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Abstract 

Considerable growth in air traffic has led to airspace congestion in certain regions, with the consequent need 
of introducing new decision support systems and flexible schemes to optimally manage the available 
resources, towards maximising efficiency and safety of air operations. This evolution has elicited the 
introduction of higher levels of automation, which can support en-route Air Traffic Flow Management (ATFM) 
systems to deliver a more efficient route planning and balancing demand and capacity of airspace sectors. 
The stream-based management paradigm has been proposed as a promising strategy to improve the efficiency 
of ATFM, which is selected for this study as it can also enhance the intuitiveness and interpretability of system 
resolutions. A clustering algorithm is proposed in this paper to automatically identify the traffic streams, 
addressing the need for an optimal method in stream identification. In addition, a hybrid Artificial Intelligence 
(AI) approach is implemented for the autonomous determination of Traffic Flow Management Initiatives (TFMI) 
for each stream, and thus to demonstrate the potential use of the stream-based traffic. Lastly, custom Human-
Machine Interactions (HMI) are designed and prototyped to improve the ATFM operator’s situational 
awareness and overall human-machine teaming. 

Keywords: Air Traffic Flow Management, Cognitive Human Machine Interfaces and Interactions, Stream-based 
management, Human-Machine Teaming 

1. Introduction 
The progressive growth in air traffic density in various regions is posing challenges to the efficiency 
of Demand-Capacity Balancing (DCB) processes in en-route airspace sectors, a time-critical task 
fulfilled by Air Traffic Flow Management (ATFM) services. This trend is eliciting an evolution of ATFM 
systems planning and demand forecast models, which are increasingly relying on sophisticate 
Artificial Intelligence (AI). However, the complexity of overload situations and of associated AI 
resolutions may exceed the cognitive capabilities of the human operators, thus compromising their 
situation awareness and potentially leading to undesirable effects such as distrust, cognitive 
overload, etc. [1]. For this reason, the design of AI-based ATFM systems with a “human-on-the-loop” 
philosophy shall to the extent possible resort to more intuitive concepts and integrate explainable AI 
(XAI) functions to maintain optimal human-machine teaming. 
As part of DCB processes, suitable Traffic Flow Management Initiatives (TFMI) are to be determined 
to resolve overload instances, and these include various operational measures for every phase of 
flight such as take-off, approach, and cruise. Speed control, path-stretching and re-routing measures 
have been commonly implemented, while Dynamic Airspace Management (DAM) concepts are also 
explored for the future [2]. Evolving operational conditions and weather patterns can sometimes 
generate complex and unpredicted overload situations which could require intense workload 
especially during the peak traffic periods [3]. In line with SESAR and NextGen, Communication 
Navigation and Surveillance (CNS) and ATM (CNS+A) systems both onboard and on the ground are 
evolving in three steps: Time-based Operations, Trajectory-based Operations (TBO), and 
Performance-based Operation (PBO) [4]. This evolutionary pathway supports the progressive merge 
of strategic DCB and deconfliction duties, which is made possible by the introduction of 4-
Dimensional Trajectories (4DT). For instance, the optimisation of 4DT by CNS+A systems was 
proposed as a way to integrate high levels of automation in 4D-TBO [2]. Various works addressed 
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specific aspects of ATFM including its methods, objectives, and operational phases such as 
strategic, pre-tactical, and tactical phase, which inform the scenario design [5, 6]. ATFM has an 
important role of planning the flow of traffic in advance, and balancing demand and capacity of each 
sector. The mathematical model to estimate the en-route capacity consider various operational and 
weather factors. In conventional Monitor Alert Parameter (MAP)-based approaches, the maximum 
number of aircraft inside any sector shall not exceed 18 [7, 8]. Performance enhancements of en-
route ATFM services are essential due to a huge growth in traffic, and in order to effectively handle 
a large amount of information. Several ATFM strategies have been proposed to improve DCB 
problem. One study proposed a new operational concept for ATFM, which is the stream-based 
management [9]. The concept groups traffic with similar routes into a stream; hence, the complexity 
of the sector and information is reduced. This paper adopts the stream-based traffic to be a platform 
for TFMI determination models solving DCB issues. The study investigates an efficient and robust 
clustering approach to determine the streams; hence, these streams are input to the TFMI 
determination process, which in this study is based on a genetic algorithm. The analysis includes the 
comparison of TFMI determination efficiency between adopting the stream-based and individual 
aircarft. Lastly, the HMI design of the proposed stream-based management is presented in Section 
5. 
 

