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Abstract 

Discrete adjoint method is adopted in an optimization of a waverider-derived vehicle. Free-form 

deformation parameterization method is used for the vehicle. Optimization results show that shock wave moves 

toward the vehicle after optimization, and lift-to-drag ratio increased by 21.3% compared to initial configuration. 

All these shows that the optimization is very successful. 
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1. Introduction 

Waverider is lifting body that is derived from a known analytical flowfield such as flow over a 

two-dimensional wedge or flow around a slender cone. The term ‘Waverider’ is used to describe a 

geometry that has an oblique shock attached to its leading edge nicely. By containing high pressure 

air under the vehicle, the waverider effectively rides on the wave, providing the potential for high lift-

to-drag ratios relative to conventional designs. 

Discrete adjoint method was widely used in acoustic, electromagnetics and transonic 

aerodynamic design problems, but it was rarely used in hypersonic vehicle optimization until recent 

years[1]. In this paper, a hypersonic vehicle model based on conic-flow waverider is developed. 

The aerodynamic performance is estimated with CFD method. The vehicle model is used to optimize 

maximum L/D with discrete adjoint method, in which control theory is applied directly to the set of 

discrete field equations. Since the time cost of discrete adjoint method is almost independent of 

design variables, it is quite suitable for design optimization with a lot of design variables. This paper 

gives maximum L/D optimization with restrictions of actual volumetric efficiency, which shows that 

this method is efficient for optimization of hypersonic vehicle. 

The remainder of this paper is organized as follows: Section 2 describes flow solver and 

corresponding discrete adjoint method. Section 3 presents an improved grid deformation method 

based on the TFI and RBF methods. Section 4 gives the geometry parameterization of free form 

deformation. A lifting body is optimized by discrete adjoint method in section 5. The conclusions are 

drawn in section 6.  

2. Flow analysis and sensitivity analysis method 

The governing equations are the three-dimensional compressible Navier-Stokes equations. 

These equations describe the conservation of mass, momentum and total energy for a viscous 

compressible flow, which can be written as  

ˆ ˆ
d

QdV F ndS G ndS
dt   

     
                                              (1) 

where Q is the set of conservative flow variables, F is the inviscid flux tensor, and G is the flux 

tensor associated with viscosity and heat conduction. 

In this context, a multi-block viscous flow solver named LMNS3D[2] for steady and unsteady 

turbulent flows under the finite volume frame is employed. The equations are solved using a 

structured cell-centered finite-volume method. The discretization inviscid flux consists of central 
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scheme with scalar dissipation. Spalart-Allmaras one-equation turbulence model is used to compute 

the turbulent viscosity. These turbulent models are discretized and updated in a loosely-coupled way 

from the mean governing equation. For the time integration, LU-SGS implicit method is adopted. 

Discrete adjoint[3] method is adopted to get the gradient of objective functions. The discrete 

residual of the nonlinear, multidimensional steady-state governing equations of the fluid and 

boundary conditions are approximated as a large system of coupled nonlinear algebraic equations 

as 

( (b), (b), ) 0R Q X b                                     (2) 

where Q is the vector of converged steady field variables, X represents the computational grid, 

and b is the vector of independent input (design) variables. The aerodynamic characteristics of the 

vehicle are achieved by the integration of pressure over the surface grids. Similarly, the vector of 

aerodynamic output functions (objective functions) J  depends on Q, X, and b. So J can be written 

symbolically as 

J = ( ( ), ( ), )J Q b X b b                                    (3) 

Differentiate Eq. (2) and (3) with respect to b and we get 

' ' 'J J J
J Q X

Q X b

  
  
                                                           (4) 
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where ' dJ
J
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 ，
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dR
R ' ， 
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dQ
Q ' ，
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X

db
  , [ ]

1 2 m

dJ J J J

db b b b

  


  
, , , ，and m is the number of 

design variables. 

The governing equation Eq.(2) is added to objective function Eq.(3) as equality constraints and 

we get Lagrange equation 

(b) (Q(b), (b), ) R(Q(b), (b),b)TL J X b X   

where   is Lagrange multiplier and it can be any constant matrix. Differentiate L(b) with respect 

to b and then: 

'( ) ( ) ( )QT TJ J R R J R
J L b X X

X b X b Q Q

     
       

     

' '
λ λ              (6) 

Since the choice of the Lagrange multiplier is arbitrary, the term Q  can be eliminated by solving 

the following Equation 

0TJ R

Q Q


 
 

 
                                    (7) 

Hence, 

( )
J J R R

J X X
X b X b

   
    

   

' T '
λ                            (8) 

As can be seen, all the gradient of objective functions J can be obtained once we get  . The 

computational expense is independent on the number of design variables. Furthermore, it is 

proportional to the number of objective functions. 

Eq.(7) is a linear algebraic equation which represents the discrete adjoint equation. A pseudo 

time term is added to Eq.(7) to enhance the diagonal dominance and the solution is obtained by 

marching in time, just like the flow solver. 

