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Abstract 

The high angle-of-attack region has become more accessible to modern aircraft due to advanced 
aerodynamic design giving improved control authority.  In this regime, flow conditions change rapidly and flow 
separation and vortex breakdown can occur.  At the same time, rapid angular rates will influence the flow 
state as well.  Therefore, classical linear steady models are not suitable under these conditions, which 
increases the challenge in evaluating the overall stability and performance of aircraft.  In this paper, a 
nonlinear mathematical modeling method based on the Goman-Khrabrov approach is used to capture aircraft 
aerodynamic characteristics influenced by unsteady phenomena such as flow separation. Bifurcation analysis 
of the resulting state-space system is proposed as a means of evaluating and interpreting the model.  It is 
intended that, through this analysis method, phenomena such as limit cycle oscillations observed in wind 
tunnel tests can be explained. Experimental results from wind tunnel tests using the University of Bristol multi-
degree-of-freedom ‘maneuver rig’ are used as a test case for this method.  It is shown that the combination of 
a Goman-Khrabrov formulation and bifurcation analysis can be effective in developing models for predicting 
the stability of aircraft in the high angle-of-attack region or during rapid maneuvers. 
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1. Introduction 
Modern aircraft have high maneuver capabilities, and often fly at high angles-of-attack. However, 
wider flight envelopes and increased maneuverability bring new challenges to aerodynamic modeling, 
aircraft control and performance evaluation. For instance, because the flow condition changes 
rapidly, which is not only affected by incidence angle but also rotation rate, the aerodynamic model is 
not only nonlinear but also unsteady. These aerodynamic characteristics cause some unusual 
phenomena, such as multiple steady-state solutions, instabilities and oscillations. Examples of this 
behavior can be observed in wind tunnel tests, an example of which is the uncommanded pitching 
oscillations observed through dynamic testing of a model similar to a BAe Hawk trainer[1, 2]. This 
oscillatory phenomenon, characterized as a limit cycle oscillation (LCO), is an inherent dynamic 
feature of the aircraft dynamics under unsteady flow conditions. Note that this kind of limit oscillation 
of aircraft cannot be observed in a static wind tunnel test, a similar restriction arises in static 
numerical calculations. However such a response can be dangerous in an actual aircraft: large 
amplitude LCO could cause upset and even loss-of-control which remains the largest contributor to 
fatalities in civil aircraft accidents[2-5]. In the past, few aircraft models have included this operational 
region, those for highly maneuverable aircraft have flight at the high incidence nonlinear region but 
have not captured true time-dependency in flow phenomena.  Nowadays, with the expansion of flight 
envelopes, including consideration of airliner loss-of-control, this is even more relevant. So there is a 
keen demand for researching unstable high angle of attack/high maneuver rate phenomena, 
predicting them and devising means of avoiding them. 
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As mentioned above, uncommanded pitching oscillations would not be observed in traditional wind 
tunnel experiments, to address this, special rigs are designed to physically simulate wind tunnel 
model motions allowing them to capture LCO and other responses. In the early 2000s, nonlinear 
behavior and limit cycle regions were observed through a pilot rig tested at the University of Bristol 
UK[1,2]. This focused on developing a control law to reduce or eliminate the LCO. At that time, the rig 
was a pendulum support system[6] - model mounted via a 2-degree-of-freedom (DOF) gimbal to the 
end of a pendulum arm suspended from above on a 3-DOF gimbal - and the modeling method 
devised for the control study wasn't generalized to different types of  aircrafts. 
The pendulum support rig was superseded by what is referred to as the ‘maneuver rig’: effectively a 
horizontal pendulum-based gimballed mechanism intended to allow a wider envelope of aircraft 
model maneuvers. Here too, unstable pitch motion of the same model can be observed[7-10]. To 
interpret this unstable characteristic, wind tunnel technology, aerodynamic mathematical concepts, 
parameter estimation techniques and bifurcation analysis can be combined to improve insight into 
the observed phenomena. In 2013, Pattinson used a two-point dynamic stall longitudinal model to 
depict the features of the high angle-of-attack region; bifurcation analysis was used to verify these 
methods in terms of parameter dependency of the nonlinear behavior [9]. The two-point modeling 
was based on the geometry of the sub-scale aircraft. Despite some success in identifying an 
unsteady model, there remained difficulties in specifying time characteristics for the system. This 
work demonstrated the validity of applying the Goman-Khrabrov (G-K) model[12] and, to some extent, 
the value of bifurcation analysis in informing the approach. 
In order to understand aircraft dynamic features, other researchers also conducted dynamic wind 
tunnel tests based on different dynamic rigs. Rajamurthy built a single dynamic experimental setup 
to obtain comprehensive longitudinal aerodynamic data in the form of trim lift characteristics, 
dynamic stability derivatives, neutral point, and large-amplitude lift and pitching moment responses 
[13]; Peyada and Ghosh developed a parameter estimation method based on a wind tunnel device 
which is similar to the maneuver rig[14]; and descriptions of the dynamic wind tunnel facilities at 
NASA LaRC can be found in [15]. 
In terms of the Goman-Khrabrov model, it has been shown to be an effective method to represent 
unsteady characteristics e.g. modified indicial response method in conjunction with internal state-
space was proposed by Huang for free-to-roll trajectory prediction[16], Williams used this method for 
pitching airfoil flow control[17], Fischenberg adopted this method to identify an unsteady 
aerodynamic stall model for the C-160 and VFW-614 ATTAS aircraft[18]. Other applications and 
transformation of the G-K model can be seen in [19-26]. Such applications of the G-K model 
demonstrate its ability to capture and predict aircraft upset phenomena. In this paper, further 
applications of the G-K model are investigated with an emphasis on extending the use of bifurcation 
analysis to fit the model parameters.  Extensive use is made of longitudinal limit cycle oscillation 
data for an approximate BAe Hawk model measured by the University of Bristol ‘maneuver rig’. 
The paper is structured as follows. In Sec. II the maneuver rig for dynamic wind tunnel testing is 
briefly presented. Sec. III introduces the G-K mathematical modeling method for unsteady and 
nonlinear characteristics of aircraft at high angles-of-attack. Nonlinear and unsteady modeling 
results for the BAe Hawk aircraft model are derived, with the adopted approach to identifying the 
time character parameters explained in Sec. IV. The techniques of continuation and bifurcation 
analysis are used to replicate the LCO which is observed through wind tunnel tests, and the 
analysis results are given in Sec. V. This is followed by the conclusions and outlook for the 
proposed modelling methodology. 