1.1 Stream-based Management 
Stream-based management was introduced by Wei et al. to improve ATFM efficiency [9]. It is an 
operational ATFM concept for which a stream is defined as a group of aircraft with a similar route. 
Within one stream, all aircraft are managed in the same manner and comply with the same TFMI. 
The concept also supports the relinquishment of airspace sectors, assuming that an individual ATCO 
is responsible for managing traffic streams rather than individual sectors. The responsibility for 
separation assurance and the management of crossing traffic would be shifted to automation [10]. A 
comparison between traditional sector-based management and stream-based operations showed 
potential to enable both ATCO and ATFM system to handle more aircraft with less complexity and 
workload than in conventional sector-based management. The measures used in this study were 
dynamic density and complexity. The stream was defined based on aircraft types, destination 
airports, and arrival gates, which is consistent with FAA’ definition of a stream in the current Traffic 
Management Advisor (TMA) system [9]. This new concept is not yet implemented in the current 
ATFM system, and the mathematical framework underpinning this concept was only partially 
developed. This paper partially adopts the stream-based management concept because the 
airspace sectors are still considered in this study. This paper focusses on the development of a 
suitable clustering algorithm to automatically identify the streams based on multiple criteria, which 
are detailed in Section 2. The AI-based generation of TFMI for individual streams and an HMI 
concept are also presented and discussed. 

2. Traffic Stream Identification 
Clustering methods are frequently adopted for traffic flow identification [11, 12]. Unsupervised 
Machine Learning (ML) algorithms are generally chosen for such clustering, such as K-means [13], 
Gaussian Mixture Model (GMM) [14], Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) [15], and Hierarchical DBSCAN (HDBSCAN) [16]. Considering that the stream is not 
defined upfront automatically, the clustering algorithm needs to be fast and reliable. Hence, the 
analysis in this paper adopts K-means clustering algorithm to identify the traffic stream due to its 
simplicity, computational efficiency, and comparably high transparency. The process comprises of 
four steps: constructing feature vectors, standardizing data, clustering data, and evaluating the 
performance. The metric to evaluate the clustering efficiency is a silhouette method (s(o)) which 
determines how close a point is to its cluster relative to other clusters [17]. 
 

2.1 Feature Vectors 
Since the traffic stream concept is different from the traditional traffic flow, parameters that should 
be considered as the feature vectors have to be defined upfront. The feature vectors from the 
literature are applied, i.e., engine types, unit vector of origin, and destination. However, the unit 
vector of the origin-destination pair only tells that two lines are parallel but cannot distinguish how 



Artificial Intelligence and Human-Machine Interactions for Stream-based Air Traffic Flow Management 

3 

 

 

far apart they are. Therefore, the midpoint of each route is also used. The last parameter is the 
estimated operation time of each aircraft; this parameter is important for the TFMI determination 
algorithm that is detailed in Section 3. The following list presents all feature vectors adopted in this 
study: 

1. Engine types: jet = 1, turboprop = 2 and propeller =3; 

2. Route unit vector, defined as: 

𝑣𝑣� =
𝑣𝑣
‖𝑣⃑𝑣‖

=
((𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − (𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)

‖𝑣⃑𝑣‖
(1) 

3. Route midpoint (latitude, longitude), defined as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙) =
((𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − (𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙)𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)

2
(2) 

4. Estimated operation time (s), defined as: 

𝑡𝑡 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑣𝑣𝑎𝑎𝑎𝑎
(3) 

where 𝑣𝑣𝑎𝑎𝑎𝑎 is the average aircraft cruise speed (m/s). 
 

2.2 Data Standardization 
The z-score index is adopted in this paper to differentiate the relative contribution of individual 
features to the clustering, meaning that when the standard deviation σ is high, the z-score of the 
relative feature will be low. Thus, the feature that has a higher σ leads to a lower contribution to the 
clustering. 

𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑒𝑒𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑖𝑖𝑖𝑖  − 𝑥̅𝑥𝑣𝑣

𝜎𝜎𝑣𝑣
(4) 

where  𝑥𝑥𝑖𝑖𝑖𝑖 is defined as the raw data point of the feature 
  𝑥̅𝑥𝑣𝑣 is defined as the mean of the feature 

𝜎𝜎𝑣𝑣 is defined as the standard deviation of the feature. 
 

2.3 Clustering Algorithm 
The K-means clustering algorithm is adopted in this study to preliminarily demonstrate traffic stream 
classification. The K-means algorithm is a partitioning method, using the nearest mean of the 
distance metric to assign n observations into k clusters [18]. The distance metric commonly 
implemented in aviation literature is the Euclidean distance due to its low computational requirements 
[19]. The objective function is defined as: 

𝐽𝐽 =  ���𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑗𝑗�
2

𝑛𝑛

𝑖𝑖=1

𝑘𝑘

𝑗𝑗=1

(5) 

where:  J is the sum of squared errors; 
  cj is the selected data cluster center point;  
  𝑥𝑥𝑖𝑖 is the data point. 
The required input for K-means clustering is the number of clusters (k) that needs to be specified 
upfront. The optimal number of k is then determined by the elbow method. The elbow method 
identifies clusters utilizing the minimum value of intra-cluster variation, most often measured by 
variance. The ratio used is inter-group variance to total variance. The clustering performance is 
evaluated by the silhouette method. 

3. TFMI Determination 
This section details the TFMI determination function adopted for solving DCB overload issues, 
adopting the Evolutionary Algorithm (EA). The EA has the characteristics of randomness, high 
efficiency and global search optimization [20]. In traffic management, and specifically optimization 
forecasting and planning problems, EA has shown outstanding versatility [21-23], which can 
effectively allow to determine optimal and near-optimal solutions for non-deterministic polynomial 
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hard (NP hard) problems. EA has a variety of derivative algorithms, including Genetic Algorithm 
(GA), evolutionary strategy (ES) and evolutionary programming (EP) [24]. As a classic EA, GA 
algorithm is easier to modify and adapt to the environment and tasks while ensuring better 
performance. Therefore, the algorithm used in this study is GA. 
 

3.1 Genetic Algorithm 
GA is essentially a parallel global search method based on the evolutionary law of "survival of the 
fittest". The new population is generated by crossover and mutation operations on the initial 
population through modularization and coding [25]. In each iteration of the algorithm, a new set of 
solution approximations are selected through fitness evaluation. A better population is chosen 
according to the fitness evaluation function for the next generation of operations [26]. The GA steps 
are described as follows: 

1. Initialisation 
Three types of data are initialized: aircraft states data, airspace and environmental states data, 
and clustering data. The initial operation regards the group by clustering as the individual of the 
initial population and randomly generates a plural population. Generally, the range is 50 to 200. 
A larger population will increase the complexity of the calculation, while too small a population 
size will affect the performance of the algorithm optimization. 

2. Fitness 
The fitness 𝐹𝐹 of the population is calculated based on the individual fitness 𝑓𝑓𝑔𝑔 （Clustering 
group/Traffic stream. The 𝑓𝑓𝑔𝑔 value is obtained based on the fitness 𝑓𝑓𝑖𝑖 of the aircraft in the group. 
Equation 6, 7 and 8 show the calculation method of 𝑓𝑓𝑖𝑖, 𝑓𝑓𝑔𝑔 and 𝐹𝐹. 

𝑓𝑓𝑖𝑖 = t𝑒𝑒𝐴𝐴 − t𝑜𝑜𝐴𝐴 (6) 

𝑓𝑓𝑔𝑔 = �𝑓𝑓𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

 (𝑖𝑖 = 1, 2, 3, … ,𝑁𝑁𝑁𝑁) (7) 

F = �𝑓𝑓𝑔𝑔

𝑁𝑁𝑁𝑁

𝑔𝑔=1

 (𝑔𝑔 = 1, 2, 3, … ,𝑁𝑁𝑁𝑁) (8) 

where the definition of t𝑒𝑒𝐴𝐴 is estimate arrival time; and t𝑜𝑜𝐴𝐴 is planned arrival time. 𝑁𝑁𝑁𝑁 means the 
number of aircrafts in a stream. 

