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Abstract .

This paper introduces a method for the calcu-
lation of the non linear, longitudinal aerodynamic
characteristics of various planar shapes, in-
cluding multiple lifting surface configurations in
subsonic flow, at high angles of attack.

The method developed can handle complex plan-
forms such as closely coupled canard-wing combina-—
tions, wing-tail combinations, cruciform types of
wing arrangements, various flaps, elevators, di-
hedral angles as well as ground effect problems.

The present work uses a modified "Vortex Lattice
Method", by including the effects of the shedding
and of the development of the rolled-up wake.

The solution is carried out by an iterative pro-
cess, saving a lot of computing time.

Comparisons with experimental data show very
good agreement even in cases of very strong non
linear effects of leading edge vortices, or in
cases of side-edge vortices rolling up above the
surface of low aspect ratio wings.

This method results in the evaludtion of the
shape and strength of the secondary vortex which
had already been observed in experiments, and
local pressure effects caused by vortices passing
over a wing surface in the multiple lifting sur-
face configurations. .

List of Symbols

AR aspect ratio, b2/S
b wing span
C chord
Cp; induced drag coefficient D;/qS
Cp, parasite drag coefficient Dy/qS
Cy, 1ift coefficient, L/qS
Cy section 1lift coefficient
Cy pitching moment coefficient M/qS Cref-
Dy induced drag force
Dy parasite drag force
geometric influence matrix
i index
3 index
K strength of a vortex segment

L . 1ift force

M pitching moment

Ne number of sub-divisions, chordwise

Ng number os sub-divisions, spanwise

q dynamic pressure, 1/2 pV?

r distance from a point to a vortex segment

S wing area

i) free stream velocity

U, v,w velocity distrubances in X,y,z directions
accordingly

w component of free stream velocity normal
to a surface

X,¥,2 Cartesian coordinates

Xe.p. center of pressure-position

o angle of attack

] air density

I. Introduction

One of the most complicated and interesting pro-
blems of aerodynamicists today is the design of
complex lifting surface configurations and the cal-
culation of their aerodynamic characteristics in
subsonic flow and at high angles of attack.

One of the more demanding problems is the cal-.
culation of the influence of mutual interaction
between closely coupled lifting surfaces.

The formation of strong vortices over low aspect
ratio wings has been recognized as beneficial for
aircraft performance (Concorde, Mirage IIIc etc.).
The interaction between the vortex flow field of a
closely coupled canard configuration is used in the
Viggen and in the Kfir C-2 airplanes. Vortex in-
teraction effects are also obtained due to leading
edge "saw-tooth" addition as well as by strakes
placed at the nose of the configuration.

There are a number of methods for the calculation
of aerodynamic characteristics of w%g}s presente
by Maskew (192), Margason and Lamar , Woodward )
as well as the Boeing method (5,6).

Maskew's method (1s2) includes the effect of the
rolling up of the wake, but is unable to model the
leading edge vortices and the non linear 1ift gene-
rated due to their effects. Margason and Lamar(3)
or Woodward's programs 4) do not take into account
the rolling up of the wake, and therefore cannot
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evaluate the aerodynamic characteristics at high
angles of attack.

Modifications of the last two methods try to
evaluate the non linear lift by suger imposing
Polhamus(7) and modified Polhamus(8) methods on the
linear results. However, in these cases the results
are not always accurate and do not model the flow
field, the local effects, the correct load distri-
bution or effects of interactions.

The method developed by Rubbert(5’6) et al.
using a doublet lattice resulted in a much refined
program, and its results are accurate in many cases.

The method takes into account the rolling up of
the wake and its effect on the wing. However, the
use of Smith's model of conical flow to describe
the initial form of the leading edge vortices re-
sults in an incomplete model which cannot deal with
secondary separation, or with closely interacting
lifting surfaces.

The present work tries to handle wings and their
wakes as one system, using the concepts of a modi-
. fied vortex lattice method developed by Rom and
Zorea(lo 11,12,13) and by Rom, Zorea and Almos-
nino

In the present investigation a generalized met-—
hod is developed which is capable of dealing with
the rolled up wake and with leading edge vortices
existing in various aerodynamic planar shapes, en-
abling the analysis of their aerodynamic charac—
teristics at high angles of attack.

