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Abstract 

This paper presents a novel approach for computing the probability of constraint satisfaction in the context of 
reliability-based design optimization of complex systems, such as an aircraft. The constraint satisfaction is 
formulated as a classification problem, where an artificial neural network is employed to predict the 
corresponding probabilities. Different from existing approaches which require a double loop paradigm for either 
training or applying the artificial neural networks, the proposed approach is able to give probability prediction 
for any arbitrary point in the entire design space, using only one loop of model evaluations. As a result, the 
computational cost is reduced. An illustrative example is used to highlight the differences between the existing 
and proposed approaches. The usefulness of the latter is further demonstrated with an aircraft sizing case 
study. The results show that the proposed approach can provide reasonably accurate predictions for a realistic 
design problem. 

Keywords: Aircraft conceptual design, Uncertainty Quantification, Artificial Neural Networks, Machine Learning, 
Reliability-based Design Optimization 

 

1. Introduction 
Designing complex systems, such as an aircraft, involves a large number of computational models 
and design variables, which may be characterized by uncertainty. Such uncertainty could be, for 
instance, due to limited model fidelity, numerical errors, or unfixed parameters. If not handled 
properly, these sources of uncertainty will cause inaccurate computational results, which in turn 
could lead to inaccurate performance assessment of the aircraft and risk of unnecessary design 
iterations.  

During the last few decades, methods have been developed for aircraft design under uncertainty 
using the probabilistic approach [1–4], where uncertain parameters are represented as probability 
distributions. In general, two design paradigms are widely adopted: Robust Design Optimization 
(RDO) [5–9] and Reliability Based Design Optimization (RBDO) [10,11]. The former intends to 
reduce performance variation while the latter aims to maintain required probabilities of constraints 
satisfaction. In both cases, a double-loop approach is normally utilized to obtained desired design 
solutions. The outer (optimization) loop iterates the values of design variables to search the design 
space, while the inner (uncertainty propagation [12–14]) loop calculates certain quantities of interest 
for each design point (e.g., output variances in RDO and probabilities in RBDO). In practice, this 
inner loop could be computationally very expensive, as it normally requires a large amount of 
repeated model evaluations, for example, to perturb the uncertain parameters according to 
predefined probability distributions. This is currently one of the major challenges in aircraft design 
under uncertainty. 

In this research, we proposed a novel approach to compute the probabilities of constraint satisfaction 
for RBDO, using Artificial Neural Networks (ANN). Although ANN have already been applied in the 
context of RBDO, the proposed approach is different from the existing ones as it requires only a 
single loop, therefore improving the computational efficiency. 

The remaining part of this paper is structured as follows: Section 2 reviews the basics of artificial 
neural networks and their current applications in RBDO. The proposed approach is presented in 
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Section 3. The major differences between the proposed and existing approaches in problem 
formulation are highlighted with an illustrative example in Section 4, where the proposed method is 
also evaluated with an aircraft design use-case to test its scalability and accuracy. Finally, the 
summary, conclusions, and future work are outlined in Section 5. 

2. Literature review 

2.1 Artificial Neural Networks (ANN) 
An artificial neural network is a type of computing system which imitates the signal processing 
behaviors in a biological brain. It has been widely applied in different machine learning problems, 
such as data mining, Computer Vision (CV), Natural Language Processing (NLP), and so forth. In 
general, these applications can be categorized into two groups: regression and classification. In a 
regression problem, the ANN is employed in a similar way as a surrogate model to approximate and 
replace a certain mathematical function (e.g., a Computational Fluid Dynamics (CFD) model), which 
can be computationally expensive to execute. In a classification problem, the ANN is utilized to 
distinguish between different sets of data, according to their characteristics (e.g., to classify objects 
in an image). 
The first mathematical model of ANN was proposed in 1943 [15], followed by many variants in 
different fields [16,17]. In this paper, we will be focusing on the perceptron model, which was initially 
developed for image recognition [18]. Later, it has been proven that the Multi-layer Perceptrons 
(MLP) are universal function approximators [19,20], which makes it one of the most widely used 
techniques in machine learning. In this section, the mathematical formulation of ANN is briefly 
introduced, while more elaborated descriptions can be found in [21,22]. 

