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Abstract 

The paper presents methods to determine the time, positions, and distance of closest approach for two vehicles 

following arbitrary trajectories in two or three dimensions. The distance of closest approach of two vehicles 

following arbitrary curved trajectories is shown to be determined by two conditions: (i) the relative velocity must 

be orthogonal to the relative position for the distance to be a non-zero extremum; (ii) the radial acceleration 

including centripetal terms must have a direction that increases the separation for the extremum to be a 

minimum. This theorem on the distance of closest approach simplifies in the case of rectilinear trajectories and 

uniform motion. To illustrate the general theory three examples are given: (i) the two-dimensional motion of 

surface vehicles changing the velocity of one of them so as to enforce a given minimum separation distance; 

(ii) the three-dimensional motion of two aircraft, one flying horizontally and the other climbing, changing the 

vertical velocity of the latter to ensure a minimum separation distance set "a priori"; (iii) the case of an aircraft 

flying with constant velocity on a straight line so that its closest approach to another aircraft flying in a circular 

holding pattern in the same plane occurs at a given time chosen "a priori".  
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1. Introduction 
 
In the traffic of vehicles safety is identified with the absence of collisions or conflicts. A conflict occurs 
when the distance between the distance between the centroids of two vehicles is less than a safe 
separation distance (SSD) determined by their size. Thus (i) the absence of conflicts and (ii) the 
confirmation that a conflict has been resolved, depends on determining the distance of closest 
approach (DCA) that is not less than the SSD. The conflict resolution relies (iii) on trajectory 
modifications that change the DCA from smaller than the SSD to larger than (or equal to) the SSD. 
The paper presents methods to determine the time, positions, and distance of closest approach for 
two vehicles following arbitrary trajectories in two or three dimensions. The two-dimensional cases 
include cars in road traffic, ships in sea lanes and aircraft ground movements at an airport. The three-
dimensional cases include all types of flying vehicles, like airplanes, helicopters, drones, rockets, 
and satellites, and also submerged submarines. The differences in conflict detection and resolution 
(CDR) between all these types of vehicles concern the speed, size, and distances that enter as 
parameters in the same methods of calculation of distance and time of closest approach.  

The distance and time of closest approach are essential inputs for CDR methods [1-3]. The 
collision risk applies to cars [4-5], ships and submarines [6-7] and aircraft [8-9]. Taking as example 
the case of Air Traffic Management (ATM) the problem may be divided into (i) prediction of flight 
paths [10-11], (ii) safety assessment [12-13] and (iii) conflict resolution [14-16]. Collision avoidance 
between aircraft starts with [17] separation distances (e.g., longitudinal, lateral and altitude) leading 
to high (probability of collision less than 5x10-9 per hour) Target Level of Safety (TLS) for various 
aircraft encounter geometries, like level crossing [18] or climb and descent [19]. These safe 
separations ultimately determine airspace capacity [20]. Many of these methods assume straight 
trajectories or approximate curved trajectories by straight segments. While this allows a continuous 
trajectory, the velocity becomes discontinuous in direction at the edges and the acceleration 
becomes singular. The purpose of the present paper is to determine the distance and time of closest 
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approach for arbitrary curved trajectories without approximations of any kind. This may be used for 
CDR methods or to assess TLS, that lie beyond the purpose of the present paper. 

There are a variety of CDR methods including multi-agent algorithms [21-23] that apply to 
vehicles moving in two [1-9, 24-27] or three [10-20] dimensions. All CDR methods: (i) start with the 
identification of a conflict; (ii) involve trajectory changes to resolve the conflict; (iii) end with the 
verification that the conflict has been resolved. The safety of traffic requires that a minimum SSD be 
held, for example ensuring that the “safety volumes” around two vehicles do not penetrate. If two 

vehicles follow two arbitrary trajectories with position vectors ( )1x t
 
and ( )2x t , as a function of time, the 

modulus of the difference specifies their distance, that generally varies with time:  

( ) ( ) ( )1 2
D t x t x t= − .        (1) 

A conflict is detected if at any time the distance is less than the SSD:  

Conflict:   ( )D t    for some time t .        (2) 

If a conflict is detected, then one or both trajectories must be modified to resolve the conflict. The 
success of the conflict resolution is checked by showing that the distance exceeds the SSD for all time: 

No Conflict:   ( )D t    for all time t .           (3) 

The criteria for conflict (2) or no conflict (3) are next put into a simpler form that is easier to apply.  

The key concept is that of distance of closest approach *D  between two trajectories:  

    ( ) ( ) ( )* * 1 * 2 *
D D t x t x t = − ,          (4) 

that occurs at the time *t
 
of closest approach when the vehicles are at position ( )1 *x t  and ( )2 *x t . 

There is a conflict if the distance of closest approach is less than the safe separation distance (5a) 
and no conflict otherwise (5b):  

          

( )
( )*

5aconflict,

5bno conflict.
D









 

The paper presents a method to determine: (i) the distance of closest approach *
D ; (ii) the time of 

closest approach *t ; (iii) the positions of the two vehicles at that time ( ) ( )1 * 2 *,x t x t . The method applies 

to arbitrary trajectories: (a) curved or rectilinear; (b) with constant velocity, accelerated or decelerated 
motion. The method is deterministic and excludes external disturbances. The extension to include 
random disturbances can be made adding to the position vectors the deviations due to uncertainties 
or external effects and applying statistical methods.  