( ) ( ) ( )

T

n T n TV R R J
I

Δt Q Q Q
 

  
    
  

 

1n n n                                       (9) 

where 
R

Q




is an approximation of the exact Jacobian matrix

R

Q




. 
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And then, Eq.(9) is resolved by GMRES method[4]. 

3. Moving Grid 

The configuration of vehicle must be revised in every single iteration during the optimization, 

which means that we have to refresh the corresponding space grid to evaluate the aerodynamic 

characteristic during optimization. One of the direct methods is to generate new grid according to the 

new configuration automatically. But this method is very difficult to realize, especially for complex 

configurations. So it is very important to develop high efficient moving grid methodology. In the 

moving grid methodology, the new grids corresponding to the new configuration are efficiently 

generated according to two key points: one is the grid of initial configuration and the other is the 

changes between the new configuration and the initial configuration.  

To preserve the original topo structure of the grid, Hounjet and Meijer’s method is utilized[5]. 

Firstly, the displacements of vertices and edges in a multi-block grid are calculated according to 

displacements of the surface grid. Then transfinite interpolation (TFI) methodology is used to 

compute the displacements of the interior grid points in the block.  

3.1 Radial Basis Functions Interpolation 

  The displacements of all the vertices and the edges in a multi-block grid can be calculated 

using the radial basis functions interpolation method as follows. 

  We know the displacements of vertices ix  on surface grid, which is assumed to be id  (i=1,N, N is 

the number of vertices on surface grid). Then the displacement of any point x  can be expressed as: 





N

i

iiio xRaaxd
1

)()(


 

where ( )i i iR x x x  . ( )i iR x  means the distance between space point x  and vertices on surface grid 

of number i. The coefficient ia  (i=0,N)can be achieved according to ( )id x = id  and
1

0

N

i

i

a



 . 

The displacements of all the vertices and the edges in a multi-block grid can be calculated using 

the above expressions. 

3.2  Transfinite Interpolation 

After we get the displacements of the vertices and the edges of the blocks, the displacements 

of the interior grid points of the multi-block grid is computed by transfinite interpolation. Then the grid 

of new configuration can be achieved by summing the displacements of all the grid points and the 

initial grid. More details can be found in [6]. 

4. Geometry Parameterization 

The free form deformation (FFD) method is used to parameterize the vehicle in this paper. The 

FFD was proposed by Sederberg and Parry[7] in 1986 and then used in graphics processing, and 

now it is widely used by CAD and cartoon. Later it was introduced into vehicle design. FFD construct 

a 
3 '3R R mapping function X=F( x ) from physical space to parameter space, where x  is logic 

coordinate of parameter space，X is coordinate of physical space. The deformation of vehicle in 

physical space is controlled by the movement of the control points of the parameter s, t, u by the 

following formula: 

     1 1 1

1 1 1

1 1 1

( , , ) ( , , )
l m n

i j k

l m n

i j k

s t u s t u B s B t B u  

  

  

     X X
, , , ,i j k i j k

  P P               (10) 

where 
, ,i j kP and 

, ,i j kP  are the matrixes representing the original coordinates and the displacements of 

the node point (i, j, k ) of the control box, respectively. The number of control points of the hexahedral 
control box is l×m×n. (s,t,u) is the local curvilinear coordinates mapped into the control box, and it is 

also called lattice coordinates. 1

1 ( )i

lB s


 is the (i-1)-th Bernstein polynomial of degree l-1 defined as 

follows: 

 

   
 1 1

1

1 !
( ) 1

1 ! !

l ii i

l

l
B s s s

i l i
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


 

 
                                                          (11) 
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In the matrix form, equation can be written as follows: 

 , ,B s t u  X P                                                                          (12) 

 
1 1,1,1,1 1,1,1,2 1,1,1,3

2 1,1,1 . .

3 , , ,1 , , ,2 , , ,3

l m n

l m n l m n l m n

x P P P

x B B

x P P P







    
  

   
        

                               (13) 

where 
1 1 1

, , 1 1 1( ) ( ) ( )i j k

i j k l m nB B s B t B u  

    

The procedures of FFD are listed as follows. 

1) Construct control lattice around the objective to be parameterized. 
2) Calculate the logic coordinate. 
3) Move the control point of lattice. 
4) Calculate the deformation of the vehicle with equation (10). 

A parameterization software of vehicle is developed in our group. Typical interface is listed as 
follows. All of the definitions can be completed by interactive operation. 

   
Figure 1 typical interface of the parameterization software 

5. Optimization of waverider-derived vehicle 

To demonstrate the approach developed in this paper, a hypersonic configuration similar to 

LEAC is considered. LEAC is a space plane configuration which has been developed in the 

Collaborative Research Center “Fundamental of Design of Aerospace Planes”(SFB 253)  supported 

by the German Research Association (DFG) at Aachen University of Technology[8]. The length of 

this vehicle is 72m. the first 60% of the fuselage was intercepted and reduced 12 times. The final 

geometry is shown in Figure 2. The length of the fuselage is 3.6m, and the cross section of this 

fuselage is composed of two semi-ellipses. This configuration is called ELAC-X in the next. 

