudo-~load technique and virtual load technique
are used in the Program UHSHI.

(1) Pseudo~load technique

The displacement derivative is formulated as
following by the pseudo-load technique:

BU} (x ]..1 B{P} s afk]i {U}f)

T i€k 2 Ak
where Ak is kth de51gn variable,

i€ k is ith element associated with kth design
variables,

[x]¢ is ith element stiffness matrix.

(17)

{U}f is the nodal displacement associated with ith
element.
(2) Virtual load technique
The displacement derivative is formulated as
following by the virtual load technique:

= {v}s (B(P} - Zafk]: v} e)

i€k 9 Ak i
where U. is the jth displacement component, {Vj
is the %1rtua1 displacement vector due to the
virtual load {3 ; which is associated with Uj. {V}
can be written as: 3

{; = fK]'lfﬂ}j

(18)

(19)
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The virtual load technique is recommended to
use when M() is less than Mpxn, otherwise pseudo-
load technique should be used. MQ is the number of
displacement constraints, Mp is the number of the
loading cases and n is the mumber of design vari-
ables.

2. The Derivation of the Element Stiffness matrix

The three dimensional isoparametric element
stiffness matrix can be written as:

O HENCHOIONET LN

where fBJ is the strain matrix. It can be written
as:

(81=[(B), (Bloss+++s (BIN]6xan  (21)
INi INg AT
2t o0 o 0
e
(8, =] o oM gg: aNy 5 (22)
v Iz
o o an ° o oM oM
9z 3y % 3x 6

N is the node number of a three dimemisional
isoparametric element, Nj(i=zl1,2,++++¢*N) are the
shape functions.

N Ny
5 i o
A o7 A (23)
IV L
INj aNi

z 3

where (J] is the Jacobian matrix, it can be
written as:

J1i1 Ji1z J13

U= {15 0y Uy, (24)

J31 J32 J33
in which
N 9N N 9N;

Jn= Z 3% X le’z"?' i 7137 Zlaf

N. 9N aN; N N
Jp3= Z=l a,—,,' Xiy Joo= i 7 Yir Jo37 ZW z3
N a N NN, N3N
Ja1= J s J
R
(25)
g L 2 ]
(- {-Ht
“_ “®
[v)= EQ-M)  fg-u 1-M
o) (2m) | & _#® (26)
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{ f-M (-2l
2(1-4)
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(1)
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lJl is Jacobian matrix determinant, it can be
written as:

11 Jiz Ji3
IJ' 21 J22 Jog3
31 J32 J33

=Jy1(J22 J33=J23 J32)+J21(J32 J13

-J33 J12)+J31 (J23 J12-J13 J22)
(27)
Differentiating eqn (20) with respect to Ak
gives

[ ol Jts]lf)dsaqdf+Jj [ ares
7l
[ylafayarf+j 1. j BTOIE 33 94 (25
Using the notations
N NI
L= ([ Sa @@ lisars
_P_EQ_G_— a7} 4
i =[] [ @6 35 s9E @
we get
3(‘@] aﬁt kT aﬁa
2 A3 [W] [ Aﬁl [aAﬁ] (30)
where
ﬁz[a_@ a8l a(B],,,J
SA& aA& ’ Aﬁ s —Q_AE -~ (31)
To obtain T&%(L {1=1,2,++++++N), we differen~
tiate both sides of egn (22):
r N,
5% o0 o ]
M,
_9_@_3___1_ 7w
Aﬁ AQ ¢ % (9_1’2’ ...... N)
—gjlvﬂ i—'} o | LA=t2- (32)
M M
° 3F oF
oW M
L'—Bi e B J

From eqn (23), we obtain

oM N
ax (| 9%
A3y A |37
My Ny (33)
33 E3
where -
(7) - 27 -
S =@V S5 O (34)
From eqns (33), (34), (23), we obtain
£ o
X Bx
3 [aM|__ [{ 3"__9(7]]_91@
aAﬁ 2y | aAﬁ 3y
Ny M (35)
k3 33

From ean (24), we obtain

¥y 3T 273
A AL A
T | om % %

AL T | oA ok M
3% T %
24y M A

(36)

From eqn (25), we obtain:
83;, __Na/\ﬂ,axc 9-7;2 N N, 3)'¢ 53}9 é’-ah] oZ
Ak LT o, 3Ry ~aroF o, oAy o F
o% X 3% Nafl DA Z-arl. a&
s Zarz 5h4 » Ay =297 Mg’ 3R 2,90 I
3T aM i 3% Nal%a)é aJ};__Naf/, %
"a_,qi ZT;A{: A X—f&i‘)aﬁﬂ Z?f

(37)

where aXt 3% ~—33£
A Ry O A
shape algorithm easily.