Considering first arbitrary non-uniform motion a theorem is established (Section 2.1) specifying 
the conditions for minimum separation between two trajectories. In many traffic situations the future 
trajectories are not known, and the information available is only the current positions and velocities of 
two vehicles; if the motion is assumed to be uniform, simple formulas are obtained (Section 2.2) for the 
distance and time of closest approach. This in turn specifies the conditions for collision avoidance 
between two or any number of vehicles (Section 2.3). These conditions give a simple geometric 
interpretation of the two theorems (Section 2). The preceding theory is applied (Section 3) to three 
examples: (Section 3.1) two dimensional collision avoidance between surface vehicles (ships, car or 
airplanes on the ground at an airport) with constant velocity by choosing the velocity of one of them; 
(Section 3.2) three-dimensional collision avoidance between two aircraft moving at constant velocity, 
one at constant altitude and the other climbing, by changing the vertical velocity of the latter; (Section 
3.3) meeting a given time of closest approach between a vehicle in a holding pattern of uniform circular 
motion and another in uniform rectilinear motion. These three cases are sufficiently simple for analytical 
calculation (Section 3), illustrate the two theorems (Section 2) and substantiate the discussion (Section 
4). 

2. Distance of closest approach between trajectories 
 
The minimal separation for two vehicles following arbitrary trajectories is obtained by minimizing the 
relative distance as a function of time. This leads to two conditions to be satisfied at the time of closest 
approach (Section 2.1). The simplest case is that of uniform motion from given initial positions (Section 
2.2). It leads to a simple criterion for collision avoidance by maintaining a minimum separation 
distance (Section 2.3) and is applicable to two or more vehicles. The vehicles are represented by 
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material vehicles placed at their centroids, and their dimensions are taken into account by setting a 
safe separation distance to avoid collisions. 

 

2.1 Non-uniform motion along curved trajectories  
 

Consider two vehicles moving with integrable time-dependent velocities ( )1
V t  and ( )2

V t  from initial 

position 
10

x  and 
20

x  at time 0t = , so that their positions at time t  are given by  

   ( ) ( )1 10 1
0

t

x t x V t dt= +  ,  ( ) ( )2 20 2
0

t

x t x V t dt= +  .             (6a,b) 

It is required to find: (i) the conditions for a collision, that is that the positions coincide ( ) ( )1 * 2 *
x t x t=  

for some time(s) 
*

t t= ; (ii) if there is no collision then the time 
*

t t= , and distance 
*

D  of closest 

approach are given by ( ) ( )4 7 :  

    
( ) ( ) ( ) ( ) ( )* * 1 * 2 * 1 2 min

D D t x t x t x t x t = − = − .       (7) 

The relative position of the two vehicles is given at all times by:    

                                   ( ) ( ) ( ) ( ) ( )1 2 10 20 1 2
0

t

x t x t x t x x V t V t dt  − = − + −  .                                       (8) 

Introducing the initial relative positions (9a) at the initial time 0t =  and the relative velocity (9b) at all 

times:  

                                     
0 10 20

x x x − ,  ( ) ( ) ( )1 2
V t V t V t − ,                                     (9a,b) 

the relative position at arbitrary time is given by:  

( ) ( )0 0
0

t

x t x V t dt x X= + = + ,                                     (10)  

where the change in relative position from time 0t =  to time t  is given by (11a)  

                       ( ) ( )
0

t

X t V t dt=  , 
dX

V
dt

= ,                                                                  (11a,b)  

and its time derivative is relative velocity (11b).  
 The distance between the vehicles at time t  is given by:    

                        ( ) ( ) ( ) ( ) ( )
2 22 2 2

0 0 0
2D t x t x X t x X t x X t  = = + = + +   .                          (12) 

The first derivative of (12) with regard to time:  

                                ( ) ( ) ( )
2

0
2 2 2

dD d dX
D t D t X t x x V

dt dt dt
  = = +  =     ,      (13)                            

is zero for stationary distance between the vehicles:  

                                      ( ) ( ) ( )* * *
0 0D t x t V t =  =  .                                                  (14a,b) 

Thus, two cases may arise: (i) if the distance is zero at the stationary point(s) then there is collision 
between the vehicles and the relative velocity is arbitrary: 

                                      ( ) ( )* *
0 0D t x t=  = ;                                                              (15a,b) 

(ii) if the distance is not zero then the velocity and relative position must be orthogonal:  

                                     ( ) ( ) ( )* * *
0D t V t x t  ⊥ .                                                (16a,b) 

Note that the distance of closest approach is generally not the smallest distance between the paths 
because the two vehicles will be at these points at different times. The condition of closest approach, 
that the relative velocity and relative position be orthogonal (Figure 1) can be explained as follows: (i) 

if  0V x   at time *
t t=  then the vehicles would be moving towards each other, and would be closer 

at some later time *
t t ; (ii) if 0V x   at time *

t t=  then the vehicles would be moving away from 

each other, and would have been closer for some earlier time *
t t . In either case (i) or (ii) the time 

*
t t=  would not be that of stationary distance. This proves by “reductio ad absurdum” that a stationary 

distance requires that the relative velocity be orthogonal to the relative position. 
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A stationary distance is a necessary but not sufficient condition for closest approach; an inflexion point 
in one of the trajectories would also correspond to a stationary distance, but might not be a minimum; 
a minimum is determined by the second derivative of distance:   

            ( ) ( )  ( )
22 2

2

2 2
2 2 2 2

d D dD d d dV
D t D t x V V V x

dt dt dt dt dt

  
 + = =  =  +     

   
,                 (17) 

being positive at the stationary condition. In the stationary condition (14a)   (18a) the relation (17) 
simplifies to (12b): 

 ( )*
0D t = :           ( ) ( ) ( ) ( ) ( ) 

2

* * * * *
2 2 0D t D t V t x t a t = +   ,                       (18a,b) 

where (19a) is the relative acceleration that must satisfy (19b) for a minimum:  
2

2

dV d x
a

dt dt
  :   ( ) ( ) ( )

2

* * *
x t a t V t  − .                                                    (19a,b) 

Thus, the stationary distance will be a minimum if the acceleration is along the relative position 0, a x

because it tends to move the two vehicles away from each other. Even if the relative acceleration is 

from one vehicle towards each other 0a x  , the distance will still be a minimum if the centripetal 

acceleration is larger:  

0a x a x = −   :     

2

Va x

x x


 .                                                          (20a,b) 

The stationary point would not be one of closest approach only if the relative acceleration projected on 
the relative position is opposite in sign and larger in modulus than the centripetal acceleration.  