2. The Maneuver Rig 
There are many theoretical and experimental methods to determine the flight characteristics of a 
new aircraft, such as various wind tunnel experimental techniques, empirical computational 
methods, computational fluid dynamics (CFD) methods, and finally flight test itself [8, 9, 15, 16, 25]. Each 
of these methods has its own advantages and disadvantages. But no matter how advanced a 
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calculation method is, there is still a need to verify the results and often the requirement to gain 
insight into physical flight mechanics phenomena, through wind tunnel test. 
For deriving flight mechanics data for controllability and dynamic stability evaluation, a wide variety 
of dynamic rig configurations have been explored.  Essentially, dynamic wind tunnel rigs can be 
classified into three categories: forced-motion rigs, free-flying wind tunnel models, and free-motion 
rigs, in which some degrees of freedom are restricted[7, 13, 15].  Forced-motion rigs are regarded as 
industry-standard dynamic rigs.  However, because the model is moved with fixed control surfaces, 
the forces differ from those generated in real flight; it is therefore useful to allow some degree of 
unconstrained motion in order to gain more understanding of dynamic loads on a model[6, 7, 13, 15]. 
The pendulum support rig developed approximately 15 years ago at the University of Bristol[4] 
suffered limitations including inadequate  heave motion and the new maneuver rig was designed to 
overcome these defects[7, 8]. The layout was conceived by Goman and implemented and developed 
at the University of Bristol.  It incorporates an aircraft model mounted via a 3-DOF gimbal (providing 
model roll, pitch and yaw) on an arm that is supported via another 3-DOF gimbal (allowing arm roll, 
pitch and yaw) on a rigid vertical sting mounted below the tunnel floor. An aerodynamic 
compensator is fixed to the rear of the arm, comprising a set of wings with flapped symmetric airfoil 
surfaces in a cruciform configuration. The aircraft model and the compensator control surfaces are 
actuated. Both gimbals can be locked in 1, 2 or all DOFs, giving a variety of possible testing 
conditions[5]. Although up to six rig DOF are available, the maximum number of aircraft model DOFs 
is five: both gimbals provide components of roll, while there is no unconstrained fore-aft DOF. 
The initial design was subsequently enhanced (extra degree of freedom in the aircraft model-
mounted gimbal, giving 6 gimbal degrees of freedom in total, and revised electronics that allowed 
for improved data acquisition and both model and rig control)[25, 26]. Model angles, compensator and 
model control surface deflections and outputs from a model-mounted inertial measurement unit are 
transmitted wirelessly to a data acquisition PC outside the tunnel; a wired connection is used to 
transmit the encoder measurements of rig arm angles. The multi-DOF nature of the testing that can 
be carried out on the rig allows acquisition of data for identification of aerodynamic models 
formulated to account for time-dependant dynamics, such as the longitudinal and lateral-directional 
manifestation of effects of aerodynamic hysteresis[28]. 
 The experimental data used in this paper are obtained from the most recent update to the 
maneuver rig at the University of Bristol in which a load cell is incorporated just below the model 
gimbal. It measures forces and moments with respect to all three axes. As with other 
instrumentation on the aircraft model and rig, it transmits signals wirelessly to the data acquisition 
PC. Although the loads are not directly measured at the aircraft gimbal centre – which is usually 
also the centre of gravity (C.G.) – the measurements can be transformed to calculate the loads at 
the C.G. 
Figure. 1 is a schematic diagram of the rig showing vertical sting, the locations of the two gimbals 
and the aircraft model and aerodynamic compensator, and indicating the degrees of freedom. 
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Figure 1 – the maneuver rig, 6-DOF (adapted from [8]) 
When the aircraft model generates sufficient lift to overcome the inertia of the arm it will begin to 
move; mass and/or aerodynamic balancing (using the compensator control surfaces) can be used to 
facilitate this[8]. In the absence of any compensation, movements of the arm would be influenced by 
the rig arm inertial properties, which is undesirable. Therefore, the function of the compensator is to 
attempt to compensate for the inertia and static forces generated by the mass of the arm (and other 
moving parts)[8, 10]; it can also be used to compensate for the lift and side force of the air vehicle to 
place it as appropriate in the tunnel, and for ‘kinematic compensation’ to match the motions more 
closely with an unconstrained model[11]. 

 

Figure 2 – Maneuver rig mounted in the open-jet section wind tunnel[5] 
Figure.2 depicts the maneuver rig with the approximate Hawk model mounted in the University of 
Bristol’s open-jet wind tunnel. The safety cable system attached to the rear of the arm is used to 
prevent the rig encountering dangerously large excursions [8]. The main geometric characteristics of 
Hawk model are given in Table 1. 

Table 1 – Summary of Hawk model's geometric characteristics. 
Physical parameter Hawk model 

Mean aerodynamic chord 0.143 m 
Wing span 0.594 m 

Mass 1.970 kg 

3. Nonlinear Unsteady Modeling 
A state-space representation of nonlinear unsteady aerodynamics was proposed by Goman & 
Khrabrov (1994), and has become a seminal work in the field of modeling unsteady aerodynamic 
behaviour Classical linear models are sufficiently accurate for attached flows but not under 
conditions where separated and vortex flow has developed [12]. The values of unsteady derivatives 
are strongly
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 dependent on the amplitude and frequency of aircraft oscillations, leading Goman & Khrabrov to 
introduce internal variables for describing the state of the flow. The resulting first- order differential 
equations describing the unsteady aerodynamics are convenient for flight dynamics applications as 
their form is simple and they can easily be appended to the aircraft motion equations[10, 12, 25]. This 
method is meaningful for aircraft stability analysis, since the state is an important concept for the 
description of dynamical systems. Thus the equations of motion of the aircraft include the dynamics 
of the unsteady flow representation and can be written as follows[12]: 

𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

= 𝒇𝒇(𝒙𝒙,𝒉𝒉);𝑪𝑪 = 𝒈𝒈(𝒙𝒙,𝒉𝒉) 
(1) 