II. Basic Concepts

The lifting surfaces of the configuration,
(such as wing, canard, horizontal tail, etc.), are
divided into sub-surfaces (Fig. 1). Each subsur-
face is then divided into trapezoidal or triangular
cells. A bound "horse-shoe" vortex is placed in
.each cell, as described in Fig. 1. In order to
satisfy the boundary condition for the flow to be
parallel to the surface of the wing, a control
point is placed in each cell. (Fig. 1). The shed~
ding of the free vortices (which represent the wake)
is presented as an option for the user, who has a
large variety of possibilities available (for exam-
ple: from trailing edge, side edges, leading
edge). Each free vortex is divided into a number
of finite segments, and a half-infinite last seg~-
ment. The Biot-Savart law enables the calculation
of the velocity induced by a vortex segment AE of
strength K on a point C - in the flow field:

V)
_ K * (cos EAC + cos CBA)

Vc 4

1)

(The last equation is in scalar form, and “r" is
the distance between the point C . and the segment
AB).

The iterative procedure starts with the calcula-
tion of a geometric influence matrix, with the free
vortices being straight lines shed at an angle to
the surface, as an initial condition.

The boundary condition at the control points
enables the construction of a set of linear equa-
tions. A typical form is:
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Each sub-matrix
H;s represents the influence of subsurface i on
subsurface j. (In the example above there are
three subsurfaces). The order of each submatrix is
written in parenthesis, and n, m, k defines the
number of cells in each of the subsurfaces 1, 2, 3
accordingly. The strength of the bound vortex in,
cell number j, of subsurface i 1is denoted by K%,
while wil is the component of the free stream
velocity normal to the surface of the wing, at the
control point of cell number j, of subsurface 1.
Column vector K3 is to be solved. When the pro-
gram is solved for the strength of the bound vor-
tices, it also calculates the aerodynamic coef-
ficients, checking for their convergence (except for
the first cycle).

The aerodynamlc coeffic1ents are CL, CDi’ CM.
The program also calculates the center of pressute
Xeps according to the following formulae:

The lift coefficient (including all possible
terms) :

b/2 N, N

---_ L S
SRef o Ref » j=1 i=1
(3)
YT Ky by g 4 Z T akeam)
REf. i J
Here AXjyi. Ayijs AZjy are the cartezian com-
ponents - of a bound votgex segment ij din the

direction x, y, z accordingly, while wujj. vij,
wis are the disturbance velocities calculated " in
the middle point of each vortex segment belong to
the wing surface. The second term on the right
hand side of Eq. (3) is of second order, and it ex-
presses in general form the part of the in-surface
trailing vortices to the 1lift, being usually ig-
nored. :

The induced drag coefficient and the pitching

moment coefficient are given in Eq. (4) and (5):
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XRef., ZRef, are x and 2z coordinates of pitching
moment reference point. The second term on the
right-hand side of Eq. (5) expresses the rolling
moment because of induced drag, and it is not neg-
ligible in the calculations of complex configura-
tions, such as canard-wing at high angles of attack.

The center of pressure is given by definition:

g = Srer. " %
c.p. CL

(6)

(measured from xRef.)

In general, it should be noted that some of the
assumptions made when neglecting terms like those
containing the effect of sidewash, proved to be in-
correct in strong interactions between canard wake
and wing surface, and in the case of strong leading
edge vortices. Thus the calculation of aerodynamic
coefficients in general cases should include all
possible contributing factors.

The program uses an iterative process for the
re-calculation of the trajectories of the free vor-
tices, until convergence of aerodynamic coefficients
is achieved. (The strength of those is calculated
after the solution for the strength of the bound
vortices).