The preceding results may be summarized in a theorem on non-uniform motion: two vehicles 

with initial positions 
10

x  and 
20

x  and non-uniform velocities, respectively 
1

V  and 
2

V , that are integrable 

functions of time, will collide at an arbitrary angle if their relative distance (8,12) vanishes (15a,b). If the 
vehicles do not collide: (i) the distance is stationary, that is a necessary condition for closest approach, 
if and only if (16a,b) the relative velocity (9b) is orthogonal to the relative position (8)

 
  (10); (ii) a 

sufficient condition for closest approach, that is that the distance is minimum, is that the relative 
acceleration (19a) satisfies (19b) implying that the centripetal acceleration associated with the relative 
curvature of the trajectories predominates over the relative acceleration projected on the relative 
velocity.  

The distance of closest approach D between vehicles moving two trajectories generally 
exceeds the smallest distance E between the two paths, because the vehicles might cross the closest 

points at different times, for example (Figure 2): (i) at the time 
1
t   when the vehicle 2 is at the closest 

position ( )1 1 2
x t P=

 
the vehicle 1 is still behind the closest position ( )1 2 1

x t P : 

1 2
D E D  ;                              (21) 

(ii) by the time 2
t   the vehicle 1 reaches the closest position ( )2 2 1

x t P=
 
the vehicle 2 will be beyond the 

closest position ( )2 2 2
x t P . The conditions (16b) and (18b) of closest approach are local, in the sense 

that for small deviations to earlier or later time the relative distance increases. In the case of curved 

trajectories there can exist several times *n
t , distances *n

D
 
and positions ( ) ( )1 * 2 *

,
n n

x t x t  of local 

closest approach as shown in the Figure 3. In this case the distance of closest approach would be the 
“minimum minimorum” that is the smallest or infimum of all local distances of closest approach, 

( )* *1 *2 *
inf , ,...,

n
D D D D= .                             (22) 

The existence of multiple local minima of the distance is not possible for straight trajectories: if the two 
vehicles move with constant velocity there only one time and distance of closest approach, as shown 
next. 
 

2.2 Closest approach for uniform rectilinear motion    
 
In many traffic situations the future trajectories of vehicles are not known or can be adjusted to avoid 
collisions. The information available from traffic sensors is usually positions and velocities at a given 
time. The simplest assumption is that the velocities will be constant and the position of the centroids of 
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the vehicles, taken as material vehicles, at time t  will be:   

                                            ( )1 10 1
,x t x V t= + ( )2 20 2

x t x V t= + .                                     (23a,b) 

The relative position at time t  is:  

                                                        ( ) ( ) ( )1 2 0
x t x t x t x V t − = + ,                                               (24) 

where (9a) is the initial relative position and the relative velocity (9b) is constant. The relative distance 
at time t  is given by: 

                                 ( ) ( )
2 22 2 2 2

0 0 0
2D t x t x V t x V t t x V  = = + = + +   .                             (25) 

The second-order derivative with regard to time is always positive: 

                                                             ( ) 
2

22

2
2 0

d
D t V

dt
  =   ,                                                    (26) 

and thus a stationary distance can only be a minimum distance. There is no maximum distance 
because a constant relative velocity leads the vehicles infinitely apart after a long time. 
The first derivative of the distance: 

                                       ( ) ( )  ( )
22

0
2 2

dD d
D t D t x V V t

dt dt
 = =  +  ,                                              (27) 

vanishes at the time of closest approach:  

( ) ( ) ( )*min
D t D t D t = :  

00

* 2
cos

xV x
t

VV



= − = − ,                       (28a,b) 

where   is the angle of the relative initial position (9a) with the constant relative velocity (9b). The 

position of the two vehicles at the time of closest approach is obtained substituting (28b) in (23a,b): 

                      ( ) ( )1

1 * 10 2 0

V
x t x V x

V
= −   , ( ) ( )2

2 * 20 2 0

V
x t x V x

V
= −   ,                                        (29) 

and their relative position is given by: 

    ( ) ( ) ( )
( )

( )
0

* 1 * 2 * 10 20 2 1 2

V x
x t x t x t x x V V

V


= − = − − − =  

   ( )0 2 0

V
x V x

V
= − 

( )
2

0 0

2

x V V V x

V

− 
=

( )0

2

V x V

V

 
= ,                                   (30) 

where was used the double outer product of vectors.  
 The distance of closest approach (31b) is the modulus of the relative position vector (30) 
(31a): 

                         ( )
( )0

* 2

V x V
x t

V

 
= ,           ( )

( )0

min * 2

V x V
D D t

V

 
= = .                       (31a,b) 

Denoting by N  the unit vector orthogonal to the plane of the initial relative position (9a) and constant 

relative velocity (9b) leads to: (i) the outer product (32a),  

                          
0 0

sinx V x V N = ; ( )
2

0 0
sinV x V x V   = ;                         (32a,b) 

(ii) since the outer product involving  V  is orthogonal to V , follows (32b). Substituting (32b) in (31b) 

specifies the distance of closest approach (33): 

                                                                
min 0

sinD x  =   ,                                                  (33) 

that must exceed the safety distance to avoid a conflict between the vehicles. The distance of closest 
approach can also be obtained substituting the time of closest approach (28b) in the distance (25): 

   ( ) ( )
( )

2
2

222 02
0

min * 0 2 2
2

x Vx V
D D t x V

V V

    = = + −   
 
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( )

2

02

0 2

x V
x

V


= − ( )

2 2

0
1 cosx = − =

2 2

0
sinx = ,                                                    (34) 

in agreement with (33).   
 