Here 𝑥𝑥 is a vector that approximately describes the state of separated and vortex flow of a wing. It is 
nondimensionalized 𝑥𝑥 ∈ [0,1]  where 𝑥𝑥 = 1  corresponds to fully attached flow ，  while 𝑥𝑥 = 0 
corresponds to leading-edge separation.  The ℎ vector contains the system inputs. The Hawk is a 
traditional configuration aircraft, so the airfoil has a sufficient thickness for the development of flow 
separation in the vicinity of the trailing edge. Wind tunnel test data and CFD results of the Hawk 
model showed that, the aerodynamics properties of these phenomena can be described in a similar 
way. For this, it is reasonable to use this model as the simplest approximation for the full aircraft, that 
is, that we can still use a similar approach for describing the aerodynamic characteristics of the 
Hawk at high angles of attack. Note that in this case the 𝑥𝑥 does not corresponding to an exactly flow 
separation point any more, it become a generalized internal state variable which would not have the 
definite physical meaning. At first it is important to obtain the relations between the aircraft 
aerodynamic coefficients and the input parameters: the angle of attack 𝛼𝛼 and the internal variable 𝑥𝑥 
[12]. From Gurevitch[29], the expression for the airfoil (with trailing-edge separation) nonlinear lift 
coefficient can be written as follows: 

𝑪𝑪𝑳𝑳,𝒎𝒎
𝒏𝒏𝒏𝒏 (𝜶𝜶,𝒙𝒙) =  𝒂𝒂𝟏𝟏 ��𝒂𝒂𝟐𝟐 + �𝒙𝒙 − 𝒂𝒂𝟑𝟑�

𝟐𝟐
+ 𝒂𝒂𝟒𝟒� 𝐬𝐬𝐬𝐬𝐬𝐬𝜶𝜶 + 𝒂𝒂𝟓𝟓 (2) 

The steady flow separation position is expressed as 
𝒙𝒙𝟎𝟎 =  𝒃𝒃𝟏𝟏 tan−𝟏𝟏(𝜶𝜶 − 𝒃𝒃𝟐𝟐) + 𝒃𝒃𝟑𝟑 (3) 

with the steady lift and moment coefficients given: 
𝑪𝑪𝑳𝑳,𝒎𝒎
𝒔𝒔𝒔𝒔 (𝜶𝜶) =  𝑪𝑪𝑳𝑳,𝒎𝒎

𝒔𝒔𝒔𝒔 [𝜶𝜶,𝒙𝒙𝟎𝟎(𝜶𝜶)] (4) 
The 𝑥𝑥0 will cause stall at high angles-of-attack region. 
Equation (4) defines the steady situation, i.e. the steady coefficient value in the absence of dynamics.  
An expression for the relationship in equation (4) can be obtained from static experiments or static 
calculations.  Equations (2)-(4) are used here to describe the whole aircraft aerodynamic features, in 
which case x  is a ‘generalized internal state variable’: it has no definite physical meaning but 
attempts to capture the dynamical properties associated with separation and/or vortex breakdown 
phenomena over the aircraft [11]. The unsteady aerodynamics of the approximate Hawk model are 
dominated by wing separation so that we retain the terminology adopted above for the airfoil 
modelling. 
CFD or static wind tunnel test could produce steady aerodynamic data.  Not only dynamic but also 
steady feature could be got from Maneuver rig, so it's more actuate to carry on dynamic analysis 
based on the data from the same wind tunnel facility.  Through nonlinear aerodynamic modeling 
process, parameters 𝑎𝑎1~𝑎𝑎5 and 𝑏𝑏1~𝑏𝑏3in equation (2) and (3) can be determined.  Note that equation 
(2) includes variable𝑥𝑥, so the parameters in (2) and (3) should be estimated at the same time.  
Furthermore, in order to let the pitching moment coefficient curve has positive slope, the reference 
point has been transferred from C.G. of vehicle to horizontal tail direction, so that we could use the 
similar model structure to formula (2). 
For unsteady flows the aerodynamic loads on an airfoil will depend on the current value of the angle 
of attack 𝛼𝛼(𝑡𝑡) and instantaneous separation point position 𝑥𝑥(𝑡𝑡) , which can differ considerably from 
its stationary value [12, 15]. The flow phenomena causing these differences can be divided into two 
groups. The first represents the quasi-steady effects (circulation and boundary layer convection lags 
as well as the so-called boundary layer improvement effect) which govern flow separation and 
reattachment; their combined effect is modelled via a delay on the quasi-steady position of the 
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separation point that is considered to be proportional to 𝛼̇𝛼. The second group of flow phenomena 
defines the dynamic properties of the separated flow adjustment – the transient aerodynamics 
effects: these flow relaxation dynamics are represented by a 1st-order differential equation. Therefore, 
the movement of the separation point for unsteady flow conditions[12, 19] can be described by: 

𝝉𝝉𝟏𝟏
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

+ 𝒙𝒙 = 𝒙𝒙𝟎𝟎(𝜶𝜶 − 𝝉𝝉𝟐𝟐𝜶̇𝜶) 
(5) 

Where 𝜏𝜏1 is the relaxation time constant governing the dynamic response (this parameter describes 
the decay of flow separation) and 𝜏𝜏2 is a time lag parameter, incorporating quasi-steady effects (this 
parameter describes the start time of separation or reattachment affected by unsteady motion). 
Essentially, 𝜏𝜏1describes inherent features of an aircraft and 𝜏𝜏2 is related to its motion. 
The closed mathematical model of aerodynamic lift coefficient for longitudinal motion is written as: 

�
𝑪𝑪𝑳𝑳 = 𝑪𝑪𝑳𝑳𝒏𝒏𝒏𝒏(𝜶𝜶,𝒙𝒙) + 𝑪𝑪𝑳𝑳,𝒒𝒒

𝒂𝒂𝒂𝒂𝒕𝒕 𝒒𝒒𝒒𝒒
𝑽𝑽

+ 𝑪𝑪𝑳𝑳,𝜶̇𝜶
𝒂𝒂𝒂𝒂𝒂𝒂 𝜶̇𝜶𝒄𝒄

𝑽𝑽

𝝉𝝉𝟏𝟏
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

+ 𝒙𝒙 = 𝒙𝒙𝟎𝟎(𝜶𝜶 − 𝝉𝝉𝟐𝟐𝜶̇𝜶)
 