3}

To obtain ——, we differentiate both sides of egn

can be given by the

3 Ak
(27):
Slgl _ %
Sak T #Ar (~’22~’33'J23J32)+ aZ (J31J23‘J21J33)*
33
aA* (J21J32—J31J22)+ 3A£ (J32J13—J33J12)+ A&(J
J33"~’31J13)" byy (J31J12 133930 525 U23712715722)
aAﬁ 57 (J217137911723)* 3 A’g (9137257721712)

(38)

3., Stress sensitivity analysis
30

To obtain BA: , we differentiate both sides

of eqn (11): 0}' 96
ao;,‘ 30x; 0 A I 4
((‘S‘;,np Yekp. (aA;W o /8 ) (675 tﬂ’)( By )

_ o 30xup g, 1o, Oy
*(0}4,@ &W)(a,q I +6 @rp 3AR C "Xy T +E&xP
9T, A=1,2,

TKEJD/Z/ Gip ( it K?(VP)) (39)

kP=’12)"""MP :

where 641: Kp is the ith principle stress under
'y
the kpth loading case.
bexp . 6)’1‘.#? ’0}£, @ ’T’%‘,KP ’1;21'-;"? ;@(U‘P are six
stress components at the ith node of the element

under the kpth loading case.
They are given by the followxng equations:

63
O;(t,KP jl xd)@)ﬁﬂ 6)’@ ? JI‘P)/I o
S2i0= (Zo,m/zfr& Lo (ZK%W)/GB

T)”«wzg i?: .¢)/[68¢ , T 5~ (; i;)/ E;

(40)

where IGBg is the number of the elements associated
w1th ith node.

6;(3 @ 5'1 @ '-""-l;; are the stress compo-
nents smoéthed of the j h element at ith node under
kpth loading case,

The smoothing stress components Gl (1=1,2,9¢

*2+8, p=1,2,¢+r+++6) at 8 corners of tho jth



hexahadron type of elements can be given by the
following equations:

{6} = (a1} (a1)

in which
abcbbcdec
babccbcd
cbabdcbc
becbacdcb
[A]-bcdcabcb (41a)
cbcdbabc
dcbccbab
cdcbbcba
- 3wl
where a: 5+3'/§, b= ﬁ"'l N c=‘r (42)
4 4 4
~-lT ,~e e ~e
{6} =[6-1Pj:°;oj, 5'995]

{6'} I:(g‘fj . (ng greeees O—Sj are the stresses
at Gauss points of integration for jth element.

anikQ evee ‘arzxik
Ak

(Jza®m

To obtain , we differ

entiate both sxdes of eqn (40)
L .ﬂx:w;
T ( /:&s)

30gp_ (Z_Eﬁ‘_!w) /168, arxy » (Z‘ aﬁys,.j )i

A 3=t 3Ag
168, o08;_~©
STt B a‘rﬂa xP QTZX,, 9T
L - e ) /268, K a.xp) .
aA,q (,Z-.-:l IA4 )/ <, BAi o Ay IQB"
(43)
From eqn (43), we obtain
a{§ afst
Sac - M) Sac . L
T -~ ~ ~
3{6} 90,95 9 Gapi 20gp5 T
where ——— = B'Ali Y aaaadd __Z\_kL]
e
9{6&7 (aofs' 3Gy ...... 90y ]
® Ak ’* 9Ak’ ' 3 Ak

From the relation of stress-strain, the stress
components at any point for the element can be
given by the following equation:

{6}@:1 = (s)° {U}e (45)
where {6}=[6x’ Gy! Tz Txy9 Tyzv T:ZX] T

{u}® is the node displacment vector of the
element.

(Sje is the stress matrix of the element, it
can be written:

e e
(sl 6x3N ~ (D]6x6 (B] 6x3N (46)
Thus, From eqns (45), (46), we obtain

;{c} - (o ](acaa fol® +(21° a{U} ul®)

(47)
where
e
aa[_\fE] can be giben from eqns (31 )wm==(37)
) e
_S_fkll?_ can be given from egn (17)

4. Frequency sensitivity analysis

From eqn (9), we can obtain
(K] 3
sw? _ o735 -5 %
oAy o M4
where G(KJ a[K]

S AK x—ggaAke vi (49)

oM ™)
5 Y= % eaAas v (50)
alk)§

aTAEl— can be given from eqns (28)--(38).