2.3 Collision avoidance for several vehicles  
 
The preceding results with uniform motion apply to collision avoidance with two vehicles, as stated in 

the theorem on uniform motion: two vehicles with given distinct initial positions ( )10 20
,x x  and 

constant velocities ( )1 2
,V V  collide (33) only if the initial relative position (9a) and the constant relative 

velocity (9b) are anti-parallel (35b) (35c): 

min
0D = :     = ,

0
| | −x V ,

0

*

x
t

V
= ,                                     (35a-d) 

in which case the collision (28b) occurs at time (35d). If the relative velocity makes an angle   with 

the initial relative position, the time of closest approach is (28b) and the distance of closest approach 

is (33). In order that a minimum safety distance   be maintained at all times it is sufficient that the 

angle of the constant relative velocity (9b) with the relative initial position (9a) satisfies (36): 

                                                                 
0

0

sin sin
x


  = .                                                           (36) 

In this case one vehicle "misses the other" or "passes by" at a distance larger than the minimum 
separation distance. 

These results can be interpreted by a simple geometrical construction involving elementary 
Euclidean geometry (Figure 4): (i) since only relative motion is of interest the origin O is taken at the 

second vehicle; (ii) the initial position A of the first vehicle specifies the initial distance 
0

x ; (iii) through 

A is drawn a straight line in the direction of the constant relative velocity that makes an angle   with 

the relative initial position; (iv) a orthogonal line through the origin intersects at the point B of closest 
approach; (v) it follows that the distance of closet approach is (33); (vi) the distance travelled by the 
first vehicle from the initial position to the point of closest approach is (37a):  

                             
0

cosL x = ;      
0

*
cos

xL
t

V V
− = = ,                                                     (37a,b) 

(vii) since the relative velocity is constant the time of closest approach is (37b) in agreement with (28b); 
(viii) the minus sign arises because of the angle   is measured from the relative initial position to the 

constant relative velocity; (ix) at the point of closest approach the relative position (30) is orthogonal to 
the relative velocity  

                                                   ( )
( )0

* 2
0

V V x V
x t V

V

   
  = = ,                                                    (38) 

in agreement with the general condition (16a,b); (x) the condition (19b) for a minimum distance is met 

for zero relative acceleration 
2

0 V − . 

The angle   in (36) would be imaginary if sin 1   but in this case 
0

x   the initial separation 

would already be less than the minimum separation distance, and the safety criterion was violated from 
the start. If the safety condition is not violated from the start, the initial relative distance is larger than 

the safe separation distance, and a real angle 0
  exists. It suffices that the angle of the relative velocity 

with the relative initial position exceeds this value in modulus 
0

   for the safe separation to be 

ensured at all times. The problem of safe separation between two vehicles, with a given safe separation 

distance   as a chosen parameter, may be extended to several vehicles, say 1n+ . Choosing vehicle 

1 as the reference the exclusion of collision with each of the other N vehicles leads to N conditions of 
the type (36). If these N conditions are compatible the first vehicle can avoid a collision with all the 
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others by being steered in a constant direction. If the N conditions are incompatible a collision cannot 
be avoided in a straight path and a polygonal or curved path will be necessary. That may not be 
sufficient to avoid a collision if the traffic density is too high. 
Three situations can arise concerning the time of closest approach (28b):  

    

( )
( )
( )

0

* 0

0

0 if 0, 39a

0 if 0, 39b

0 if 0. 39c

V x

t V x

V x

  

=  =
  

 

The time of closest approach is time zero (39b) if the initial relative position is orthogonal to the constant 
relative velocity, in agreement with the condition (16b) of closest approach. If the vehicles move 
towards each other (39a) the time of closest approach is positive because (Figure 5a) the trajectories 
are converging and will be closest in the future. If the two vehicles are moving away from each other 
(39c) the time of closest approach is negative, because the trajectories are diverging (Figure 5b) and 
were closer in the past. Thus, two situations arise: (a) for converging trajectories (40a), that is positive 
time of closest approach (39a) the minimum separation distance is (31b):  

                    

( ) ( )
( )

2

min 0

0

min 0

0 : , 40a

40b0 : ,                        

D V V x V
V x

D x

− =  
 

 =
 

(b) for parallel or diverging trajectories (40b) the minimum separation distance is the initial separation, 
because the vehicles will not get closer in the future.  
 
 

3. Safe separation between straight and curved trajectories  
 
As examples of the preceding theory, the second theorem is used in the simplest case of uniform 
motion along straight paths (Sections 2.2-2.3) both in two (Section 3.1) and three (Section 3.2) 
dimensions motivated by collision avoidance between: (i) ships or aircraft moving on ground at airports 
(Section 3.1); (ii) aircraft in flight (Section 3.2). The first theorem is needed in the case involving a 
curved path (Section 3.3).  
 