 

Figure 1 – (a) illustration of an artificial neural network. (b) Randomization of computational models 

 
A typical MLP ANN is shown in Figure 1 (a), where the neurons are represented as ellipses. Each 
neuron is corresponding to a variable (also referred to as the activation), while a vertical stack of 
neurons is referred to as a layer. On the far left is the (global) input layer, which can be represented 
as a vector of 𝑛 inputs variables, 𝑿 = [𝑥ଵ, 𝑥ଶ, … , 𝑥௡]். The output layer is on the far right, which 
consists of 𝑚 output variables as a vector, 𝒀 = [𝑦ଵ, 𝑦ଶ, … , 𝑦௠]். There could be one or more hidden 
layers between the input and output ones. The 𝑖௧௛ hidden layer is represented as a vector, 𝑨(௜) =

ቂ𝑎ଵ
(௜)

, 𝑎ଶ
(௜)

, … , 𝑎௡೔

(௜)
ቃ

்
, where 𝑛௜ is the number of neurons in that layer. These hidden layers enable the 

representation of complex mathematical features that cannot be directly captured by 𝑿. The number 
of layers, 𝑙, is also referred to as the “depth” of the ANN, which characterizes the so-called “deep 
learning” process. 
Figure 1 (b) illustrates the details of neuron connections, where each neuron takes all the 
activations in the previous layer as inputs and its output is fed to all the neurons in the next layer. 
For instance, the variable corresponding to the 𝑗௧௛ neuron in the 𝑖௧௛ hidden layer, 𝑎௝

(௜) is defined as: 

 𝑎௝
(௜)

= 𝜑(𝒘𝒋
(௜)

∙ 𝑨(௜ିଵ) + 𝑏௝
(௜)

) ( 1 ) 

The part inside the bracket is a linear combination of the activations in the previous layer, 𝑨(௜ିଵ) =
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ቂ𝑎ଵ
(௜ିଵ)

, 𝑎ଶ
(௜ିଵ)

, … , 𝑎௡೔షభ

(௜ିଵ)
ቃ

்
, while 𝒘௝

(௜)
= ቂ𝑤ଵ,௝

(௜)
, 𝑤ଶ,௝

(௜)
, … 𝑤௡೔షభ,௝

(௜)
ቃ

்
 is a vector of weight factors. As indicated 

in the Figure 1 (b), 𝑤௞,௝
(௜) is corresponding to the connection between the 𝑘௧௛ neuron in the (𝑖 − 1)௧௛ 

layer and the 𝑗௧௛ neuron in the 𝑖௧௛ layer. There is also a bias term indicated by 𝑏௝
(௜). In equation ( 1 ), 

𝜑 is the so-called activation function, which simulate a signal pulse in a biological neuron. There are 
different types of activation functions, which include: linear, Rectified Linear Unit (ReLU), logistic, 
hyperbolic tangent, etc. The reader is referred to [21,22] for more details. Note that equation ( 1 ) is 

for 𝑎௝
(௜) only. Therefore, to compute the entire vector 𝑨(௜) = ቂ𝑎ଵ

(௜)
, 𝑎ଶ

(௜)
, … , 𝑎௡೔

(௜)
ቃ

்
. The equation 

becomes: 
 𝑨(௜) = 𝜑(𝑾(௜) ∙ 𝑨(௜ିଵ) + 𝒃(௜)) ( 2 ) 

where 𝑾(௜) is an 𝑛௜ × 𝑛௜ିଵ matrix of all the weight factors and 𝒃(௜) is an 𝑛௜ × 1 vector of all the 
biases. The activation function is applied elementwise for the term inside the bracket (which is an 
𝑛௜ × 1 vector). 

Given the input vector 𝑿, the neuron activations 𝑨(௜) will be computed layer by layer with equation ( 
2 ), and finally the output 𝒀 will be obtained. In a regression problem, the outputs are estimators of 
the original function; while in a classification problem, the outputs are posterior probabilities of an 
input dataset belonging to a category.  
Before applying the ANN, a training set consisting of 𝑁 pairs of observed (𝑿ை௕௦, 𝒀ை௕௦) needs to be 
produced. For a regression problem, this is achieved by repeated execution of the original function 
using a design of experiment. In the case of classification, the training set will be generated using 
samples with pre-defined labels. The training process of an ANN is essentially an optimization 
process, which updates all the weight factors to minimise the gap between the predicted output 
values and the observed ones. Because the problem dimension is massive (consider all the 𝑾(௜) 
matrices), an efficient algorithm called back-propagation [23–27] is normally applied. As the correct 
predictions are known a priori, this way of training is also referred to as “supervised learning”. 
 