The procedure is as follows:

Each point (i) of a segment of a free vortex
is moved according to Euler®s method of integration:
2) (2) (l) '

y = Ve AX : €)]
i l U+ u(l)
1
@ _,@ o
2 i i
zZ, S+ AX (8)
i Zy 1 44 “§l)
(1) (1) 1)

Here ut, v » Wy are the cartezian components
of the induced velocity on point (i), before moving
it. y; are the new y and z coordina-
{i). (The flow is considered steady).
More sophisticated integration methods should
be applied in cases where strong disturbances are
expected, such as in the cases of very close inter~
actions between lifting surfaces, or very low as-
pect ratios. The integration process continues
iteratively until convergence of all free vortices
is achieved, or until the process exceeds a pre—.
fixed number of iterations. The influence matrix

is recalculated, leading to a new strength of each
bound vortex. Aerodynamic coefficients are then
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recalculated, and all the process starts again un-
til convergence of the coefficients is achieved.

The effect of compressibility is taken into ac-
count by applying Goethert rule and incorporating
it into the computer program.

The accuracy of this rule and its application to
the vortex flow over wings has been discussed also
by Rubbert and Brune

By using this compressibility correction, the
present method can now be used over the range of
subsonic Mach numbers up to the critical Mach
number.

III. Results

General

The use of the Modified Vortex Lattice Method
enabled the evaluation of the longitudinal aero-
dynamic characteristics of various wings as pre-
sented in Ref. 10 to 13. This method can be ex~
tended (see Ref. 14) to multiple surface configu-
rations. These may include, for example, closely
coupled canard wings, leading edge strakes and al-
so deflected flaps on low aspect-ratio wings. All
of these are characterized by the non-linear varia-
tion of the aerodynamic coefficients.

(a) Computational Aspects

The use of the singular vortex element in vortex
lattice methods presents some difficulties. The
main one is the too high velocities induced by the
vortex on points which are too close to the vortex
segment. The reason for that is the fact that a
potential singular vortex does not exist, due to
viscous effects. Some attempts were made to overcome
this problem, for example Rom and Zorea' s(lo) 97t-
tempt to use the model of Spreiter and Sacks
for the calculation of the radius of each vortex
core, or Maskew's “"Sub Vortex Techniques"(1). One
of the main conclusions from these attempts was that
it is satisfactory in most cases to use a general
"cut off distance™ for all the vortices in the model.
The last method saves a lot of computing time, and
it was used in the present method. The results
show that it is reasonable to use a "cut off dis-
tance" similar to the width of the partition in-
to elemental panels, Strong vortices such as
those shed from a leading edge may require a larger
“cut off distance".

Another problem arises when shedding too many
free vortices. Because of the singularity of each
potential vortex, the convergence of the free vor-
tices trajectories is either very slow or completely
impossible. The multiplicity of free vortices is
a result of a dense partition into elemental panels,
(which is favorable when the aim is to achieve a
smoother load distribution). The present method
overcomes this difficulty by giving the option to
merge close free vortices into one vortex, of a
strength which is the sum of the strength of the
merged vortices. The number of free vortices is
thus reduced, while the number of elemental panels
remains as it was.

Results of the present method show that merging
too close free vortices is especially effective in
the cases of leading edge separation, in wings of



low aspect ratio (AR < 2) with sharp leading edges.
In these cases the convergence was much more rapid
and the nonlinear aerodynamic coefficients calcula-
ted showed very good agreement with experimental
results. When no merging was applied, the calcula-
ted results showed weaker non linear behavior than
expected, resembling experimental results for wings
with round leading edges, (see for example Ref. 16).
The effect of merging free vortices on aerodynamic
coefficients is strong when dealing with vortices
which pass upon the wing surface; Otherwise the
effect is negligible. :

b) Comparison with experimental results

1. Closely coupled canard and wing, with
leading edge separation

The configuration was chosen for comparison
with Ref. (15) and it is shown in Fig. 2. Both
the canard and the main wing are of aspect-ratio
1.66, and of similar form. Two vertical positions
of the canard were checked, as it is shown in Fig.
2. The canards are vertically located at z/C =0.2,
(=0.29) above (beneath) the main wing plane afcor-
dingly, and thefr aft point is located longitudi-
nally at 0.1C, from the main wing vertex. (Here
C. is the canard mean geometric chord). Behr-—
bohm(13) states that the model used for the ex-
periments had round leading edges, which conside~
rably reduce the non linear effects. Indeed, when
using the present method with the option of mer-
ging free vortices, (the effect of which was des-
cribed before in part (a) of this chapter), the
calculated results for the lift coefficient of the
high canard were higher than the experimental ones
(Fig. 3a, upper curve).