(48)

(M]e is the lump mass matrix of jth element. It
can g)e expressed as

S = m‘; . (51)
1 |3Nx3N
where N is %he node number of the jth element.
Mz
e J 7
mjc=N (52)

e
M5 is the mass of the jth element. It can be
expressed as:

e s
From eaqns (50)--(53), we can obtain
3 : 2"
209y, - =3 Af( (54)
e
am:
and 3;2-_.-——]’] Lﬁ 32 dgdndd (55)
where { is the density.
sl

JAL ¢can be obtained from eqn (38).

Optimization technique

In order to enhance the efficiency of the pro-
gram UHSH1, the constraint deletion technique is
included.

Besides, there are two kinds of different op-
timization techniques suitable for the different
shape optimization problem are adopted. These are

(1) Sequential linear programming technique

improved movelimit.

(2) Sequential quadric programming technique

with improved movelimit.

1. Secuential linear programming technique with
improved movelimit

At the current trial design X(k), using the
first approximation of the Taylor expansion for the
objective function and the surviving constraints
after deleting redundant ant unimportant cons-
traints, we can obtain the following linear pro-
gram problem:

To determine Xj ( = .(k+1))

Min F(x) = F(x(k))+Z et )(k)(x -X3 (k))

i=1

S.T.  Gr(x)=G, (x{K) )+Z; (?,G%) (k) (egoeg (9D )< G
iz

(r =1,2’......mr)

: _ 6
Xi € X; € X5 (i=1,2,50¢044n) (56)



-sﬁk)éAngl)S sik) (i=1,2,++¢¢+n) (57)

where s£k) is the movelimit of the ith design
variable at the kth iteration.

mr is the number of the constraints retained.
In the program, the movelimit is computed by the
following formula(22),

<z R)
Sék)=s£k-l) /‘”71“55 —

),

is the movelimit of the ith design variable at

(58)
(k=1
%1

the (k-1) the iteration.

k) . . . . .
s£ ) is the movelimit of the ith design variable at

the kth iteration.

Tk .
d"is the nonlinear diviation to be controled.
= (k) .~ (k)
{ka1) Gr( ~Gr
[a} =max 59
s G (K) (59)
(k) . oo
Gr is the accurate value of the rth surviving

constraint, which is computed by the finite element
analysis at the kth iteration.

~ (k) . .

Gr 1s the approximate value of the rth sur-
viving constraint, which is computed by the linear
terms of the Talor expansion at the (k-1)th itera-

tion._ K)
§,) 2 0.3~0.4 if k€3 (60)
0+l g, 55 (k) if k>3

2, Sequential quadric programming technique with
improved movelimit

At the current trial design x(k), using the
second approximation of Taylorexpansion for the
objective function and still using the first ap-
proximation of Taylor expansion for the surviving
constraints, we can obtain the following quadric
program problem:

To determine Xj( =X§k+1))

P k), & 9F (K k n n

vin B0 00D 20 gy )3 5
el 1 4=f Je=i

. k
(9321“ )< ) ey ) (o)

S (012G (x () 1o 26 ()
S.T. Gr(x)=Gr(x )+‘Z=;(3;(—d

(r=1,2,*+++mr)
(i=1,2,"""n)

(ke1) o (k)

xiaxJ

(X§=Xj () 1< Gr

X € X< %5
k
"Si( )sAXi (i=1'2’..a.--n)
(61)
k) . - . .
where si( ) is the movelimit of the ith design

variable at the kth iteration.
The movelimit is computed by eqns (58..60) also.

Approximate technique of three
dimensional structural reanalysis

In order to reduce the number of the finite
element analysis,someapproximate techniques of three
dimensional structural reanalysis are developed.

In the orogram UHSHl, the three approximate
techninues are included. They are
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1) the sub-structuring technique

2) the combined Taylor series-iterative techni-
que
3) the reduced dimensional techniaque.

The sub-structuring technique (structure level)
One of the special features of the shape opti-
mization problems is that only a part of the dow
main is changed at each iteration, the other part
of the domain occupied by the structure remains the
same, their stiffness properties do not alter. Keep
it in mind, we subdivide the whole structure into
the substructurely with fixed domain and some sub-
structures /z; with varying boundary. Denote the
nodal displacement unknowns of the substructuresJy
and/2; by us and uy, respectively, the nodal dis-
placement unknowns on the interfaces between,ﬂf
and/2;by uj.