(6) 

The features of the mathematical model are illustrated in Figures. 3 and 4 for the parameters 
generated for the approximate Hawk. The effect of ramp motion on flow separation position is shown 
in Figure. 3, where  the black solid line defines the steady dependency 𝑥𝑥0(𝛼𝛼) ; the blue lines show 
the variations of the separation point position for ramp motion with𝛼̇𝛼 > 0, the blue dashed line 
representing 𝛼̇𝛼 = 5𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 and blue dashed-dot line𝛼̇𝛼 = 15𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠; the red lines show the variations of 
the separation point position for ramp motions with𝛼̇𝛼 < 0, with the red dashed line denoting 𝛼̇𝛼 =
−5𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠  and red dashed dot-line 𝛼̇𝛼 = −15𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 . When 𝛼̇𝛼 > 0 , unsteady effects postpone flow 
separation, and 𝛼̇𝛼 < 0 postpones flow reattachment. Delay distance increases along with absolute 
value of𝛼̇𝛼. 
The appropriate variations of the lift coefficient with overshoot (𝛼̇𝛼 > 0) and undershoot (𝛼̇𝛼 < 0) are 
shown in the Figure. 4. Here, the black solid line expresses the steady lift coefficient; the dashed 
blue lines show the variations of lift coefficient for ramp motions with 𝛼̇𝛼 > 0  (blue solid line 
represents𝛼̇𝛼 = 10𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠, blue dashed line 𝛼̇𝛼 = 20𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 and blue dashed-dot line𝛼̇𝛼 = 30𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠); the 
red lines show the variations of lift coefficient for ramp motions with 𝛼̇𝛼 < 0 (red solid line denotes𝛼̇𝛼 =
−10𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 , red dashed line 𝛼̇𝛼 = −20𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠  and red dashed-dot line 𝛼̇𝛼 = −30𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 ). When 𝛼̇𝛼 > 0 , 
unsteady effects postpone flow separation, and 𝛼̇𝛼 < 0 postpones flow reattachment. The green solid 
line represents the lift coefficient variation without "separation" (𝑥𝑥 = 1), and the green dashed line 
denotes lift coefficient value with total "separation" (𝑥𝑥 = 0).  So the real lift value with "separation" 
effect will vary between the 𝑥𝑥 = 0 and the 𝑥𝑥 = 1 lines. 

 
 

Figure 3 – Steady and unsteady separation 
point variation with α for Hawk model. 

Figure 4 –Steady and unsteady lift coefficient of 
Hawk with trailing-edge separation 

 

Similar characteristics can be achieved for the pitching moment coefficient. Thus, the mathematical 
model in the form of equations (2-4) and (6) are adopted to describe the main features of the 
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aerodynamics for both the lift and pitch moment observed in wind tunnel experiments.  This 
mathematical model contains an unknown function𝑥𝑥0(𝛼𝛼), and two unknown parameters, 𝜏𝜏1and𝜏𝜏2, 
which need to be defined from the steady and unsteady experimental data[12, 19]. The effect of ramp 
rate can be observed in Figures. 3 and 4.  Time characteristics 𝜏𝜏1 and 𝜏𝜏2 have similar effects on 
aerodynamic coefficients, i.e. to postpone flow separation and reattachment. 
Figure. 5 compares the variation with angle of attack of the modelled steady aerodynamic 
coefficients with the experimental data. The model matches the wind tunnel data satisfactorily in all 
three cases – lift, pitching moment and drag coefficients.  From this diagram, the static flow 
separation process can be observed in the form of aerodynamic stall. For the drag coefficient, a 
polynomial representation is adopted, capturing the static variation with 𝛼𝛼, as this provides sufficient 
accuracy for subsequent analysis. 

 

Figure 5 – Experimental and model lift, drag and pitching moment coefficients for Hawk model 
(V=30m/s) 

4. Time Character Parameter Estimates 
As mentioned above, the next step is to define the time character parameters, 𝜏𝜏1 and 𝜏𝜏2. 
For the case of small amplitude forced oscillations, equations (6) can be used in the linearized 
form[12]. First, the right side of (6.b) is expanded with respect to 𝛼𝛼 by using a 1st-order Taylor series: 

𝑥𝑥0(𝛼𝛼 − 𝜏𝜏2𝛼̇𝛼) = 𝑥𝑥0(𝛼𝛼) + 𝑥𝑥0`(𝛼𝛼)(−𝜏𝜏2𝛼̇𝛼) (7) 
We define 

𝜉𝜉 = 𝑥𝑥 − 𝑥𝑥0(𝛼𝛼), 𝑜𝑜𝑜𝑜 𝑥𝑥 = 𝜉𝜉 + 𝑥𝑥0(𝛼𝛼) (8) 
Substitute (7) and (8) into (6.b), which can then be written as: 

𝜏𝜏1
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜉𝜉 = −(𝜏𝜏1 + 𝜏𝜏2)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝛼̇𝛼 
(9) 

Resorting to operator form 
𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = 𝑠𝑠 (10) 

then equation (9) can be written as: 

𝜉𝜉 = −
(𝜏𝜏1 + 𝜏𝜏2)
(𝜏𝜏1𝑠𝑠 + 1)

𝑑𝑑𝑥𝑥0
𝑑𝑑𝑑𝑑

𝛼̇𝛼 
(11) 

Second, (6.a) is expanded at (𝛼𝛼0, 𝑥𝑥0) by using a Taylor series： 

𝐶𝐶𝐿𝐿𝑛𝑛𝑛𝑛(𝛼𝛼, 𝑥𝑥) = 𝐶𝐶𝐿𝐿𝑛𝑛𝑛𝑛(𝛼𝛼0, 𝑥𝑥0) + �
𝜕𝜕𝐶𝐶𝐿𝐿𝑛𝑛𝑛𝑛

𝜕𝜕𝜕𝜕
(𝛼𝛼 − 𝛼𝛼0) +

𝜕𝜕𝐶𝐶𝐿𝐿𝑛𝑛𝑛𝑛

𝜕𝜕𝜕𝜕
(𝑥𝑥 − 𝑥𝑥0)� + 𝐶𝐶𝐿𝐿𝐿𝐿

𝑞𝑞𝑞𝑞
𝑉𝑉

+ 𝐶𝐶𝐿𝐿𝛼̇𝛼
𝛼̇𝛼𝑐𝑐
𝑉𝑉

 
(12) 