3. Selection 
The selection is made according to the fitness value of the stream. The selection is based on the 
results of the double ranking, the result of airspace overload and the value of population fitness. 
The airspace overload is arranged in a positive order. The result with the lowest overload situation 
is first obtained; the population fitness value is based on the result of the airspace overload in 
reverse order, and the individual with the highest group fitness value is obtained. Then one-third 
of the optimal solution is retained as the parent of the next generation of chromosomes. 

4. Crossover 
The crossover operation is divided into random crossover and probability crossover. Probabilistic 
crossover is based on 𝑃𝑃𝑐𝑐, which controls the frequency of crossover operations. Paired individuals 
exchange their gens (actions) at the crossover position to generate a new population. The value 
range of 𝑃𝑃𝑐𝑐 is 0.25 to 1.00; the low value may make the algorithm dull and unable to obtain the 
target solution. 

5. Mutation 
The mutation operation is an auxiliary operation in GA, and its purpose is to maintain the diversity 
of the population. This operation randomly changes the gens (actions) of an individual (traffic 
stream) based on the mutation probability 𝑃𝑃𝑚𝑚. The value of 𝑃𝑃𝑚𝑚ranges from 0.001 to 0.1; too high 
a mutation frequency will cause the algorithm to tend to search randomly. 

6. Determine 
The last step calculates the fitness of the newly generated population and checks whether the 
output results meet the conditions. The outputs are listed below:  
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a) The state data set of each aircraft; 
b) The state data set of the airspace; 
c) The corresponding decision-making actions of each stream; 
d) The fitness of population 𝐹𝐹, individual𝑓𝑓𝑔𝑔, aircraft 𝑓𝑓𝑖𝑖; 
e) The airspace overload data 

4. Verification Case Study 
The verification case study is performed on synthetic air traffic data in Australia, with the number of 
simulated aircraft set to 60. The synthetic traffic is generated on the routes from the top ten airports 
by traffic in Australia, which include: Sydney, Melbourne, Brisbane, Perth, Adelaide, Gold Coast, 
Canberra, Cairns, Hobart and Darwin. This section presents the verification case study for both 
stream identification and TFMI determination. 

 

4.1 Traffic Stream Identification 
The synthetic data is generated as illustrated in Figure 1, showing each trajectory of each aircraft. 
The feature variables are constructed from all 60 aircraft where the engine types are randomly 
assigned to each aircraft. Then, all feature variables (engine types, unit vector, centroid and 
estimated operation time) are then standardised by z-score index and inputted to the elbow method. 

 
Figure 1 – Synthetic traffic routes in Australia from the top ten airports. 

The result of the elbow method is lying between the ratio of more than 0.8 and a cutoff point, which 
leads to a k value between 10 and 13. Therefore, K-means clustering is performed with four k values. 
Each k value provides different silhouette values. The performance evaluation of each k is then to 
compute the average silhouette values. Such k that has the highest silhouette values is chosen to 
be the optimal numbers of cluster. The average of silhouette values is calculated. When k = 10, s(o) 
is 0.439, k = 11, s(o) is 0.396, k = 12, s(o) is 0.559, k = 13, s(o) is 0.497 Hence, the best s(o) is when 
k = 12. The twelve traffic streams are illustrated in Figure 2. The dashed lines represent the original 
routes with color-coding of each stream, while the thick lines represent the traffic streams. These 
streams are then inputted to the TFMI determination algorithm solving DCB issues. 
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Figure 2 – Automatically determined traffic streams from K-means clustering. 

 

4.2 TFMI determination 
 

In this case study, the TFMI determination function is designed to choose among seven strategic 
decision actions (Table 1), which are based solely on speed control for this initial verification activity. 
Four parameters need to be firstly set for the GA, including the population size of NP, number of 
iterations, crossover probability, and mutation probability also shown in Table 1. In our simulation, the 
GA method generated a total of 523 solutions, of which 68 effective solutions to the DCB overload 
are achieved, while the rest of the solutions only partly solve the capacity overload. In the initial state, 
the number of aircraft in the overloaded airspace is 32, and the total computation time takes 1685 
seconds. Figure 3a and 3b show the results comparing TFMI determination with the streams and 
TFMI determination with individual aircraft, both based on the number of overload instances and the 
number of iterations. 