3.1 Two-dimensional safe separation between ships in a water   
 
The first application is conflict avoidance between two ships; following nautical practice the speed is in 
knots (kt) in (41a) and heading (41b) in degrees:  

                           1 2
, 10,20V V kt= ,    1 2

, 30º ,150º  = ,                                           (41a,b) 

and hence time in hours and distance in nautical miles (nm), e.g. for the initial positions (31c,d) in a 
Cartesian frame:  

                            10
10,5x nm= − ,  20

5, 15x nm= − .                                       (41c,d) 

It is required to find if the minimum separation distance satisfies the safety threshold of 20 nm: 

     
( ) ( )1 2 min

20 ;x t x t nm−  =                   (42) 

if this is not the case then the modulus of the velocity of the second ship is to be modified as little as 
possible so that the minimum safety distance is complied with. The problem would be similar with 
different values for the ground movements of two aircraft at an airport, or other cases of two-
dimensional motion of vehicles like cars.  
The Cartesian components of the velocities of the two ships are:  

                            1 1 1 1 1
, cos ,sin 8.66,5.00

x y
V V V kt = = ,                                                  (43a) 

                            2 2 2 2 2
, cos ,sin 17.32,10.00

x y
V V V kt = = − .                                          (43b) 

This specifies the relative velocity (44a) and relative initial position (44b): 

                 1 2
25.98, 5.00V V V kt= − = − ,  0 10 20

15,20x x x nm= − = − .                           (44a,b) 

The angle between them is calculated from: 
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                  26.46V kt= ,
0

25x nm= ,
0

0

cos 0.7403
V x

V x



= = − ,                              (45a-c) 

where (45c) has two roots. 
The angle is less than 180º so the root (46a) of (45c) is chosen: 

          137.76º = ,
min 0

sin 16.80D x nm= = ,
0

*
cos 0.6995

x
t h

V
= − = ,                        (46a-c) 

leading to a distance of closest approach (46b) after a time (46c). At that time the position of the two 
ships is:  

                             ( )  1 * 10 1 *
3.94,8.50x t x V t nm= +  = − ,                                                      (47a) 

                               ( )  2 * 20 2 *
7.11, 8.00x t x V t nm= +  = − − ,                                                  (47b) 

confirming the separation (46b) (48a): 

                                                 ( ) ( )1 * 2 *
16.80 20x t x t nm nm− =   ,                              (48a,b) 

is less than the desired safe separation distance (48b)  (42). 
 In the example shown the distance of minimal approach (46b) is less than the desired safe 
separation distance (42) (48b), and thus the angle between the relative velocity and initial relative 

position must be decreased to   satisfying: 

                  
0

sin 0.8
x


 = = , 126.87º = , cos 0.6 = − .                                    (49a-c) 

It is required that the desired minimum separation distance is to be obtained by changing only the 

modulus of velocity of the second ship from 2
20V kt=  in (41a) to 

2
V 

 
to be determined next; the speed 

of the first ship 
1

V  is unchanged and the headings of the two ships ( )1 2
,   are also maintained. The 

Cartesian components of the velocity of the first ship are the same (43a) and those of the second ship 
(43b) change to: 

     ( )  2 2 2 2 2 2

3 1
, cos ,sin ,

2 2
x y

V V V V 
  

   = = − 
  

.               (50) 

The relative initial position (44b) remains and the relative velocity (44a) changes to:   

    1 2 2 2

3 1
5 3 ,5

2 2
V V V V V

  
   = − = + − 

  
.                                                (51) 

The square of the modulus of the relative velocity changes to: 

     

2 2
2

2 2

3 1
5 3 5

2 2
V V V

   
  = + + −       

  

     ( )
2

2 2
10 100V V = + + .                   (52) 

The projection of the relative velocity (51) on the relative initial position (44b) changes to: 

    0 2 2

3 1
15 5 3 20 5

2 2
V x V V

   
   = − + + −       

  

     2
29.90 22.99V = − − .        (53) 

Its square appears in (45c) modified to: 

     ( )
22 2 2

0 0
cos   = V x V x .                 (54) 

Substitution of (52, 53, 45b, 49c) in (54) leads to: 

    ( ) ( )
2 2

2 2 2 2
225 10 100 894 1374.8 528.5V V V V    + + = + +

 
,  (55) 

that is a quadratic equation in 2
V   

     ( )
2

2 2
303.5 875.2 21606 0V V − − = ,     (56) 
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with roots: 

      
2

1.442 8.560V  =  .            (57a,b) 

The two roots:  

                 
2 2

10.002 7.118V V
+ −
 =  = − ,                                              (58a,b) 

correspond to slowing down 
2 2

10 20V kt kt V
+
 =  =  or reversing the motion 

2 2
7.1 0 20V kt kt V

−
 = −   =  

of the second ship. They lead respectively to the relative velocities:  

                                       ( ) ( )
1 2

2 2

1 2 1 2
2 cos 17.89V V V VV kt

+ + +
   = + − = ,                                 (59a) 

                                          ( ) ( )
1 2

2 2

1 2 1 2
2 cos 8.08V V V VV kt

− − −
   = + − = ,                               (59b) 

and distinct times of closet approach: 

   
0

cos 0.8385
x

t h
V


+

+

= − =


,      
0

cos 1.8564
x

t h
V


−

−

= = −


.                      (60a,b) 

The relative positions of the two ships at these times are: 

1 2 10 1 20 2
x x x x Vt x V t
+ + + + +

= − = + − −  ( )0 1 2
x V V t

+ +
= + − =    

( ) ( )   0 1 2 2 0 1 2 2
cos , sin 0.48,19.99

x y
x V V t y V V t 

+ + + +
 = + − + − = − ,                                    (61a) 

1 2 10 1 20 2
x x x x Vt x V t
− − − − −

= − = + − −  ( )0 1 2
x V V t

− −
= + − =    

( ) ( )   0 1 2 2 0 1 2 2
cos , sin 19.63,4.11

x y
x V V t y V V t 

− − − −
 = + − + − = − .                                    (61b) 

Both solutions correspond to the desired minimum safety distance:  

                                                   20.0x km x
+ −
= = = ,                                                           (62) 

obtained either by moving faster ahead (59a); or by slowing down (59b). 
 