For harmonic pitching oscillations, angle of attack changes as follows [29]:   

α(°)

C
L
,C

m
,C

D

-5 0 5 10 15 20 25-0.5
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�
𝛼𝛼 = 𝛼𝛼0 − 𝛼𝛼𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔 𝜏𝜏
𝛼̇𝛼 = 𝛼𝛼𝑠𝑠𝜔𝜔 𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔 𝜏𝜏
𝛼̈𝛼 = 𝛼𝛼𝑠𝑠𝜔𝜔2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔 𝜏𝜏

 
(13) 

Substitute 𝑥𝑥 − 𝑥𝑥0 = 𝜉𝜉 and 𝛼𝛼 − 𝛼𝛼0 = −𝛼𝛼𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔 𝜏𝜏into (12) to obtain:
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Time Character Parameter Estimates 

 

 

 
𝐶𝐶𝐿𝐿𝑛𝑛𝑛𝑛(𝛼𝛼, 𝑥𝑥) = 𝑎𝑎1(𝑎𝑎2 + �𝑎𝑎2 + 𝑥𝑥0)2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼0 + 𝑎𝑎1(𝑎𝑎2 + �𝑎𝑎3 + 𝑥𝑥0)2 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼0 (𝛼𝛼𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔 𝑡𝑡) 

+(𝑎𝑎1
(𝑎𝑎2 + �𝑎𝑎3 + 𝑥𝑥0)

�𝑎𝑎2 + 𝑥𝑥0
(−

𝜏𝜏1 + 𝜏𝜏2
𝜏𝜏1𝑠𝑠 + 1

𝑑𝑑𝑥𝑥0
𝑑𝑑𝑑𝑑

) 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼0 + 𝐶𝐶𝐿𝐿𝐿𝐿
𝑓𝑓𝑓𝑓 𝑐𝑐
𝑉𝑉

)(𝛼𝛼𝑠𝑠𝜔𝜔 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔 𝑡𝑡) 

(14) 

Meanwhile, for harmonic oscillations, the aerodynamic coefficient can be written as follows: 
𝐶𝐶𝐿𝐿𝑛𝑛𝑛𝑛(𝛼𝛼, 𝑥𝑥) = (𝐶𝐶𝐿𝐿0𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐿𝐿𝐿𝐿

𝑓𝑓𝑓𝑓𝛼𝛼 + 𝐶𝐶𝐿𝐿𝛼̇𝛼
𝑓𝑓𝑓𝑓𝛼̇𝛼) (15) 

And by comparison of similar (𝜏𝜏1𝑠𝑠 + 1) components in eqns. (14) and (15), the relations between 
dynamic derivatives and time characteristics can be derived: 

⎩
⎪
⎨

⎪
⎧𝐶𝐶𝐿𝐿𝛼̇𝛼

𝑓𝑓𝑓𝑓 = −�𝑎𝑎1
(𝑎𝑎2 + �𝑥𝑥0 + 𝑎𝑎3)

�𝑥𝑥0 + 𝑎𝑎3
𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼0�

(𝜏𝜏1 + 𝜏𝜏2)
1 + 𝜏𝜏12𝜔𝜔2

𝑑𝑑𝑥𝑥0
𝑑𝑑𝑑𝑑

𝐶𝐶𝐿𝐿𝐿𝐿
𝑓𝑓𝑓𝑓 = 𝑎𝑎1�(𝑎𝑎2 + �𝑥𝑥0 + 𝑎𝑎3)2 + 𝑎𝑎4� 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼0 − �𝑎𝑎1

(𝑎𝑎2 + �𝑥𝑥0 + 𝑎𝑎3)

�𝑥𝑥0 + 𝑎𝑎3
𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼0�

(𝜏𝜏1 + 𝜏𝜏2)𝜏𝜏1𝜔𝜔2

1 + 𝜏𝜏12𝜔𝜔2
𝑑𝑑𝑥𝑥0
𝑑𝑑𝑑𝑑

 

(16) 

Since the relations have been determined through equation derivation, the next step is to obtain the 
value of dynamic derivatives 𝐶𝐶𝐿𝐿𝛼̇𝛼

𝑓𝑓𝑓𝑓and 𝐶𝐶𝐿𝐿𝐿𝐿
𝑓𝑓𝑓𝑓. 