By assuming separation of vortices without
merging to be a better approximation to the actual
separation from the rounded leading edges, the
calculated results obtained were better than those
previously described, although somewhat lower than
the experimental ones (Fig. 3a). The first results
however, may be an indication for the maximum non
linear effect that can be obtained, should the
leading edges be sharp.

‘It should be noted that the present method also
gives the correct tendencies for the low canard, in
comarison with the high canard. The interesting
behavior of the low canard can be observed in
Fig. 3b, where the lift coefficient increases
linearly up to an angle of attack of approximately
15°, fnd then a strong non linear effect occurs, up
to 20°.

This phenomenon has been observed both in the
experimental and the calculated results. It is ex~
plained by the fact that the free vortices of the
canard stay below the main wing surface up to a
certain point, and as the angle of attack increases
above that point, the free vortices shed from the
canard pass above the main wing surface, causing
positive interference and as a result non linear
lift is obtained. The low canard lift coefficient
even equals the high canard 1ift coefficient at an
angle of actack of 20°.

Correct tendencies for the high and low canards
can be observed also from Fig. 4 where the change
in the pitching moment coefficient is described
(versus the lift coefficient).
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The effect of interaction between high canard
leading edge vortices and wing leading edge vor-
tices can be seen from Fig. 5. Noteworthy too is

"the fact that due to the upwash effect of the wing

on the canard, the leading edge vortices of the
canard leave its surface at an angle higher than
half of the angle of attack. In general, this ac-
cepted initial value which was fair enough for
single wings, may lead to numerical problems in
some of the strong interaction problems such as
the case of a low canard. In the latter case nume-
rical problems arise because of unfitting initial
conditions, when the wake of the canard tries to
cut though the wing surface. The low canard case
also shows tendencies of instability in the flow,
within a limited range of angles of attack. How-
ever, the high canard case which is much more com-
mon does not present any problems. An example of
the load distribution is presented in Fig. 6.

2, Canard and wing interference with no
leading edge separation.

The configurations chosen were threilygriations
of a basic model experimented by Gloss . The
basic form of the configuration is shown in Fig. 7.
The model consists of a trapezoidal main wing of
AR = 2.5 and a swept back canard of AR = 4.12.
first variation (denoted as configuration No. 2)
consists of a 51.7 deg. swept back canard, which
has 0 deg. dihedral angle. The second variation
(denoted as configuration No. 3) consists of a 51.7
deg. swept back canard which has 18.6 deg. dihedral
angle. The third variation (denoted as configura-
tion No. 4) consists of a 60 deg. swept back canard
which has 0 deg. dihedral angle.

The

_All canards' roots were located at a height of
z/C = 0.185 above the wing plane, (C is the wing
mean geometric chord), and at a longitudinal dis-
tance of x/C = 1.304 from the model nose to the
canard - leading edge. The partition chosen for the
calculations was NC = 4, NS = 10 (using trapezoidal
cells) both for the canard and for the main wing,
in all cases.

Free vortices were shed from the trailing edges
and from the side edges. All three cases showed
very good agreement between the experimental and
the calculated results as can be seen from Figs. 8
to 12. The calculated results depart from the ex-

.perimental results only when stall effects start.

Trying a denser partition of NC = 4, NS = 10 for
the canard, with NC = 10, NS = 20 for the main
wing had very little effect on the results, apart
from the higher computer time needed for the solu-
tion.

An interesting comparison is shown in Figs. 13
and 14. The present method is compared to calcu-
lated results of modified Polhamus methods (from
Ref. 17). It can be seen clearly that the present
results for the lift coefficient are in better com-
parison with the experimental results, in addition
to the evaluation of the load distribution and the
strength and form of the wake, which are not cal-
culated by the modified Polhamus methods.

3. Secondary vortex formation
As an example of this phenomenon a view of main

and secondary leading edge vortices was sketched
for a delta wing of AR = 2, at 20 deg. angle of



attack (Fig. 15). The calculated relative strength
of those vortices appear in a table (Fig. 15).
(Trailing edge vortices were omitted from Fig. 15
in order to get a clearer view). In delta wings

of AR < 2, the appearance of the secondary vortex
is found to be at an inner region than the example
given, as indicated by experiments.