The freestream Mach number is 6.0, and the flight altitude is 50Km. The Reynolds number is 

set to be 0.43×106. The grid size is 3.06 million. The reference area is set to be 1.737 m2 for the 

semi-model. The cruise incidence is 8, and the corresponding lift coefficient is 0.108. Figure 1-Figure 

3 displays surface grid and space grid of the vehicle. 

 

 

Figure 2 Surface grid of ELAC-X Figure 3 Space grid framework 

Freeform deformation method is used to parameterize the vehicle. Figure 4 displays freeform 
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deformation framework (red lines). The plane of the vehicle can be optimized. One section as shown 

in Figure 4 (green section) was selected to be enlarged in span-wise direction. There are three 

sections in the FFD framework. The last two sections are selected to be optimized. Totally 13 design 

variables are selected including one plane design variable. The geometry constraint is that the 

volume of optimized vehicle is greater than 95% of the initial vehicle. 

 

Figure 4 FFD framework of ELAC-X 

The objective is to maximize L/D with fixed lift coefficient. Gradient-based optimization is 

completed. Totally 75 CFD evaluations is conducted during the optimization. The discretization 

inviscid flux consists of central scheme with scalar dissipation, but the optimized configuration is 

evaluated by a solver in which Roe scheme is adopted and is showed in this paper. Table 1 

summarizes the design results at cruise condition. The lift-to-drag ratio is increased by 21.3% 

compared to the initial results. Figure 5-Figure 6 show the aerodynamic characteristic versus angle 

of attack and lift coefficient. Comparison of the framework and geometry before and after optimization 

is given in Figure 7 and Figure 8, in which the red line indicates the initial project. Figure 9-Figure 14 

give the contour if the vehicle before and after optimization. As can be seen from all these results, 

the shock wave moves towards the vehicle after optimization. The optimization is successful. 

Table 1 Optimization results 
 Cl Cd K 

Initial 0.1084 0.03162 3.43 

Optimized 0.1084 0.02603 4.16 

 

  

Figure 5 Lift coefficient comparison 
before and after optimization 

Figure 6 Lift-to-drag comparison before 
and after optimization 
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Figure 7 framework comparison before 
and after optimization 

Figure 8 geometry comparison before 
and after optimization 

 
 

Figure 9 Mach contour of symmetry 
plane before optimization 

Figure 10 Mach contour of symmetry 
plane after optimization 

  

Figure 11  contour before optimization Figure 12 contour after optimization 

  

Figure 13 contour of lower surface 
before optimization 

Figure 14 contour of lower surface after 
optimization 

 

6. Conclusions 

This paper tried to optimize a hypersonic vehicle with discrete adjoint method. Test show that 

this method can be used in hypersonic flow very well. Some detailed work will be done next, including 
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the stricter volume constraint. 

 

Acknowledgments 

This research was supported by a fund of the National Natural Science Foundation 

of China (General Program, 11772266). 

7. Contact Author Email Address 

Su wei: swsuwei@sina.com 

 

8. Copyright Statement 

The authors confirm that they, and/or their company or organization, hold copyright on all of the original material 

included in this paper. The authors also confirm that they have obtained permission, from the copyright holder 

of any third party material included in this paper, to publish it as part of their paper. The authors confirm that 

they give permission, or have obtained permission from the copyright holder of this paper, for the publication 

and distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings. 

 

References 
 

[1] Kline H L and Alonso J J. Adjoint of Generalized Outflow-Based Functionals Applied to Hypersonic Inlet 

Design. AIAA Journal Vol. 55, No. 11,pp 3903-3915, 2017. 

[2] Lin F, Zhonghong G, Kan X, Fang X, A Multi-block Viscous Flow Solver Based on GPU Parallel 

Methodology, Computers & Fluids, 95, pp. 19-39, 2014. 

[3] Brian A L, and Dimitri J M. Parameter Sensitivity Analysis for Hypersonic Viscous Flow using a Discrete 

Adjoint Approach. AIAA 2010-447. 

[4] Nemec M and Zingg D.W. Newton–Krylov Algorithm for Aerodynamic Design Using the Navier–Stokes 

Equations. AIAA Journal,  Vol .40 ,No. 6,pp 1146-1154, 2002. 

[5] Hounjet, M H L. and Meijer, J J. Evaluation of Elastomechanical and Aerodynamic Data Transfer 

Methods for Nonplanar Configurations in Computational Aeroelastic Analysis, Proceedings International 

Forum on Aeroelasticity and Structural Dynamics, Manchester, UK,1995. 

[6] Yingtao Z, Gang C, Yueming L and Zhenghong G. Efficient Aeroelastic Design Optimization Based on 

the Discrete Adjoint Method. Transactions of The Japan Society for Aeronautical and Space 

Sciences,Vol.57, pp 343-351,2014. 

[7] Sederberg T W., Parry S R. Freeform Deformation of Solid Geometric Models, Computer Graphics, 
vol.22, no. 4, pp.151-160, 1986. 

[8] Krause E, Henze A. Recent progress in hypersonic: The ELAC Configuration, Pro. of the second 
European Symposium on Aerothermodynamics for Space Vehicles, 567-573, 1994. 

 

 