3.2 Three-dimensional safe separation between aircraft in climb and at cruise   
 
The second example is conflict avoidance between aircraft in flight; following aeronautical practice the 
speed is in kilometers per hour, for the first aircraft in level flight (63a) and the second climbing (63b): 

                              1
900,0,0V km h= ,       2

600, 200,50V km h= −  ,                               (63a,b) 

                              10
0,0,10x km= ,            20

10,20,5x km= .                                          (63c,d) 

The initial positions are (63a,b) in kilometers (km) and time is in hours (h). The required safe separation 
distance is: 

     
( ) ( )1 2 min

15 ;x t x t km−  =                   (64) 

if it is not met then only the vertical velocity of the second aircraft is to be changed by the minimum 
amount to satisfy the safe separation distance. The safety distances in (42) and (64) are examples, 
with standard values specified by nautical or aeronautical separation standards. For example, is 
aeronautics the horizontal separation may be 5 or 10 nautical miles in radar-controlled airspace and 
50 nautical miles in oceanic airspace and vertical separation may be 2000 or 1000 feet in altitude.  
The relative initial position is (65a) and the relative velocity (65b) are:  

             0 10 20
10, 20,5x x x km= − = − − ,     1 2

300,200, 50V V V km h= − = − ,                  (65a,b) 

and the angle between them is calculated from:  

                      
0

22.9x km= ,     364V km h= ,     
0

0

cos 0.870
V x

V x



= = − .                    (66a-c) 

The angle (67a,b) leads to a distance of closest approach (67c) at the time (67d): 

   150.4º = ,   sin 0.493 = ,    
min 0

sin 11.3D x km= = ,    
0

*
cos 0.0547

x
t

V
= − = .   (67a-d) 

The positions of the two aircraft at this time: 
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       ( )  1 * 10 1 *
49.23,0,10x t x V t km= + = ,    ( )  2 * 20 2 *

42.82,9.06,7.73x t x V t km= + = ,         (68a,b) 

confirm the minimum separation (67c) (69a): 

                                   ( ) ( )1 * 2 * min
11.3 15x t x t km D km− = =  = ,                                    (69a,b) 

that is less than the required safety distance (69b) (64).  
 The required separation distance implies that the angle between the relative velocity and initial 
relative position must satisfy: 

                   
0

sin 0.655
x


 = = ,      139.07º = ,      cos 0.7556 = − ;                               (70a-c) 

this will be met changing only the vertical velocity of the second aircraft from 
2

50 /
z

V km h=
 
in (63b) to 

2 z
V 

 
be determined in the sequel. The identity (54) is used again, where: (i) the modulus of the relative 

velocity is:  

                      ( ) ( )
2 2 2 22 2 5

1 2 2 2
300 200 1.3 10

z z
V V V V V   = − = + + =  + ;                                 (71a) 

(ii) the inner product by the relative position is: 

                           
3

0 0 0 2 0 2
300 200 7 10 5

z z
V x x y V z V   = + − = −  − .                                          (71b) 

Substituting (71a,b) and (70c) in (54) leads to a quadratic equation for the vertical velocity of the second 
aircraft: 

                                                ( ) ( )
2 23 5

2 2
5 7 10 299.4 1.3 10

z z
V V  +  =  +

 
.                          (72a)  

The binomial (72a)  (72b),  

                                                     ( )
2 4 7

2 2
274.4 7 10 1.0078 10 0

z z
V V −  −  = ,                        (72b) 

has roots: 

                                      2
127.55 230.21 357.76

z
V  =  = + , 102.66− ,                                    (73a,b) 

leading to two possible vertical velocities, one climbing and the other descending.  
 The corresponding relative velocities are:  

                  
1 2

507.9V V V km h
+ +
 = − = ,        

1 2
374.9V V V km h

− −
 = − = .                         (74a,b) 

The corresponding times of closet approach are:  

                  
0

cos 0.03407
x

t h
V


+

+

= − =


,         
0

cos 0.04615
x

t h
V


−

−

= − =


.               (75a,b) 

The relative positions at these times are: 

                       ( )  1 2 0 1
0.221, 13.19, 7.19x x x x V V t

+ + + +
 = − = + − = − − ,                                  (76a)  

                       ( )  1 2 0 1
3.845, 10.77,9.74x x x x V V t

− − − −
 = − = + − = − .                                    (76b) 

Both roots lead to the desired minimum separation distance: 

                                           15.0x km x
− +
= = = ,                                                                     (77)  

in different ways, one by descending (73b) and the other by climbing faster (73a). Next is considered 
a different kind of problem with one curved trajectory and time of closest approach imposed ‘a priori’. 
 

3.3 Minimum distance between a curved and a straight trajectory   
 
The third example uses SI units for the velocity in meters per second (78b) of an aircraft flying in a 
circular path of radius (78a) in meters, using time in seconds in the centripetal acceleration (78c) that 
is small compared with that of gravity: 

        
420 2 10R km m= =  ,   216 60 /V km h m s= = ,   

2

20.18 / 0.018
V

a m s g
R

= = = .               (78a-c) 

The trajectory in a Cartesian reference frame with origin at the centre is: 

                            ( )1
cos

V
x t R t

R

 
=  

 
,      ( )1

sin
V

y t R t
R

 
=  

 
.                                                     (79a,b) 
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The second aircraft starts at an initial position (80b) and flies at the same altitude with a constant 
heading (80b): 

                           4

0
5 10 ,0 ,0x m L= −  = − ,     30º = ,     

*
600t s= ,                                 (80a-c) 

and constant velocity u  such that the time of closest approach is (80c). It is required to find the distance 

of closest approach and the corresponding positions of the two aircraft.  
The trajectory of the second aircraft is  

                              ( )2
cosx t L ut = − + ,       ( )2

siny t ut = .                                             (81a-c) 

The relative position is:   