4. The P-4-E planform in compressible flow.

In the following example application of the
method has been made to analyse a complex planform
also making use of the Goethert rule for the eva-
luation of the compressibility effects.

The geometry of the model includes the main
wing which has a dihedral of 12 deg. on its outer
span and a "saw tooth" form on its leading edge.
The tail planform has a negative angle of dihedral
(-23.25 deg.) and is operating as a mono-bloc con-
trol. Both the main wing and the tail are ex-
tended to the center line. A schematic description
of the geometry of the model, partitioned into
elemental panels is shown in Fig. 16. The calcu-
lated results are compared with the experimental
results of Ref. 18. Very accurate results are ob-
tained for the 1ift coefficient variation with the
angle of attack, at M = 0.6 and also at M = 0.8, up
to the stall conditions, (Fig. 17).

Good results are also obtained for tail deflec~—
tions up to -16 deg. There was no point in com-
paring results for the pitching moment, because of
the difficulty to correct the calculations for the
presence of the complex body; however, deflections
of the tail show the right tendencies in the cal-
culated pitching moment.

The experimental results for induced drag coef-
ficient fall between the calculated results for the
case of full leading-edge suction drag and those
calculated for zero leading-edge suction drag,
(Fig. 18). (See also a note about calculation of
the induced drag in part (d} of this chapter).

c) Cruciform configuration in subsonic flow

The non linear characteristics of a cruciform
combination of rectangular wings are evaluated by
the present method (at 0.0 Mach number). The con-
figuration is combined of cruciformed rectangular
main wings and tails, described in Fig. 19. The
calculated lift and pitching moment coefficients
show a strong non linear variation with increasing
angle of attack (Fig. 20). The existence of the
"turning point" in the curves of Cp, Cy, Cp, (Fig.
20) is explained by examining the path of t%e free
vortices shed by the wing. At about 12° those
vortices pass very near and below the upper tail,
causing a considerable loss of lift on that part.
Further increase of the angle of attack would cause
those free vortices to make their way above tail,
gaining lift again. It should be noted that there
is some loss of stability in the region of the
turning point, as seen from the pitching mament
curve slope. Experimental data on cruciformed
wings configurations indicate similar varfation.
Results are sensitive to the relative location
and shape of the tail.

d) A note on the calculation of induced drag

Vortex lattice methods (including the present
work) tend to give a low value for the induced drag

coefficient, calculated by Eq. (4). It seems that
the reason for this fact is due to the method itself.
One aspect of the problem is caused by the somehow
incorrect induced velocities calculated by the
method near the leading edge. Another aspect is due
to the fact that vortex lattice methods assume full
leading edge suction, such as is obtained from thick
wings with round leading edges. When applying the
method to wings with sharp leading edges, where there
is almost zero leading edge suction, the present
method consistently gives a low value for Cp,. How-
ever, in the latter case it seems that using the
simple formula

Cp; = Cp x tga (9

gives very accurate results. Nevertheless, the
problem of calculating the induced drag needs fur-
ther investigation, directed to include the effect
of thickness.

e) Computer time

Computing time for a complex configuration is
at present rather high (about 2000 sec. on IBM 370/
168 type). However, computation time may .be consi-
derably reduced, should the program be optimized.
The use of the iterative scheme is time saving in
itself.

Iv.

The present method offers an efficient means of
analysis and design of complex aerodynamic con—
figurations. The good results obtained for strong
interaction cases and non linear effects encourage
future development and refinement of the method to
enable the analysis of configurations which may al-
so include body and thickness effects. Aerodynamic

characteristics at high angles of attack can be
successfully analysed using this method up to the
effects of stall or vortex breakdown.

