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Abstract 

The potential encounter of wake vortices from a preceding flight is at the origin of the wake separation minima 

between aircraft on the final approach. Wake separations ensure safety under all conditions, but have been 

shown to be over-conservative in some meteorological conditions which directly penalises runway performance. 

This paper describes the Dynamic Pairwise Wake Separation for Arrivals (D-PWS-A) concept which has been 

developed in order to safely reduce, when possible, wake separation minima between consecutive arrivals on 

the final approach based on wake risk monitoring. Aircraft wake behaviour and meteorological information is 

monitored and processed using Machine Learning (ML) algorithms which determine the wake separation 

minimum reductions that can be safely applied between subsequent arriving aircraft. The use of wake behaviour 

monitoring combined with ML techniques allows us to maximise the conditions under which wake separations 

can be reduced. The model is developed and tested based on field data collected in Paris-CDG airport. 
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 Introduction 
In today’s efficient operations, landing aircraft are separated either by wake turbulence separation rules 
or by runway and surveillance separation rules that apply when wake turbulence separation minima are 
not required. For arrivals on the final approach, the wake turbulence and surveillance separation 
requirements are normally expressed by distance minima to be applied at a separation delivery point 
which is usually defined as the runway threshold. In strong wind conditions, the impact of the wind on 
an aircraft’s groundspeed during approach results in decreasing the observed landing rates. Reduced 
landing rates generates delays and flight cancellations at airports with significant costs to operators and 
the travelling public. However, existing arrival wake turbulence separation minima are considered to be 
over-conservative in some meteorological conditions. The applied separation values do not take into 
account the prevailing meteorological condition impact on the transport and decay of the wake 
turbulence. A dynamic and flexible application of separation could lead to a more efficient way of 
mitigating wake encounter risks, without affecting the safety level of the Air Traffic Management (ATM). 
 

Within the Single European Sky ATM Research (SESAR) 2020 Wave 2 programme, work is being 
conducted on a solution that allows for the dynamic definition of wake separation reduction between 
arrival traffic based on wake risk monitoring using predictive Machine Learning (ML) techniques. This 
solution is called Dynamic Pairwise Wake Separations for Arrivals (D-PWS-A). D-PWS-A relies on the 
monitoring of the wake behavior of previous aircraft wake tracks measured through LiDAR (Light 
Detection And Ranging) technology, meteorological conditions (here using METAR data) and flight 
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information, combined with ML models. 
During recent years, knowledge about wake vortex behavior in the operational environment has 
increased thanks to a number of wake data collection campaigns to obtain measured data and an 
improved understanding of the physical processes (e.g. [1][2][3][4][5][6][7][8]). This improved 
knowledge has made the design of new wake separation concepts possible, with some of them already 
deployed in Europe and US, enabling the optimization of airport/runway throughput and efficiency whilst 
maintaining acceptable levels of safety. The work on D-PWS-A builds on previous work conducted by 
EUROCONTROL and NATS within the SESAR framework, which aim to optimize wake separation 
schemes in order to increase runway throughput. This work includes the static separation schemes 
developed in the RECAT-EU1 and RECAT-PWS2 projects [9][10][11] as well as the dynamic separation 
reduction solutions, Time Based Separations (TBS) [12] and Weather Dependent Separations (WDS) 
[13]. TBS is an operating procedure for separating aircraft by time, instead of distance. TBS was 
developed to address headwind disruptions by dynamically reducing the spacing between pairs of 
aircraft in strong headwind conditions consequently preserving runway throughput. WDS consists in the 
conditional reduction or suspension of wake separation minima on final approach, applicable under pre-
defined wind conditions; so as to enable an increase in runway throughput. Such reductions of wake 
separation are achievable under WDS on the basis that the wake turbulence generated by the lead 
aircraft is either wind transported out of the path of the follower aircraft on final approach, or has decayed 
sufficiently to be acceptable by the follower aircraft; if encountered. However, one of the limitations of 
WDS is that the wind conditions/criteria under which the wake separations can be significantly reduced 
or even fully suspended and the associated wind prediction capabilities are rarely met in many 
operational environments. Hence, the application of WDS for arrivals in operations can be limited, as 
can the benefits that can be gained.  
One of the main aims of the Dynamic Pairwise Wake Separation for arrivals (D-PWS-A) concept is to 
increase the opportunities under which time-based wake separations can be either reduced compared 
to WDS and TBS. 
The present work was developed based on field data measurements collected at Paris-CDG airport 
and covering about 24,000 flights measured in 2016 and 2017.  
 