Static aerodynamic derivatives obtained from static wind tunnel testing can yield the dominant 
characteristics of the aircraft motion about trim conditions. Meanwhile, the damping derivatives are 
required for accurately describing maneuver flight, especially at stall and post-stall angles-of-attack 
region. Therefore, forced dynamic wind tunnel experiments are used to determine damping 
derivatives. Traditional forced oscillation is not feasible on the maneuver rig although two alternative 
forced oscillation approaches can be implemented: forced oscillation induced by the model control 
surface actuators and oscillations forced by the compensator control surfaces.  It is also possible to 
induce free oscillations. For the first alternative method, the model is configured on the rig with one 
degree of freedom (pitch) and a sine trigonometric-function voltage signal was transmitted to 
longitudinal actuator, i.e. elevator (for the Hawk this is an all moving horizontal tail) through the 
wireless data transmission setup. The horizontal tail deflection then has approximately the same 
amplitude and frequency as the input signal. Dynamic characteristic of the model response with this 
signal input were recorded over a few periods of motion and dynamic derivatives extracted from the 
measured data in the usual manner. Note that the oscillation frequency is normalized into the 
dimensionless similarity parameter (reduced frequency) [30-33] : 𝑘𝑘 = 𝜋𝜋𝜋𝜋𝜋𝜋 𝑉𝑉⁄  
This is typically done in order to ensure equivalence to a full-scale air vehicle, with the actual wind 
tunnel test frequency determined accordingly. For small scale models, dynamic wind tunnel 
experiments must meet higher frequency requirements than in full scale and the equipment must be 
capable of achieving adequate measurement accuracy under these conditions.  Whilst the maneuver 
rig equipment does meet these forced oscillation test requirements, the values of 𝜏𝜏1and 𝜏𝜏2have been 
deduced here through an alternative approach, namely from experiments in which the motions are 
obtained via limit cycle oscillations. The initial values of 𝜏𝜏1and 𝜏𝜏2 were based on past experience with 
the model data. The genetic algorithm combined with the bifurcation analysis plot can be used to 
identify model parameters. First, the two time constants 𝜏𝜏1and 𝜏𝜏2  are looked as variables to be 
optimized. Then the results of the bifurcation analysis and the wind tunnel test will be as consistent 
as possible through the given coding strategy and the genetic strategy, i.e. the error between the 
results will get smaller as the progress of the genetic algorithm. From observing wind tunnel test 
results, we found there are four key points: limit cycle starting point, ending point and a pair of 'jump' 
points respectively. To some extent, the characteristics of the limit cycle will be determined by these 
points. For this reason, the objective function is defined to minimize the sum of the squares of the 
offsets of the points between experimental results and bifurcation analysis results. In the numerical 
simulation, the initial population size is set to 10. Then the optimal time constants which are 𝜏𝜏1 =
42.2 , 𝜏𝜏2 = 3.15 respectively , are obtained after 50 generations of genetic optimization
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5. Bifurcation Analysis 
A numerical continuation package was used to find the bifurcation diagram of the numerical model. 
Bifurcation analysis is a powerful method for studying steady-state nonlinear dynamic systems. 
Software tools make it possible to generate ‘maps of solutions’ in an efficient way that provide 
valuable insight into the overall dynamic behaviour of a system[34] . Since an aircraft system is a 
typical dynamic system, the application of bifurcation analysis has already been employed in some 
aircraft studies. In this section, this tool will be used to analyse dynamic characteristics of the Hawk 
model, with the aerodynamic models built in sections III and IV. Matlab COCO[35] is the numerical 
continuation software adopted in this study. 
When investigating stability and control, handling qualities and performance issues, the aircraft is 
usually considered as a rigid-body six degree-of-freedom system in which the inertial reference is a 
point on a non-rotating earth axes[35-37]. For stability and control studies, the position and heading 
angle relative to the Earth can be ignored, and height may be regarded as constant[37]. This yields an 
8th order system and equations (17) are a typical form of flight dynamics equations used for stability 
and control studies. The eight first-order ordinary differential equations relate forces and moments to 
aircraft motion and orientation[37, 40]. Because lateral and directional freedom were locked in the test, 
and unsteady effect was take into account, so the 8th order equations become 3th order, 
equations(18). 

𝑉̇𝑉 =
1
𝑚𝑚
�𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 − 𝑞̄𝑞𝑆𝑆(𝐶𝐶𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 − 𝐶𝐶𝑌𝑌 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽)
−𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾 � 

𝛼̇𝛼 = 𝑞𝑞 −
1

𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽
�
(𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 + 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼) 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽

−
𝑔𝑔
𝑉𝑉
𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 𝑐𝑐𝑐𝑐𝑐𝑐 𝜇𝜇 +

𝑞̄𝑞𝑆𝑆𝐶𝐶𝐿𝐿
𝑚𝑚𝑚𝑚

+
𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼
𝑚𝑚𝑚𝑚

� 

𝛽̇𝛽 = (𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 − 𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼) + 
1
𝑚𝑚𝑚𝑚

�−𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽 +
𝑞̄𝑞𝑆𝑆(𝐶𝐶𝑌𝑌 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 + 𝐶𝐶𝐷𝐷 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽) + 𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇� 

𝑝̇𝑝 =
1

2𝐼𝐼𝑥𝑥𝑥𝑥
𝜌𝜌𝑉𝑉2𝑆𝑆𝑆𝑆𝐶𝐶𝑙𝑙 + (

𝐼𝐼𝑦𝑦𝑦𝑦 − 𝐼𝐼𝑧𝑧𝑧𝑧
𝐼𝐼𝑥𝑥𝑥𝑥

)𝑞𝑞𝑞𝑞 

𝑞̇𝑞 =
1

2𝐼𝐼𝑦𝑦𝑦𝑦
𝜌𝜌𝑉𝑉2𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚 + (

𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑦𝑦𝑦𝑦

)𝑝𝑝𝑝𝑝 

𝑟̇𝑟 =
1

2𝐼𝐼𝑧𝑧𝑧𝑧
𝜌𝜌𝑉𝑉2𝑆𝑆𝑆𝑆𝐶𝐶𝑛𝑛 + (

𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑦𝑦𝑦𝑦
𝐼𝐼𝑧𝑧𝑧𝑧

)𝑝𝑝𝑝𝑝 

𝜙̇𝜙 = 𝑝𝑝 + 𝑞𝑞 𝑠𝑠𝑠𝑠𝑠𝑠 𝜙𝜙 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃 + 𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃 
𝜃̇𝜃 = 𝑞𝑞 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 − 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠 𝜙𝜙 

(17) 

𝛼̇𝛼 = 𝑞𝑞 −
1

𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽
�
(𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 + 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼) 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽

−
𝑔𝑔
𝑉𝑉
𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 𝑐𝑐𝑐𝑐𝑐𝑐 𝜇𝜇 +

𝑞̄𝑞𝑆𝑆𝐶𝐶𝐿𝐿
𝑚𝑚𝑚𝑚

+
𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼
𝑚𝑚𝑚𝑚

� 

𝑞̇𝑞 =
1

2𝐼𝐼𝑦𝑦𝑦𝑦
𝜌𝜌𝑉𝑉2𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚 + (

𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑦𝑦𝑦𝑦

)𝑝𝑝𝑝𝑝 

𝑥̇𝑥 =  (𝑥𝑥0(𝛼𝛼 − 𝜏𝜏2𝛼̇𝛼) − 𝑥𝑥) 𝜏𝜏1⁄  

(18) 

For stability analysis, parametric continuation methods are used to solve the equations numerically 
for their steady states – equilibria and limit cycles – and associated local stability.  The solutions are 
usually presented as bifurcation diagrams and it is possible to present experimental results in this 
form too (although only stable steady states are available from conventional testing). 
 