Conclusions
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e ws s mos e PAIRED DATA CURVE (ROUND L.E.),HIGH CANARD

e s — PRESENT CALCULATION, LOW CANARD
.............. LINEAR THEORY
CL [ (EXPERIMENTAL DATA TAKEN FROM REF,15)
1.24
1.0
7/
.
.8 Yy
/'/
6 oy
e 4
//
L /
y
Y 4
.2

0 4 8 12 1® 20 2 O

FIGURE 3-b - LIFT COEFFICIENT Va. ANGLE QF ATTACK
POR CONFIGURATION No. 1, LOW CANARD,
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.04 1
.03
021

.01

e PAIRED DATA CURVE,REF.15,HIGH CANARD
—wom  wvess e~ PAIRED DATA CURVE,REF.15,LOW CANARD

o PRESENT CAICULATION,HIGH CANARD
» PRESENT CALCULATION,LOW CANARD

=01

~02]

-03

0 2 4 6 8

10 12 C

FIGURE 4 - PITCHING MOMENT COEFFICIENT Va. LIPT COEFFICIENT

FOR HIGH AND LOW CANARDS, CONFIGURATION No, 1.

FIGURE 5 - AN EXAMPLE OF CALCULATED LOAD DISTRIBUTION OF WING AND CANARD
AT 20 DEG. ANGLE OF ATTACK, CONFIGURATION NO. 1.

FIGURE 6 -

CALCULATED INTERACTION BETWEEN CANARD AND WING LEADING EOGE
VORTICES, CONFIGURATION NO. 1.
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© - EXPERIMENTAL RESULTS, ner. (17}
- PRESENT CALCULATION, Gy =C,¥tp e

moment ref. c

CONPIG. NO.2 : 51.7° CANARD L.E. SWEEP, 0°DIHEDRAL
- CONFIG. NO,3 : S1.7% CANARD L.E. SWEEP, 18.6° DIHEDRAL
CONFIG, NO.4 : 60° CANARD L.E, SWEEP, 0°BIWEDRAL

FIGURE 7 - COMPARISON WITH EXPERIMENTAL RESULTS - REF. 17, WING CANARD
CONF IGURATIONS Nos. 2, 3, 4.

0 A2 3 &4 5 8 .7 ¢p

FIGURE 9 - LIFT COEFFICIENT Vs. DRAG COEFFICIENT, CONFIGURATION No. 2.

©,8 - EXPERIMENTAL RESULTS, REF. (17}
'« TOTAL CONFIGURATION
2 - CANARD IN PRESENCE OF WING PRESENT CALCULATION © . EXPRIMENTAL RESULT, rer. 17)
C L ‘ ' ' c e « PRESENT CALCULATION, (CORRECTED FOR PRESENCE
o M OF BODY AND NOSE)
6
.5
4
3
o
.2 o
=3
A
0 4 8 12 16 - 20 26 LT
0 L 8 12 16 20 24 28 ( [.r FIGURE 10 - PITCHING MOMENT COEFFICIENT Vs. ANGLE OF ATTACK, CONFIGURATION No. 2.
FIGURE 8 - LIFT COEFFICIENT Vs. AMGLE OF ATTACK, CONFIGURATION No. 2. _
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rer. (17)

0,' - EXPERIMENTAL RESULTS,
CL
1 « TOTAL CONFICURATION } PRESENT CALCULATION
2 ~ CANARD IN PRESERCE OF WING
1.6
§ et
1.4 . ° e o
°
1.2
.
10
8
6
2 ————— . e
4 NN
2
- - —
0 b 8 1 16 20 24 L[°)

FIGURE 11 - LIFT COEFFICIENT Vs. ANGLE OF ATTACK, CONFIGURATION No. 3.

c, |

1.6
1.4
1.2

1.0

0,8 -~ EXPERIMENTAL RESULTS, REF. {17)

1 =~ TOTAL CONFIGURATION
2 =~ CANARD IN PRESENCE OF WING

} PRESENT CALCULATION
L

% 20 2 <6

Eay
[«
-
~N

FIGURE 12 - LIFT COEFFICIENT Vs. ANGLE OF ATTACK, CONFIGURATION No. 4.

© - EXPERIMENTAL RESULTS REF. (17)

1 - PRESENT CALCULATION

2 - CprLv ,(MODIFIED POLHAMUS), REF. (17)
E Cpp + (WODIFIED POLHAMUS ) , rer, (17)
“CLe
1.4
1.2
[
1.0 . -
1 -
o e 2
.81 s
7 ——
td -
.6 s 3
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2
KA 7 s
Ve
v
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.2
- v v - —
0 4 8 12 6 20 246 L[

FIGURE 13 - COMPARISON OF EXPERIMENTAL RESULTS YO VARIQUS THEQRETICAL
L.