This paper is organized as follows. Section 2 introduces the dataset used to develop and test the D-
PWS-A solution. Section 3 describes the methodology used for wake separation reduction design. 
Section 4 details the solution architecture. Section 5 presents the obtained results and related benefits 
based on the Paris-CDG airport test case.  

 

 Dataset 
This paper uses field operational data collected in 2016 and 2017 from Paris Charles De Gaulle (CDG) 
airport. The database consists of LiDAR [14], METAR and RADAR measurements. LiDAR data contain 
temporal evolution of position and intensity of wakes generated by several aircraft flights. For each 
wake track, RADAR data contains the corresponding information of the aircraft flight, such as the aircraft 
type and its ground speed. METAR data include wind, atmospheric and weather measures collected 
every 30 minutes. 

 

 Methodology 
As a consequence of its lift, an aircraft generates a complex vortex wake, emanating from the wing and 
horizontal tail plane that rolls-up to form, in the far-field, a pair of counter-rotating vortices that can last 
for several minutes after the aircraft has flown by. These vortices, whose initial circulation and lateral 
spacing depend on the aircraft characteristics, are transported and decay depending on the 

                                                
1 RECAT-EU – a revised European 6 category wake turbulence scheme  
2 RECAT-PWS -  a pairwise wake separation scheme based on aircraft type as opposed to aircraft wake 
category 
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environmental conditions. The encounter of such a vortex pair by a follower aircraft can be hazardous 
due to the induced rolling moment and down-wash velocity. 

D-PWS-A allows for wake separation minimum reductions based on two concepts: wake vortex 
transport and wake vortex decay. These two concepts and related wake separation design criteria are 
defined as follows:  

 

3.1 The wake transport-based concept 
The transport-based concept aims at reducing the time separation between two arrival flights based on 
the position of the wake. To do so, models are built to predict the evolution of the wake vortices position 
with time. The objective is to have no vortices expected within a corridor defined per leader-follower 
pair.  

The initial two vortex system generated by an aircraft is centered on the generator aircraft position and 
with a lateral vortex spacing b0 equal to a fraction of the wing span b: b0=s b, with s ranging from about 
0.65 to 0.8 for aircraft in approach configuration. In case of crosswind the vortices will be blown by the 
crosswind component. In ground proximity, due to the interaction with the ground, the vortices also tend 
to separate from each other. The vortex moving in the wind direction due to ground effect is then 
denoted downwind vortex whereas the one moving in the opposite direction to the wind in case of 
ground proximity is denoted upwind vortex (see further description in, e.g. [5]). In case of crosswind, 
the worst case (and hence the design case) consists in the encounter by the following aircraft of the 
upwind vortex that, due to the combined ground and wind effect, would remain in the follower vicinity 
([3]).  

For D-PWS-A transport-based separation design, we here consider that both vortices must have been 
transported such that they are located at least one-half vortex spacing from the follower’ closest wing 
tip, as illustrated in Figure 1. The vortex is indeed conservatively assumed to have a characteristic 
diameter (i.e., the region around the vortex core where the effect of the encounter can be felt) of one 
vortex span. 

 

Figure 1 - Schematic view of required minimum vortex lateral displacement considered for WDS-XW 
design. 

 

This distance should be increased by the navigation uncertainty of the follower aircraft. According to 
EUROCONTROL Navigation experts, the lateral Total System Error (TSE) on final approach (typically 
at 1 NM from runway threshold) is about 35 m for standard navigation procedures in busy airports (e.g. 
ILS). 
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Figure 2 - Scheme of the encounter box defined for transport-based D-PWS-A concept. 

This leads to the definition of an encounter box in which no vortex must be found at reduced separation 
time, see Figure 2, defined accounting for:  

• Follower navigation uncertainty (TSE), 
• Vortex span b0/2 (function of generator aircraft), and 
• Follower wingspan.  
 
Using the above definition and typical wing span and vortex span values defined per wake turbulence 
category (e.g., RECAT-EU for the case of Paris-CDG airport), the encounter box half-widths considered 
for D-PWS-A transport-based separation design for each pair wake turbulence category have been 
defined.  