Table 1 - Detail of Strategic Actions and Parameter setting of GA. 
Strategic Actions  GA Parameters Setting 
1. Normal Remain unchanged  The population size of 𝑁𝑁𝑁𝑁 50 
2. Speed Up 1 the flight speed increases by 2.5 meters per second  Number of iterations 500 
3. Speed Up 2 the flight speed increases by 3.0 meters per second  Crossover probability 𝑃𝑃𝑐𝑐 0.7 
4. Speed Up 3 the flight speed increases by 3.5 meters per second  Mutation probability 𝑃𝑃𝑚𝑚 0.1 
5. Speed Down 1 the flight speed drops by 1.5 meters per second    

6. Speed Down 2 the flight speed drops by 1.0 meters per second    

7. Speed Down 3 the flight speed drops by 0.5 meters per second    
 

 

 
Figure 3a. Number of iterations and capacity 

 
Figure 3b. Number of iterations and capacity 
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overload instances in the streams. overload instances in individual aircraft. 

As specified in Table 1, each iteration provides 50 solutions; the blue line in the figure represents the 
maximum value of the number of overload instances while the orange line represents the minimum 
value of it. Figure 3a shows the results of the traffic streams, and the system calculation took 97.18 
seconds. In the initial state, the overload instance number is the highest. The algorithm obtains the 
first effective DCB solution at the 10th iteration, as highlighted by a drop of overload instances down 
to zero (orange line). Then, the solution of the algorithm stabilizes and starts to converge. Figure 3b 
shows the case of non-stream-based. The calculation time of the system is 91.8 seconds, and the 
calculation speed is 5.5% faster than the streams. However, the algorithm does not obtain any 
effective DCB solution in a limited number of iterations; all generated solutions can only partly solve 
capacity overload. 

 
Figure 4a - Number of iterations and 
optimization results from the streams. 

 
Figure 4b Number of iterations and 

optimization results from individual aircraft. 

Figure 4a shows the results of pre-processing data after clustering. In the initial iteration of the 
system, the flight time of the aircraft in the airspace was as high as 4642.5 seconds, and then it 
began to descend rapidly, and after 50 iterations, it was smoothly controlled within 1600 to 2500 
seconds. In time, the algorithm began to converge. As can be seen in Figure 4b, the system without 
clustering pre-processing has not converged in a limited number of iterations. And since no DCB 
solutions are obtained, these are all invalid solutions. 

In this case study, the total operation time of the DCB optimal solution is 1804.9 seconds. Among 
the 12 traffic streams, the number of clustering groups selected for Action 2 is 4; the number of each 
selected Actions 3, 4, 5, and 6 are 2; Action 1 and Action 7 are not selected for execution. 

5. HMI for Stream-based Management 
In ATFM operation, the graphical interface has considerable influence on the performance of DCB. 
Therefore, the graphical interface for ATFM should be well designed to improve ATCO’s 
interpretability and human-machine teaming. Even though the verification case study only presents 
one TFMI, which is speed control, the HMI design concept presented here is not limited to only 
speed control but also includes other TFMI supporting future work development. The graphical 
interface is implemented in CesiumJS, an open-source JavaScript library for 3D geospatial 
visualisation. The ATCO is able to customise the visualization as they prefer. The traffic density and 
DCB can be represented in three ways: through the stream, through the sector, and bar chart. The 
first visualization style, which represents traffic density via a stream, is illustrated in Figure 5. The 
colour is used to represent the density of each stream: red means very dense, yellow is medium and 
green is low. Furthermore, the DCB of a sector is displayed as a pop-up window when the ATCO 
selects the sector. The bottom of the display is the timeframe slide bar where the ATCO can choose 
the specific time period of interest. In addition, the weather cell is also presented in the graphical 
interface. 
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Figure 5 - ATFM display design for stream-based traffic density visualization. 