A 1-DOF (model pitch) longitudinal experiment is first conducted in the wind tunnel (model yaw and 
roll gimbal axes locked and rig arm gimbal locked in all axes). The test is carried out at a wind speed 
of 30𝑚𝑚 𝑠𝑠⁄ . Figure. 6 shows a one-parameter bifurcation diagram extracted from time histories; it 
depicts equilibria and estimated minima and maxima of limit cycle steady states in the model-pitch 
angle 𝜃𝜃𝑚𝑚 projection and with the elevator input 𝛿𝛿𝑒𝑒. Note that 𝜃𝜃𝑚𝑚 is equivalent to 𝛼𝛼𝑚𝑚 in this 1-DOF test, 
and that the minima and maxima of the limit cycle amplitudes are estimated by extracting data for 
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which |𝛼̇𝛼| is close to zero. The initial condition for this test is 𝛿𝛿𝑒𝑒 = −1. 6∘,𝛼𝛼 = 5. 0∘, and𝑞𝑞 =  0.0° 𝑠𝑠⁄ , 
corresponding to a trim condition. In this process, elevator changes from the initial value to a final 
value (𝛿𝛿𝑒𝑒 = −29∘) then back, with a very slow rate of change of elevator. This allows the test results 
to be considered as quasi-steady. 
Figure. 6 shows that limit cycles occur in the region delimited by −11∘ < 𝛿𝛿𝑒𝑒 < −23∘ . In order to 
observe the limit cycle responses more clearly, Figure.7 shows the limit cycle phase portrait with 
different elevator inputs. This demonstrates that these motions are indeed limit cycle oscillations. 

  
Figure 6 –1-DOF Hawk model pitch smoothed 

experimental bifurcation diagram at a wind 
speed of 30m/s. 

Figure 7 –1-DOF aircraft model pitch limit cycle 
phase portraits 

The LCO regions occur at moderate to high 𝛼𝛼. A clear difference in the aircraft pitch angle response 
can be observed when comparing the plot corresponding to the model pitching up motion (red line) 
with the one corresponding to the aircraft model pitching down motion (blue line). This difference in 
response could be indicative of flow detachment over the wing and is an example of aerodynamic 
hysteretic behavior[24]. The corresponding physical interpretation is that the model maintains trim 
conditions with absolute value of elevator increasing; when elevator reaches approximately −11∘, 
model begins to oscillate around the trim angle. This oscillation is another form of stability and is 
defined as a stable limit cycle oscillation. Its amplitude grows with increasing elevator, until δe≈−21∘, 
after which the oscillations suddenly cease in favour of the non-oscillatory stable trim (note that the 
non-zero amplitudes evident in Figure. 6 in the low and high α stable trim regions reflect tunnel 
turbulence effects). For the pitch down situation, the model keeps on the stable trim solution branch 
with elevator absolute value decreasing until the elevator reaches approximately −19∘; here, the 
model begins oscillating around the unseen unstable trim solutions. Its amplitude becomes smaller 
with decreasing elevator until, when δe≈−12∘, the LCO disappears. 
The flight dynamics differential equations (17) were then applied to reflect the behavior 
corresponding to this 1-DOF experiment. The aerodynamic model established in section  IV was 
used in this process. All force components, along with yaw and roll moments, are neglected in (17), 
as those DOFs were locked in the experiment. The pitching moment coefficient is 𝐶𝐶𝑚𝑚 = 𝐶𝐶𝑚𝑚𝑛𝑛𝑛𝑛(𝛼𝛼, 𝑥𝑥) +
𝐶𝐶𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎

𝑞𝑞𝑞𝑞
𝑉𝑉

+ 𝐶𝐶𝑚𝑚𝛼̇𝛼
𝑎𝑎𝑎𝑎𝑎𝑎 𝛼̇𝛼𝑐𝑐

𝑉𝑉
+ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝛿𝛿𝑒𝑒   

Through solving the equations for equilibria and LCO steady states using COCO, the two 1-
parameter bifurcation diagrams (one for decreasing and one for increasing elevator deflection) can 
be seen in Figure. 8 and Figure. 9 respectively. The corresponding experimental data are shown for 
comparison. In these Figures, the orange line denotes experimental results and the others represent 
the computed bifurcation analysis. The equilibria and maximum amplitude of the limit cycle are 
shown together with the identified bifurcation points (red circles). In the Figures, the green line with 
blue triangles denotes stable equilibria, the green line with red dots unstable equilibria, the blue dots 
stable LCO, pink dots unstable LCO and black stars denotes saddle points. 
It is evident that the computed bifurcation diagram captures the main characteristics of the LCO 
observed in the wind tunnel tests. For the decreasing elevator direction, i.e. elevator changes from 
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right to left in Figure. 8, when the elevator reaches−10∘ the model encounters a Hopf bifurcation in 
which the equilibria lose stability and a stable limit cycle oscillation arises (blue dots). It develops in 
amplitude with decreasing elevator until δe≈−21∘, where the stable LCO folds back and no longer 
exists. The solution therefore ‘jumps’ back to the (re-stabilised) equilibrium branch, corresponding to 
the aircraft model oscillations disappearing rapidly. 
On the other side, for increasing elevator, i.e. elevator changes from left to right in Figure. 9, when it 
reaches−18∘  the model enters a large amplitude stable LCO (blue dots) from the higher-α 
equilibrium solution branch. Once in the LCO, the amplitude gradually decreases with increasing 
elevator, until δe≈−12∘at which point the LCO disappears completely, and the system returns to an 
equilibrium situation. 
Figure. 8 and Figure. 9 show that the numerical bifurcation diagrams using the Goman-Khrabrov 
state space modelling of pitching moment capture the main features of the LCO hysteretic behaviour 
from the two elevator history directions, although not a perfect match. 

  
Figure 8 – 1-DOF bifurcation diagram 

comparing with model pitching up motion. 

Figure 9 – 1-DOF bifurcation diagram 
comparing with model pitching down motion 

Time-history simulation (Figure.10 and Figure.11) has also been conducted to investigate the 
frequency of the LCO. The results showed that, both the amplitude and frequency of the LCO 
obtaining from simulation match well with the experiment result. It further proves that the modelling 
method used in this paper could capture not only the amplitude features of LCO but also the 
frequency features. 

   

Figure 10 – Comparison of time-history simulation and 
experiment result 

Figure 11 – Comparison of 
frequency of the LCO. 