Furthermore, the separation reductions are designed based on an “acceptable error rate”. The latter 
shall be defined as a lower bound of what is observed today locally in terms of probability to have a 
vortex in the encounter box. For the case of Paris-CDG, analysis of the database showed that for 3% 
of all pairs, a vortex was observed in the encounter box when applying distance-based minima. The 3% 
represents an average across all wind conditions. In low wind conditions, the probability is larger. 
Targeting 3% is thus conservative. Note also that this error rate is defined as if Air Traffic Control (ATC) 
applies exactly the separation at minima. Since ATC usually takes some margins with respect to the 
targeted separation distance either on purpose or for operational reasons (e.g., vectoring, speed 
control…), those error rates shall not be taken as absolute numbers of wake encounter.  

The wake separation design criteria for transport-based D-PWS-A concept is thus that the wake 
separation minima can be reduced down to the minimum time at which the probability to observe a 
vortex in the encounter box in below the acceptable error rate (here 3%). In case the obtained time 
separation is larger than that obtained when applying current wake separation minima (e.g., distance-
based RECAT-EU minima for the case of Paris-CDG airport), the separation minima are not reduced 
and current minima are still applied.  

 

3.2 The wake decay-based concept 
The decay-based D-PWS-A concept aims at reducing, when possible, the time separation between two 
arrival aircraft based on the wake’s circulation reduction. The idea is to reduce separation minima down 
to a time separation at which the distribution of possibly encountered wake circulation is bounded by 
the distribution of wake circulation that could be encountered at current Distance-Based Separation 
(DBS) minima in Reasonable Worst Case (RWC) conditions. The RWC situation for an arrival aircraft 
to encounter a wake vortex was defined at ICAO level for wake separation design, in terms of weather 
(low wind, low turbulence and low stratification conditions) and flight conditions and in terms of 
encounter geometry [8]. This is illustrated in Figure 3. For this purpose, models to predict the 
probabilistic reduction of wake vortex circulation intensity with time were built. 
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Figure 3 - Illustrative example of distribution (median in solid, p10/p90 in dash) of circulation for a 
given generator aircraft type in RWC (blue) and for a particular test case condition (red). 

 

The definition of the reference circulation distribution for separation minima determination then relies 
on several building blocks described below.  

1) Baseline Distance-Based Separation scheme 

In order to define the acceptable wake severity level in RWC conditions, the applicable Distance-Based 
Separation (DBS) minima must first be defined. For the present study, since the used data have been 
measured in Paris-CDG environment, the corresponding applicable DBS scheme will be used, namely 
RECAT-EU separation scheme [15], recalled in Table 1. 

 

Table 1 - RECAT-EU separation scheme. 

 

2) Baseline Time Separation matrix  
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In order to characterize the baseline wake circulation distribution and because circulation decay with 
time, it is important to characterize the time separations corresponding to DBS minima in RWC 
conditions. These time separations are defined per follower aircraft type from equivalent median time-
to-fly the RECAT-EU DBS minima in calm wind conditions defined as total wind lower than or equal to 
5 kts and without surface tailwind condition. Those time-to-fly profiles were determined using 
surveillance data and surface wind data collected in the framework of the Paris-CDG TBS project and 
covering more than one year of local operations at Paris-CDG. Note that the median TBS are only 
computed if at least 10 samples are found for that follower aircraft type in calm wind conditions. In case, 
no sufficient calm wind data are available for an aircraft type, the follower is discarded and D-PWS-A 
cannot be applied for that follower aircraft type (which should have limited operational impact given the 
aircraft is rare). Note also that in reality, some variability is observed in the time separations 
corresponding to a given DBS minimum even in calm wind due to aircraft airspeed variability. This 
distribution of the time separation around the median is ignored in this relative assessment providing 
the allowed time separation reduction compared to the median value.  

3) EUROCONTROL generic dimensionless RWC wake decay curves  

The reference distribution of dimensional circulation evolution in RWC is obtained from the generic 
dimensionless RWC wake decay curve that was obtained in the framework of RECAT-EU and RECAT-
EU-PWS projects and documented in [8]. Those generic dimensionless curves provide the median but 
also 10th and 90th quantiles of circulation evolution in RWC, see Figure 4. 

 

 

Figure 4 - Generic dimensionless RWC decay curves: median (left), p10/p90 (right) from [8]. 