For the second approach, as shown in Figure 6, the colour of each sector represents the demand 
and capacity of that sector instead of the stream. Therefore, the operators do not have to use the 
mouse button to view the balance in each sector, which means that the level of interpretability and 
situational awareness is enhanced. In addition, the following menus are provided for TFMI review 
and amendment: re-routing, speed control, and sector morphing along with submenus for each 
technique is also accessible by right-clicking on a stream. The ATCO can implement various tasks 
in this graphical interface, including choosing the speed and time to apply for speed control and using 
the text box to choose the number of aircraft for re-routing. At the same time, sector morphing would 
be performed by moving the vertex represented by circles on the boundary of sectors, as shown in 
Figure 7. The interactions for the ATCO, such as opening the menus and calling for a pop-up window, 
are triggered by the mouse button and hotkeys. Right-click is used to open menus which are re-
routing, speed control, and sector morphing, while pop-up window would be triggered by pressing 
shift and right-click simultaneously. Left-click would be used for most of the actions in the interface, 
the select the menus of re-routing, speed control, and sector morphing would be achieved by left 
click. 

 
Figure 6 - ATFM display design for stream-based DCB visualization. 

Number of 
aircraft Enter 
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Moreover, each technique needs further actions in which speed control is performed by changing 
the speed and choosing the duration. Speed could be selected by left-clicking, while the duration 
could be selected by left-clicking and drag to cover the desired duration. Re-routing requires a 
number of aircraft to deviate from the original routes; it could be done by typing the number of aircraft 
and then press enter button. 

 
Figure 7 - Airspace morphing function. 

The last visualization approach is illustrated in Figure 8. There is a total of six features added into 
the graphical interface, the number one represents the traffic data including ten airports in Australia, 
and international flights and airspace sectors which were imported to display all the routes, and flights 
could move in the real-time as they were planned in the traffic data file. After the traffic and sectors 
are displayed in the graphical interface, menu for sector morphing is shown when the sector is 
selected as shown in number two. Menus for routes which are re-routing and speed control, as 
represented in number three, could be open when the route is selected. Additional functions to 
cooperate with speed control and re-routing have been emerged in the graphical interface. When 
speed control is chosen to implement, the speed below speed control menu could be adjusted, while 
there is a text box of “Enter number of aircraft” as shown in number four, to select number of aircraft 
to deviate from overloaded sectors. For the number five, it is histogram that was imported from 
JavaScript D3 library and adjusted for the application of showing demand and capacity in the sector 
from the current time to the next three hours with 30 minutes interval. The function for the histogram 
was successfully capable of plotting demand and capacity of selected sector and update the traffic 
after balancing by using function of aircraft counter. The timeline imported as represented by number 
six was added for the purpose of future time visualisation, so the operators could notice problem of 
imbalance of demand and capacity in sectors and apply ATFM techniques to solve the problem in 
advance. 

 
Figure 8 - ATFM display design for stream-based approach. 

 

1 
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6. Conclusion 
This paper has investigated the adoption of the stream-based management paradigm in Air Traffic 
Flow Management (ATFM), which holds great promise to enhance the intuitiveness, interpretability 
and efficiency of Demand-Capacity Balancing (DCB) solution processes. An unsupervised clustering 
algorithm, k-means, was proposed and evaluated to autonomously identify the traffic streams, based 
on four feature vectors: origin-destination unit vector, origin-destination centroid, engine type and 
estimated operation time. The output of such clustering algorithm, traffic streams, is then input to the 
Traffic Flow Management Initiative (TFMI) determination process, which in this study exploits a 
genetic algorithm to resolve DCB issues only by speed control measures. The verification case study 
highlights the efficiency gains achievable when dealing with traffic streams instead of individual 
aircraft, by obtaining effective solutions in early iterations. Moreover, a custom Human-Machine 
Interactions (HMI) design concept was proposed to enhance human-machine teaming by introducing 
stream-based management and TFMI solutions formats and functions. The proposed stream-based 
management reduces the complexity for both the human operator (via the proposed HMI) and the 
system by lowering the number of individual entities shown and handled by the operator to determine 
the most appropriate traffic flow management initiatives.  
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