RESULTS FOR CONFIGURATION Na. 2.

CANARD IN PRESENCE OF WING :

© - EXPERIMENTAL RESULTS, rer. (17)
‘1 - PRESENT CALCULATION
2 - ch+ cl.v »{ MODIFIED POLHAMUS), REF. (]7)
"3 - . (MODIFIED POLRAMUS ), rer. (17}
CLe A .
1.2
1.0
8 -
’ 22—
. ~
6 7~ N 1
e
b e
=
.2 pa
-
0 4 8 12 16 20 2 £L[9

FIGURE 14 - COMPARISON OF EXPERIMENTAL RESULTS TO VARIOUS THEORETICAL
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e~ L.E, VORTICES
e w= - SECONDARY VORTICES

AT 20 DEG. ANGLE OF ATTACK CL ‘
—p———  EXPERIMENTAL DATA, (REF. 18)
CALC. RELATIVE STRENGTH: 8{ — o — PRESENT CALCULATION
STA. L.E. VORTEX SECONDARY VORTEX
1 0.071 0.02
2 0.089 .0004
3 0.093 -0.014
A\ 4 0.091 ~0.014
“ K s 0.085
1y
R
| v
. (B
i [
l [ ]
. i )
| 1|
. 1 i
I L
] i
! f Ny
! AN
| i 1y
. (']
It
I
] i \
/
! i Vo
| i \
¢ 0 2 4 6 8 10 12 1w p)
PIGURE 17 - LIPT COEFFICIENT Ve. ANGLE OF ATTACK, P-4-E MODEL,
AT 0.6 MACH NUMBER.
FIGURE 15 - LEADING EDGE VORTICES AND SECONDARY VORTICES CALCULATED FOR
DELTA WING OF AR = 2.
HALP SPAN VIEW
3
: TAIL
i " MAIN WING e - —@-- =" CAICULATED , 2ERO L.E. SUCTION
¥ Y e—ese—tfpsoe  EXPERIMENTAL DATA, (REP. 18)
oo = CALCULATED, FULL L.E. SUCTION
—y CD \ (ALL CAICULATED RESULTS ARE CORRECTED FOR Cp )

MAIN WING

FUSELAGE JUNCTURE LINE

TAIL (MONG BLOC PITCH CONTROL)

0 A .2 3 XA 5 5 T

PIGURE 18 - TOTAL DRAG COEFFICIENT Va. LIFT COEFFICIENT, P-4-B MODEL
AT 0.6 MACH NUMBER,

PIGURE 16 - SCHEMATIC DESCRIPTION OF THE MODEL OF AN F-4-B
PARTITIONED INTO ELEMENTAL PANELS.
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Ref. Area = 0.5 C2

MOMENT ref.
0.75C 0.
MAIN WING TAIL BACK VIEW
NC=8, NS=6 PARTITION NC=4, NS=6 PARTITION
(FOR HALF SPAN OF EACH (FOR HALF SPAN OF EACH
PART) PART)
FIG. 19 =~ DESCRIPTION QF THE CRUCIFORM MODEL
Ly %)
(1)  CALCULATED C; (TOTAL) o
1 (2 ¢, (TOTAL) - LINEAR THEORY 1
8 1 (3) CALCULATED CONTRIBUTION OF LOWER w 8
: TAIL FOR C. .
7 { (4) CALCULATED CONTRIBUTION OF UPPER 74
: TAIL FOR C .
.6 1 .61
.51 5 -
4 A
.34 .31
.21 .2
1 A
0 e
: 20 aey |- 4 2 . Cp,
-2
-3+
Gy (TOTAL)
-4 -
Cm

FIG. 20 - LIFT AND PITCHING MOMENT CQEFFICIENTS Vs. ANGLE OF ATTACK; INDUCED DRAG
COEFFICIENT Vs. LIFT COEFFICIENT, CALCULATED FOR THE CRUCIFORM CONFIGURATION
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