 

4) Vortex spacing and initial circulation database  

The dimensionless circulation evolutions are made dimensional using the initial circulation value and 
the vortex spacing defined per generator aircraft type. For that purpose, a database is used that was 
determined based on LiDAR measurements from various airports in the framework of RECAT-EU and 
RECAT-EU-PWS.  

 

Using the 4 building blocks defined above, four matrices are eventually built providing for a set of leader 
and follower aircraft pairs:  

1. The reference time separation at DBS minimum in calm wind condition 

2. The median circulation for that pair at DBS minimum in RWC conditions 
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3. The 10th quantile of the circulation for that pair at DBS minimum in RWC conditions 

4. The 90th quantile of the circulation for that pair at DBS minimum in RWC conditions 

 

The machine learning algorithm used for the decay-based D-PWS-A concept development shall them 
aim at determining the time (=vortex age) such that the circulation is:  

 Lower than the p90 design circulation in at least 90% of the cases, 

 Lower than p50 design circulation in at least 50% of the cases, and 

 Lower than p10 design circulation in at least 10% of the cases. 

 

This time corresponds to the decay-based D-PWS-A separation minimum, thus defining the design 
criteria for the decay based concept. Note that, in case the obtained time separation is larger than 
reference time separation, the separation minima are not reduced and current DBS minima are still 
applied. 

 

 Machine Learning Models 
For each concept, transport-based and decay-based, a Machine Learning (ML) model targeting the 
associated design criteria is built with the aim that at least one of the two design criteria, transport or 
decay, is achieved. By combining the wake transport and wake decay ML models the frequency with 
which separation minima can be reduced under D-PWS-A should be increased.  

For each flight, a prediction is done using both the transport and the decay models and the smallest 
between the two predictions is taken as the final predicted wake separation minima. To replicate a real 
use case, all the wake separation minima predictions will be based on data available at least 15 minutes 
before the aircraft landing, simulating what would be required in an operational environment (i.e. Air 
Traffic Controller shall be made aware of possible separation reduction prior to aircraft landing to be 
able to apply it). The benefits related to the use of the ML models are assessed compared to a baseline 
corresponding to the application of current distance-based separation minima (here RECAT-EU), 
demonstrating the ability of this solution to reduce time separation in specific conditions. The distances 
from the RECAT-EU table are converted into time by taking into account the decreasing aircraft speed 
over time. In case the obtained predicted time separation from the ML transport and decay models is 
larger than the reference one, current DBS minima are still applied. For all operational conditions, it is 
proven that the separation reductions determined by ML models maintain the wake encounter risk to 
an acceptable safe level defined by the separation design criteria.  

In the case of the decay model, the wake intensity quantiles (10, 50, 90) at prediction time are computed 
to verify that they are below the ones encountered in RWC conditions. To respect these design criteria, 
a possible approach is to use a particular type of regression called quantile regression [17]. In contrast 
to the classical regression, the quantile regression estimates the conditional quantile of the response 
variable.  

In both cases, the transport and decay ML models are based on a gradient boosting algorithm called 
Catboost that proved to perform well in quantile regression scenarios [18][19].  

 

4.1 Wake Transport Machine Learning Model  
To develop the ML model for wake transport,𝑇𝑛, is introduced, that is the time it takes for both the wakes 
to be at least n meters away from the runway centreline. The time is measured from the first wake 
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measurement. Several models are built for each selected n ∈ Nt = (40, 60, 80,100,120,140) expressed 
in meters. Each model (Mtransport_n) will predict a time value for the associated n class, ttransport_n. To 
compute the predicted separation time, the encounter box halfwidths, defined in Section 3.1, are used 
to determine the right n that needs to be predicted. Once the n is defined, the predicted time is computed 
as the linear interpolation between the two closest ttransport_n predicted by the model. The values of n 
were chosen to take into account all the possible values of encounter box halfwidths but at the same 
time guarantee enough granularity to make the linear interpolation accurate. 
 
The target variable 𝑇𝑛does not always have a value. This can be the case when the wind was so low 
that the wake did not reach any target n or when there was a problem with the measurement. To deal 
with this, a second model called the support ML model (Msupport) is introduced. The support model will 
tell if the main model has been trained with enough data in similar wind conditions and therefore it is 

confident that the results are correct. The support model is a classification model that predicts P(𝑇𝑛) 
that is the probability of 𝑇𝑛to exist. It is based on a random forest classifier [20]. DBS minima is applied 

to every flight for which the support model predicts 𝑇𝑛 not to exist. 
 