             ( ) ( ) ( )1 2
cos cos , sin sin

V V
x t x t x t R t L u t R t u t

R R
 

    
= − = + − −    

    
,                  (82)   

and its derivative with regard to time: 

                       ( ) sin cos , cos sin
dx V V

V t V t u V t u
dt R R

 
    

= = − − −    
    

,                             (83)   

specifies the relative velocity (83).  
 The condition of closest approach is (16a,b) that the relative position (82) and velocity (83) be 
orthogonal:  

( ) ( ) 2

* * * * * * *
0 cos sin cos sin

V V V
x t V t u t Ru t Vut t L u V t

R R R
  

      
=  = − − + − − +      

      
.     (84) 

The time of closest approach (80c) is satisfied if the velocity along the straight path satisfies the 
quadratic relation: 

                              ( )2

* *
0 sin cos cos sint u u Vt R L LV   = + − − − ,                                     (85) 

where for the present problem (78a,b; 80c,b). 

                           
*

1.8 103.13º
V

t rad
R

 = = = ,       
*

73.13º
V

t
R

 = − = ;                                (86) 

the quadratic (85): 

                                           
2 2 4 60 6 10 1.4655 10 2.9216 10u u=  −  −  ,                                   (87) 

has roots: 

                                                     12.21 70.84 83.05, 58.63u

=  = + − .                               (88a,b) 

The corresponding positions along the straight path at the time of closest approach are: 

                                3 4

* *
cos , sin 6.85 10 ,2.49 10x L u t u t 

+ + +
= − + = −   ,                         (89a) 

                               4 4

* *
cos , sin 8.05 10 , 1.76 10x L u t u t 

− − −
= − + = −  −  ;                      (89b) 

at the same time the position on the circular path is: 

                                           3 4cos ,sin 4.54 10 ,1.95 10x R m = = −   .                               (90) 

The extrema for the relative distance: 

                                          
3 45.87 10 8.45 10x x m m x x

+ −
− =    = −  ,                            (91a,b) 

may be local maxima or minima.  
 To clarify this the acceleration is needed, that is specified by the circular motion alone: 

                                
2 2

2 1 2

2
cos ,sin 4.09 10 , 1.75 10 /

d x V
a m s

dt R
  − −= = − =  −  .                  (92) 

The criterion (18b) requires also the relative velocities: 

   2sin cos , cos sin 1.30 10 , 5.52 10 /V V u V u m s   
+ + +
= − − − = −  −  ,          (93a)

   sin cos , cos sin 7.66,1.57 10 /V V u V u m s   
− − −
= − − − = −   ,                       (93b) 

through the square of the moduli: 

                                               
2 2

4 2 2 2 2 21.99 10 / 3.05 10 /V m s m s V
+ −

=    = .                         (94a,b) 

The acceleration (92) appears projected on the relative position (89a,b;90): 

                       3 3 4 42.31 10 , 5.40 10 , 7.60 10 ,3.71 10x x m x x m
+ −

− =  −  − =   ,                 (95a,b) 

leading to: 
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                       ( ) 3 2 21.04 10 /a x x m s
+

 − =  ;    ( ) 3 2 23.38 10 /a x x m s
−

 − = −  .                        (96a,b) 

The criterion (18b): 

                          ( )
2

4 2 2 3 2 22.094 10 / 0 3.075 10 /V x x a m s m s
+ +

+ −  =    −  ,                        (97a,b) 

shows that the first solution that has positive velocity corresponds to the closest approach and is both 
a local and a global minimum for the relative distance. The second solution that has negative velocity 
is a local maximum of the relative distance; it is not an absolute maximum because the latter 
corresponds to infinite distance. 
 
4. Discussion  
 
The problem of conflict avoidance between two vehicles involves, besides a safe separation distance 

chosen ‘a priori’, 4 vectors, namely the initial position vectors ( )10 20,x x  and constant velocity vectors 

( )1 2,V V  of each vehicle, leading to 4 2 8 =
 
components in two dimensions and 4 3 12 =

 
components 

in three dimensions. Since a conflict is concerned with relative motion, it might be expected that only 
four variables would be relevant, namely the relative initial position (9a) and the constant relative 
velocity (9b). It is remarkable that the distance of closest approach (33) and hence the safety criterion 
involve only two combinations of these four variables: (i) initial distance (not the direction); (ii) the angle 
of the relative velocity with the relative initial position (not the modulus of the relative velocity). Thus, a 
conflict can be avoided by: (a) steering only one vehicle, so that the condition (36) is met, with no need 
to change the modulus of the velocity; (b) alternatively the heading may retained, and conflict 
avoidance is implemented by increasing the velocity to race ahead, or slowing down or reversing the 
motion to fall behind. Less simple combinations are to change the heading and velocity of one or both 
vehicles. For example, a conflict between aircraft can be resolved changing speed (acceleration or 
deceleration) or heading or climb or descend rate for one or both aircraft. The present method applies 
to all these cases and combinations thereof.  
 Besides (i) the initial relative distance and (ii) angle of the relative initial position with the relative 
velocity, the (iii) modulus of the relative velocity also appears in the time of closest approach (28b) 
(37b). The condition of conflict avoidance between two vehicles thus requires that one of them be 
steered out of a dangerous angular sector for which a collision would occur. In the case of several 
vehicles a conflict can be avoided if the dangerous angular sectors for each vehicle do not cover all 
directions of straight travel. If all directions of straight travel lead to conflicts then curved trajectories 
must be considered. The cases of conflict between vehicles with non-uniform velocity along curved 
paths is addressed by the first theorem, of which the second is a particular case. The minimum distance 
between two curves occurs at a point with common normal (Figure 6); this would be the distance of 
closest approach only if the two vehicles would be at these points at the same time. In that case the 
relative velocity, that is tangential, would be orthogonal to the relative position, that is along the normal 
(16a,b); if the curves have opposite curvatures, it would also be locally the point of closest approach 
(19a,b). However, in general the vehicles following the two paths will pass by nearest points at different 
times (Figure 2) and the distance of closest approach will be larger than the minimum distance between 
the two curves. 
 In all cases of uniform or non-uniform motion along straight or curved paths it remains true that 
an extremum of the relative distance (16a) will correspond to a relative velocity orthogonal to the 
relative position (16b) and that extremum will be the minimum separation distance if the relative 
acceleration (19a) meets the condition (19b) that may be interpreted as stating that the total 
acceleration, including the centripetal acceleration, must cause the vehicles to move away from each 
other. The latter two conditions (16a,b) and (19a,b) are necessary and sufficient to determine the 
distance of closest approach and apply the criterion of minimum safe separation distance for two 
vehicles or vehicles with arbitrary trajectories and velocities along them. The minimum is a local 
minimum for curved trajectories with non-uniform velocity, and an absolute minimum for straight 
trajectories with uniform velocity. In the latter case of straight trajectories with constant velocity (Figure 
4) the maximum distance is infinity after an infinite time, and there are no local maxima. In the case of 
non-uniform motion along curved paths there can exist local minima *nD  of the relative distance (Figure 