The variation of separation points with different elevator input ramp rates is shown in Figure. 13. The 
trend is in accordance with conclusions in section III, which is that unsteady effects will postpone 
flow separation with 𝛼̇𝛼 > 0, and will bring forward flow separation with𝛼̇𝛼 < 0. In addition, with ramp 
rate growing positively, LCO envelopes will become bigger and even diverge, whilst LCO envelopes 
will become smaller, and even disappear, with ramp decreasing. 
𝜏𝜏1 and 𝜏𝜏2 also have significant effects on LCO properties. LCO with different characteristic times are 
shown in Figure. 14. Blue lines mean stable equilibria, red dots unstable equilibria and green dotted 
lines the minimum and maximum amplitudes of stable LCO. Orange lines denote min. and max. 
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amplitudes of unstable LCO, red circles denote Hopf points and black stars denotes saddle points. 
For exploring the influence of 𝜏𝜏1 and 𝜏𝜏2, further bifurcation analysis tests have been done. Figure. 14 
gives the analysis results with 𝜏𝜏2 changing. When 𝜏𝜏1 is fixed, LCO will become bigger and even 
diverge with increasing 𝜏𝜏2.On the contrary, with fixed𝜏𝜏1,LCO will become smaller and eventually 
disappear with decreasing 𝜏𝜏2. 

  

Figure 12 – 1-DOF bifurcation diagram 
with different elevator input ramp rates. 

Figure 13 – Separation positions with different 
elevator input ramp rate:𝛼̇𝛼1 = -5rad/s, 𝛼̇𝛼2 =
0rad/s, 𝛼̇𝛼3 = 5rad/s (𝜏𝜏1 = 42.2, 𝜏𝜏2 = 3.15). 

Taking a close-up view, there are still unstable parts (orange lines) in some sections of LCO. The 
relevant diagrams are given in Figure. 14 (1.a), (1.b) and (1.c). In Figure. 14, blue points with blue 
line means stable equilibria, red points with blue line means unstable equilibria, green points means 
stable limit cycle, orange line means unstable limit cycle, red circles means HP points and black 
stars means SN points. Noting that there are two Hopf points for each diagram, with an LCO 
appearing between them, see observe that if the distance between limit cycles becomes bigger, the 
gap between two Hopf points also becomes longer. The exact locations of Hopf points with different 
characteristic times can be seen in Table 2. 

Table 2 – The value of elevator (degree) at Hopf points. 
 Figure. 14 Figure. 14 Figure. 14 

(1) (-18.72, -9.84) (-19.68, -9.73) (-20.56, -9.66) 
(2) (-17.19,-10.05) (-18.72, -9.84) (-18.72, -9.84) 
(3) (-15.13, -10.5) (-17.3, -10.05) (-15.38, -10.45) 

Furthermore, when 𝜏𝜏2 is fixed, the LCO will diminish and disappear with increasing 𝜏𝜏1 and the LCO 
will enlarge and diverge with decreasing 𝜏𝜏1.  The effects of dynamic characteristics of the aircraft 
model also were investigated. Longitudinal dynamic derivative 𝐶𝐶𝑚𝑚𝑚𝑚 is an important parameter which 
represents the pitch damping of the aircraft. A negative value of 𝐶𝐶𝑚𝑚𝑚𝑚  means the aircraft has 
longitudinal dynamic stability; otherwise it is dynamically unstable. Therefore, an inference can be 
made that an LCO will enlarge and diverge with decreasing dynamic stability, and will diminish and 
even disappear with increasing dynamic stability. Analysis results (not shown) are consistent with 
this inference. 
From these studies, the effects of the parameters of the dynamic system have been gained. From a 
flight safety perspective, appropriate combinations of parameters can be chosen to avoid upset – 
either by modifying the geometry of the aircraft in early design stages or by augmenting stability 
derivatives using feedback control. 
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𝜏𝜏1 = 42.2, 𝜏𝜏2 = 4.15 𝜏𝜏1 = 42.2, 𝜏𝜏2 = 3.15 𝜏𝜏1 = 42.2, 𝜏𝜏2 = 1.5 
 

Figure 14 – One-DOF bifurcation diagram with different 𝜏𝜏2 

6. Conclusions 
This paper considers a new approach to the modelling of aerodynamics of a sub-scale aircraft 
configuration for which a physical wind tunnel model exhibits limit cycle oscillations in pitch due to 
unsteady separation flow phenomena. The method combines a Goman-Khrabrov state-space model 
formulation with bifurcation analysis. The G-K model takes unsteady aerodynamics into account 
through a generalized internal state variable, representing a notional separation point position. The 
state-space format allows this to be appended to the aircraft equations of motion, providing a 
powerful tool for the study of nonlinear and unsteady problems. A bifurcation analysis of the system 
reveals the interesting hysteretic limit cycle phenomenon with multiple stable solutions in certain 
elevator ranges (corresponding to certain angle-of-attack ranges). It is shown in the paper that the 
aerodynamic state-space model of the pitching behaviour permits the bifurcation analysis to achieve 
a good qualitative match to the experimental results(not only stability characteristics, but also 
amplitude and frequency features of LCO). The characteristic times used in the modeling (relating to 
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dynamic characteristics of 
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Conlusions 

 

 

the aircraft) were found to affect the shape and onset of LCO. Variations in elevator input rate and in 
the pitch damping derivative were also seen to impact on the limit cycle behavior. 
Although there are limitations in the analysis process, the method presented in the paper does 
reveal some inherent dynamic features of the aircraft responses. By comparing previous research, 
the mathematical model developed here is more general than before and allows for a more direct 
physical interpretation of the influence of the model parameters. 
There remain several developments worth pursuing in ongoing research: 

Expand experiment degrees of freedom. Only 1-DOF test and bifurcation analysis are 
reported above. To get more general results, more of the 5 maneuver rig degrees of freedom 
should be freed: yaw, roll, heave and sway. In addition, the aircraft model behavior is coupled 
to the rig arm and compensator, and these effects should be considered in the modeling 
process. 

The LCO is sensitive to characteristic time parameters:  study of the relations between LCO 
and these parameters could be useful to ensure better prediction of the LCO shape and onset 
points. 

Alternative ways to establish an unsteady aerodynamic model could be explored. 

For practical use, this analysis method could be tested on a wider range of aircraft models

• 

• 

• 

• 
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