As explained in Section 3.1, the average probability to observe a vortex in the encounter box at DBS 
minima was found to be 3% in the dataset and therefore defined as target error rate. The transport 
model will target this same quantile during the training phase. A custom loss function has been designed 
to minimise the Mean Squared Error (MSE) from the desired quantile. The performance of the model 
was analysed to reduce time separation but at the same time prevent the error rate from exceeding the 
3% threshold for different wind conditions and aircraft pairs. 
 
Different features have been extracted from the historical LIDAR, METAR and RADAR data used in the 
development of the model. From the list of all the features, only some of them proved to be relevant for 
the transport scenario: 
 

 Cross wind speed, Head wind speed: computed from METAR data; 

 Cross gust speed: computed from the gust speed, if present, from the METAR data; 

 Left/Right wind direction: computed as the outermost left and right wind directions measured 
during the half an hour interval included in METAR data; 

 Initial gamma: computed as the average initial wake intensity for the given aircraft type; 

 Previous initial gamma: measured as the initial wake intensity of the previous wake’s aircraft; 

 Previous wake speed_n: computed as the average speed of the previous wake during the first 
n meters of lateral movement using LIDAR data. 

 
The output of the transport ML model is the predicted transport wake separation minima ttransport, 
computed as illustrated in Figure 5. 
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Figure 5 - Transport ML model prediction flow. 

In Figure 5, D is the test dataset and Msupport_n are the support ML models. ñ and ñ+1 are the 
consecutive values ∈ Nt for which ñ < e < ñ+1 where e is the reference from the encounter box 
halfwidths. Mtransport_n are the n wake transport ML models. 
 

 

4.2 Wake Decay Machine Learning Model 
Similarly, the decay model targets Γ𝑛, which is the time that it takes for both the wakes to be below 
intensity n expressed in m2/s starting from the first measurement. Several models (Mdecay_n_q) are built 
for each selected n ∈ Nd = (50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600) and for each of 

the three targeted quantiles q ∈ Q = (10, 50, 90). The value of q defines the quantile value targeted by 
the regression algorithm. For the decay ML model, predictions are based on circulation minima at RWC 
computed for the different aircraft types. The goal is not to pass the intensity values for the three 
quantiles computed at TBS p50. The three pairwise matrices of p10, p50, p90, defined in Section 3.2, 
are used to define, at prediction time, the target n for the Γ𝑛 target. The values of n were chosen to take 
into account all the possible intensities present in the p10, p50, p90 tables. Three different predictions 
are made for the three quantiles q and the biggest value, the one that complies with the all the quantiles, 
is taken as the predicted decay wake separation minima. 

Similar to the transport scenario, different features have been computed: 

 AC type, Previous AC type: computed as the target encoding of the aircraft type coming from 
RADAR data; 

 Initial gamma: computed as the average initial wake intensity for the given aircraft type; 

 Previous initial gamma: computed as the initial wake intensity of the previous wake’s aircraft; 

 Previous gamma decay: computed as the time it took to the previous wake to decay to 10%, 
50%, 90% of the initial wake intensity. They are computed from LIDAR data; 

 Cross wind speed, Head wind speed: computed from METAR data; 

 Temperature, dew point, pressure: retrieved from METAR data; 
 
 
The predicted decay wake separation minima tdecay is computed as illustrated in Figure 6. 
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Figure 6 - Decay ML model prediction flow. 

In Figure 6, D is the test dataset and ñ and ñ+1 are the consecutive values ∈ Nd for which ñ < p < ñ+1 

where p is the reference from p10, p50 or p90. Mdecay_n_q are the n*q wake decay ML models. 