1.

Similar definitions are introduced for the no-
dal load vectors Fg, Fy and Fj, the ecuilibrium
ecquations (8) in partitioning form are:

Kee Keg O Ur| |Fr
Kif Kjj Kir Uy [=1Fy (62)
[e] Kyi Krr Ur Fr

Note the fact that Kjj, Kjr, Kers Key and Fiy
Fg are all independent on x, they are invariant
during iterations. Eliminate Ug from the above
equations leads to

Kii Kjir Ui Fj
= (63)
Kri Krr Up Fyr
in which
—_— -1
Kij= Kjj=Kjp Krr Kgy (64)
Fi:Fi-Kifof"lFf (65)

Kii and‘E; are computed only at the first ite-
ration and stored in the memory of the computer,

In the later reanalysis they are called and
assembled together with the contribution from the
basic elements in./?R, which yields the ecuations
(63).

The above sub-structuring technicue tremen-
dously reduces the computational effort spent for
assembling and solving the global stiffness matrix.
Thus, it becomes on indispensable tool for the nu-
merical method in the shape optimization problems.
Finally, the computation of the virtual displace-
ments needed in the sensitivity analysis can be
also carried out by the subwstructuring technique.

This technique was used successfully for two
dimensional shape optimization
2. The combined Taylor series-iterative technique
The other special feature of the shape optimiza-
tion problems is that the changes of the domain,
stresses, displacements and frequences are small at
each iteration because the movelimits are always
small. Keep it in mind, we have applied the follow-
ing approximate reanalysis technicjue in the program
UHSH1.



This is a combined Taylor series-iterative tech-
nique. In this technique an approximate value of{tﬂ
is obtained using the following equation:

- n (k) Kk
A O e i
i=1 (66)

And  then u31ng thls approxlmate {U} as initial
estimate, i.e. {U = {U} *. An improved appoxie
mation is obtained using the following equation:

(<3{T} ®)= {p}- (ax){T}t-)

From eqn (45), we can obtain{G}(£+1).

(67)

3. The reduced dimensional technique

The reduced dimensional technique is an appro-
ximate reanalysis technique of the sensitivity. To
enhance the efficiency of the sensitivity analysis,
the technique is included in the Program UHSHI1.

the displacement derivative

In the technjque,
%E+i? is approximated by a linear

vectox’{
¥ 84j (N1x1)

combination of S=m+1 linearly independent vectors

(k) (k)

{Uj}(k), {;;%} """{Eééi}

9 An

usually much less than N; which is the order number
of the displacement vector.

(k+1)
{;A—S_} Ny x1 =[4+]N1xs {C} Sx1

K) (k)
where F\F] Npx S [’{U (k) 91%} ’{5%2} '-.....
{24 (o
3,

) (o0
C}le is a vector of undetemined coefficient

s, where S is

(68)

that is obtained from the following egns:
(stxs sx1

with [K] = ('\}«]T[ k) )('q.]

sx1 (70)

(71)

(k+1) €\ (ke
H-af(3) - 2 (20
{u} erd)) (72)

where superscript T denotes transposition.

{U}(k+1) is obtained from egn (67).

Example problems

A number of examples have been successfully
calculated by the Program UHSHl. Because of length
limitations to the paper, only three of them are
given here.
Example 1, Optimum tapering of a cantilever beam

The problem of finding the optimum tapering of
a cantilever beam with rectangular cross-section of
given uniform width has been a subject of theoretical
as well as of practical interest. For the case of a
cantilever beam subjected to a force acting at the
free end, this optimization problem with stress

constraints has a simple closed- form salution.
Based on the assumption of constant bending stress,
the mimimum mass shape is given by

s
b0p
where y is the depth of the beam at any cross-
section at a distance x from the free end of the
beam, b is the width of the beam, and(Sb is the
value of the maximum allowable bending stress.
The problem was evaluated by M. Hasan Imam (15),

(74)

The problem has been evaluated by the Program

UHSHl., The finite element model is shown in Fig.2.
dl d2 d3
y
AT A A
— —-*—a——-?—»——)—- -7&- y
4 ¥ » s/

Fig. 2 Model of cantilever bean

Using symmetry and constant width (Z dimension)
conditions, the shape of curve ARC determines the
shape of the whole beam. The super curve technicue
is used allowing the shape of curve ABC to remain
quadric only. The three nodes shown with pointer
vectors dj, dz and d3 in Fig. 2 were the only nodes
moving independently.