3) as well as maxima *F . The objective of maximizing the relative distance corresponds to: (i) relative 

position orthogonal to the relative velocity, as for any extremum; (ii) the local acceleration must 
overcome the centripetal acceleration to increase the distance. Thus, the dotted path in Figure 1 would 
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correspond to a local maximum of the relative distance whereas the solid curve would correspond to a 
local minimum. 
 

5. Conclusion  
 
The conflict detection and resolution (CDR) requires that the trajectories of two vehicles always lead to 
a relative distance not less than the safe separation distance (SSD). This can be ensured if the distance 
of closest approach (DCA) is not less than the SSD. The DCA has been calculated for two arbitrary 
trajectories, generally curved and with accelerated motion: in this case there can exist several local 
minima of the relative distance between two vehicles and the DCA is the smallest of them. In the case 
of two vehicles with constant velocity the rectilinear trajectories lead to one time of closest approach; 
the maximum distance is unbounded for large time. The preceding results apply to any type of vehicle 
(car, ship, aircraft) and to motion in two or three dimensions. They are illustrated by 2 examples with 
constant velocities: (i) conflict avoidance between two ships changing the modulus of the velocity of 
one of them; (ii)   conflict avoidance between two aircraft changing the climb rate of one of them. A 
third example involves one straight and one curved trajectory and requires one velocity to be chosen 
to achieve a time of closest chosen “a priori”. 
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Figure 1 - Two vehicles move along trajectories specified by the position vectors ( )1
x t

 
and ( )2

x t
 
as 

a function of time, so that the relative position is 
1 2

x x x − . The trajectories may be curved and 

described in non-uniform motion so that the velocities are functions of time ( )1
V t and ( )2

V t
 
as also the 

relative velocity 
1 2

V V V − . The time of closest approach 
*
t corresponds to relative position x  

orthogonal x V⊥  to the relative velocity V , that is their inner product is zero 0x V = . The dotted line 

refers to a trajectory of the second vehicle also leading to an extremum of the relative distance, but a 
maximum rather than a minimum. 
 

 

 
 

Figure 2 - The shortest distance E between two curves or paths is along the common normal. This 
would the distance of closest approach D along the two trajectories only if the two vehicles were at the 

closest positions ( )1 2
,P P

 
at different times 

1
t t , so their distances ( )1 2

,D D
 
are larger than E. 

 

 
 
 

Figure 3 – For vehicles moving along curved trajectories there may exist several times 
*n

t
 
of closest 

approach *n
D , corresponding to local minima of the relative distance, that usually exceeds the 

minimum distances n
E . The distance of closest approach is then the smallest of all local minima *n

D . 

There are also local maxima n
F

 
indicated by dotted lines. 
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Figure 4 – The distance of closest approach 
m

D
 
is a unique minimum in the case of constant velocities 

when the trajectories are straight lines described in uniform motion. The distance of closest approach 
in this case is calculated most simply by choosing a Cartesian reference frame with the velocity of the 

second vehicle, so that it stays at the origin ( )2
0x t =

 
for all time. The OX axis is taken through the 

initial position 
10

x
 
of the first vehicle, at a distance 

10
x . The trajectory of the first vehicle is a straight 

line in the direction of the relative velocity making an angle   with the x – axis. The distance of the 

closest approach is thus (33). The distance covered by the first vehicle is (37a), and since it travels at 

the relative velocity V
 
the time of closest approach is the ratio (37b). 

 
 

 

Figure 5 – For vehicles moving with constant velocities ( )1 2
,V V  if the relative velocity 

1 2
V V V −

 
makes 

an obtuse angle 
0

0x V   with the relative 
0 10 20

x x x −
 
initial positions then (case a) the trajectories 

converge, and the time of closest approach is in the future 
*

0t  . If the relative velocity V
 
makes an 

acute angle 
0

0x V   with the relative initial position 
0

x , the trajectories diverge, and the closest 
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approach was in the past 
*

0t  . 

 

 
 

Figure 6 – The distance between two paths 
1

x
 
and 

2
x  would be the distance of closest approach 

between the two trajectories ( )1
x t

 
and ( )2

x t
 
only if the two vehicles were at the closest points 

1
P

 
 and  

2
P

 
at the same time 

*
t . In that case the relative position 

1 2
x x x −

 
is along the common normal and 

the relative velocity 
1 2

V V V −  is tangential so they are orthogonal 0x V = . This condition applies at 

the time of closest approach (16b) in all cases, even if the vehicles pass at the closest points at different 
times. 
 

 