 

4.3 Dynamic Pairwise Wake Separation combined model 
  

The final predicted wake separation minima tpredicted_separation is computed combining the transport- and 

decay-based ML predictions. It reads: 
  

𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑡𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 , 𝑡𝑑𝑒𝑐𝑎𝑦) 

(1) 

 

 Results 
In this section the D-PWS-A combined model is empirically evaluated. The experiments are designed 
to assess the quality of the D-PWS-A combined model to reduce time separation in different 
conditions and meanwhile preserve the desired safety level. The models were trained on the Paris-
CDG data and the information of previous wakes (latest wake measured 15 minutes before the 
current one) is used as a feature to estimate the behaviour of future wakes in both scenarios. 
The dataset was split in two, 2016 data was used to train the model and 2017 data was used to test 
the results and produce the graphs present in this section. 
For both the models (wake transport ML and wake decay ML) we compute the feature importance to 
better interpret the results of the predictions. The importance is computed averaging the feature 
importance for all the n models and it is based on the GINI importance [21]. 

In Figure 7, the importance of each feature used in the transport ML model is illustrated to better 
understand what influences wake transport. As expected, a strong correlation between the model 
performance and the intensity of cross wind is noticed. Moreover the lateral speed of the previous wake 
plays an even more important role (more than 50% of importance) in the predicted time, justifying the 
use of LIDAR data. 
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Figure 7 - Transport model feature importance. 

 
In Figure 8, the feature importance in the decay scenario has been analysed and is illustrated. The 
initial wake intensity together with the aircraft type constitutes the two most important features of our 
model with an importance of about 21% and 19% respectively. Both wind components play an important 
role as well.  

 

Figure 8 - Decay model feature importance. 

 

Then, the overall performance of the D-PWS-A combined model, was analysed to evaluate the quality 
of the separation reduction. The preliminary aggregated results show that time separation can be 
reduced in more than 50% of the considered flights compared to RECAT-EU separation minima with 
an average separation reduction of 9s. This depends mainly on the wind conditions (Figure 9) and the 
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considered aircraft. In Figure 9 the percentage of improved flights and the average separation reduction 
using the D-PWS combined model, in different cross wind conditions is illustrated. The average 
reduction in time separation ranges from 3s in mild cross wind conditions up to 37s in strong cross wind 
conditions.  

 

Figure 9 - D-PWS-A overall improvement for different cross wind conditions. 

  

By comparing the distribution of the predicted tseparation_minima and the RECAT-EU separation time (Figure 
10), an overall improvement of the time separation is observed with the D-PWS-A combined model. 
The density illustrates which wake separation times were more probable for each curve. The predicted 
time extends down to very low values (between 20s and 40s) when the cross wind is strong. Note that, 
operationally, such very low separation could not be applied due to other separation and spacing 
constraints (e.g., surveillance minima and runway occupancy time). 

 

Figure 10 - Comparison predicted time and RECAT separation. 

 
Meanwhile all the separation design criteria are still respected for both the transport and decay ML 
models. We make sure that the error rate is below 3% for the transport ML model for different cross 
wind conditions (Figure 11) and aircraft types. As can be seen, the red line (error rate) remains always 
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below the dashed line (target error rate), meaning that the model meets the design criteria and 
associated safety level in all wind conditions assessed. Similarly, the decay test set quantiles with the 
design criteria for the 10, 50, 90 percentile models were compared under different cross wind conditions. 
In Figure 12 the quantile values and their correlation with the wind speed is illustrated. The quantiles 
look stable for different crosswind speeds and the values are always above the respective thresholds 
(dashed lines), hence indicating that the design criteria are met in the wind conditions assessed. The 
same analysis is also performed for each combination of leader/follower aircraft. 

 

Figure 11 - Error rate transport ML model for different cross wind conditions. 

 

 

Figure 12 - Test set quantiles decay ML model for different cross wind conditions. 

 

 Conclusions 
This paper showed how the D-PWS-A concept uses ML techniques to safely reduce wake separation 
between consecutive arrivals on the final approach based on the real time monitoring of wake risks. It 
was demonstrated that this solution provides benefits in a real use case scenario using only operational 
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information as available 15 minutes before the landing. The combination of both a wake transport and 
a wake decay ML model developed for D-PWS-A permits the reduction of the time separation in most 
of the conditions compared to static distance-based separation. Although it was expected that time 
separation could be reduced in strong wind conditions, the combined use of wake transport and wake 
decay ML models showed that time separations could also be reduced to some extent in milder wind 
conditions. For both the decay- and transport-based concepts, larger and more frequent separation 
reductions can be obtained for larger baseline separations. This is to be expected as the wake has then 
more time to decay or being transported. In addition, it was verified that the models comply with the 
separation design criteria across the wind conditions. 
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