The width of the beam is b=25.4 cm, the length
of the beam is 1.=254.0 cm, the load is P=10000 kg
6,=1500 kg/cm?.

The optimum shape obtained by this program is
shown superimposed on the theoretical optimum shape
in Fig. 3. The agreement is excellent. The process
and result are shown in Table 1.

T

~mm=Theoretical optimum shape
e COMputed optimum shape

Fig. 3 Optimum shape of rectangular
cross~section beam

Table 1., Optimization Process of the Cantilever
Beam

Itera. No. Weight d; do d,
Initial 1278.2 12.7 12.7 12.7

1 1076.2 11.43 10.8 9,525

2 914,6 10.41 9.271 6,985

3 791.3 9,967 8.052 4,953

4 698.9 10.00 7.076 3.327
Theoretical 10.00 7.071 0.0
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Example 2. Optimum tapering of a cantilever
beam with stress and frecuency

constraints

The problem designed is still shown in Fig. 2,
but the constraints considered are the stress cone
straints under two load cases and the frequency-
prohibited bonds. Table 2 gives the details of the
two load conditions to which the structure is subw
jected.

Table: 2 Load condition for the cantilever beam
Load condition Node direction of loads
X Y Z
50 0 15000 kg 0
2 62 O 10000 kg (¢}

The allowable stress §,=1500 kg/cm?
Q=250 , w =700

The initial values of the design variables are:

4= 12.0 am, 4,(=9.0 cm,
d3(0)=8.0 cm.

The process and result are shown in Table 3,

Table 3. Optimization process of the cantilever
beam with the stress and frequency
constraints

Itera. .
No. Weight dy d dg dﬁax wy aoj

Initial 939.4 12.0 9.0 8.0 1269 226.0 931,0

1 907.4 11.68 8,682 7.682 1342 227,0 903,0
2 877.0 11.38 8.381 7.381 1418 228.0 877.0
3 848.2 11.09 8.094 7.094 1496 229,0 851.0
4 825.,9 11.12 7.822 6.822 1498 232,0 833,0
5 807.7 11.34 7.564 6,564 1499 237,0 820.0
6 792.7 11.58 7.339 6.318 1499 241.0 809.0
7 774.6 11.70 7.164 5.818 1499 247.9 798.0
8 767.8 11.82 7.058 5.724 1500 250.0 792.5
9 767.8 11.82 7,058 5.725 1500 250,0 792.4

Example 3. Optimizing a lug
The initial shane of the lug, the load case and
the finite element model are shown in Fig. 4 (a),

(b).

The shape variables are the eccentricity e, the
radius of the lug R1l, the radius of the hole R2 and
the thickness of the lug t. The optimization problem
has four stress constraints and three displacement
constraints. The stresses at the 56th, 61th, 93th
and 10ith nodes should be all lower than the max-
imum allowable stress §p=17000 kg/cm“. The displace-
ments at the 89th, 94th and 97th node should be all
under 0,025 cm.

For the optimum problem, the following techno-
logical constraint must been considered: the boun-
dary curves can be only straight lines and circular
arc.

The optimum shape obtained by the program is
shown in Fig, 5. The process and results are shown
in Table 4.

Table 4. Optimization process of the lug

Itera.

No. weight e Ry Ry t

1.0 2.5
1,011
0.999
0.988
0.977
0.967
0.965
0.962
0.965
0. 967
0.969

Initial 2.353 4.5 2.0
1 2.334
2,215
2,099
1.994
1.896
1.873

1.853

2.006
2,053
2.098
2.141
2.182
2.191
2.184
2.175
2.167

2.451
2.356
2,266
2,180

4.612
4. 506
4,404
4.308
4,216
4,194
4.174
4,193
4,212
4.230

2.098
2.279
2.061
2.046
2.032
2,019

1.845
1,837
1,829

O ® N b W

2.159

@]

\/D?

Fig. 4 (a) the initial shape of the lug
and load case

the finite element model of the
lug

Fig. 4 (b)
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Fig. 5 the optimum shape of the lug

Conclusion

The program UHSHl is an efficientdesign program
for the three-dimensional shape. It can be applied
to design different complex elastic solid struc-
tures with multiple constraints under multiple
loading cases efficiently,

The program has applied successfully in the
design of aircraft structures and will be developed
more effectively during it's further application.
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