2.2 Problem Formulation of Reliability-base Design Optimization (RBDO) 
A RBDO problem could be formulated as: 
 Find: 𝒅 ∈ 𝑅௡ 

To minimize: 𝑓(𝒅, 𝒖) 
Subject to: 𝑃{𝑔௜(𝒅, 𝒖) ≤ 0} ≥ 𝑝௜ , 𝑖 = 1,2, … , 𝑁 

( 3 ) 

where 𝑓 is the objective function and 𝑔௜ is the 𝑖௧௛ constraint. In practice, 𝑓 and 𝑔௜ are based on 
certain analysis models which will be executed in each design iteration. 𝑃{𝑔௜(𝒅, 𝒖) ≤ 0} is the 
probability of constraint satisfaction and 𝑝௜ is a pre-specified lower bound for that probability. 
The inputs of all the models can be decomposed into two part: a vector of design variables, 𝒅 =
[𝑑ଵ, 𝑑ଶ, … , 𝑑௡], and a vector of uncertain variables, 𝒖 = [𝑢ଵ, 𝑢ଶ, … 𝑢௠ ]. The former (at least the 
nominal value) is control by a designer or an optimizer, whilst the latter follows a joint probability 
distribution, Π(𝑢ଵ, 𝑢ଶ, … 𝑢௠). 
Without loss of generality, the design variables and analysis models could also be influenced by 
uncertainty (e.g., due to manufacturing inaccuracy and model discrepancy, respectively). As 
illustrated in Figure 2, these types of uncertainty are captured by multiplying the original 
deterministic value of the design variable or model output with a corresponding random factor, and 
the latter should also be included as an element in the vector of uncertain variables, 𝒖. 
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Figure 2 – (a) representation of an uncertain design variable. (b) representation of model uncertainty 

(adapted from [28]) 
 

Due to the existence of 𝒖, both 𝑓 and 𝑔௜ are uncertain variables as well, which follow their 
corresponding probability distributions. As illustrated in Figure 3, if the Probability Density Function 
(PDF) of 𝑔௜ is known (noted as 𝜋(𝑔௜)), then 𝑃{𝑔௜(𝒅, 𝒖) ≤ 0} could be obtained analytically by: 
 

𝑃{𝑔௜(𝒅, 𝒖) ≤ 0} = න 𝜋(𝑔௜)
଴

ିஶ

𝑑𝑔௜ 
( 4 ) 

In practice, 𝜋(𝑔௜) is normally unknown, therefore requires some numerical solutions such as Monte 
Carlo Simulation (MCS) or other uncertainty propagation techniques [12–14]. 

 
Figure 3 – Probability of constraint satisfaction for 𝑔௜ 

 

2.3 Application of ANN in RBDO 
Early applications of ANN in reliability analysis can be found in [29,30], where the ANNs are used as 
surrogates to replace the original models in a MCS for computing the probability of failure. In [31], 
ANN is applied in the context of reliability-based design optimization, using two different 
approaches. In the first approach, an ANN is first trained using a double loop paradigm, where the 
outer loop is applied to sample the design space; while for each design point, apart from examining 
the deterministic constraints, an MCS is performed as the inner loop to check if the probability of 
constraint satisfaction is achieved. This ANN is then applied in an actual (single loop) optimization 
process to verify both the deterministic and probabilistic constraints. Although not mentioned 
explicitly, it can be inferred that this ANN is implemented as a classifier, as it has only one output 
prediction for all the constraints. In the second approach, the actual optimization is conducted with 
the double loop paradigm. The outer loop searches the design space to minimise the objective 
function. For each design point, a distinct ANN is trained by sampling only the uncertain variables 
(while fixing the design variables). This ANN is then utilized as an approximator to replace the 
original model for MCS in the inner loop (same as [30]). In [32], the same approach is extended to 
Reliability-based Robust Design Optimization (RRDO), where the ANN approximator is used in the 
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MCS to compute the standard deviations as well. In [33,34], subset simulation and Markov Chain 
Monte Carlo Simulation (MCMCS) are employed for more efficient sampling, whereas ANN is still 
used as a surrogate model. 
Comparative studies were conducted in [35], to assess different types of ANN (MLP vs radial basis 
functions), formulation of cost function, training algorithms, and sampling strategies. In [35], the 
authors pointed out explicitly that the ANN could be used as a classifier. Instead of approximating 
the original function, the ANN predicts if an output is below or above the threshold value to meet a 
constraint. As mentioned above, the first approach in [31] might also have employed the ANN as a 
classifier. However, the difference is that: in [31], the ANN classifier is trained after assessing the 
probabilistic constraint using the original model in MCS, while in [35], the ANN classifier is trained 
first, then used in the MCS, where the probability of failure is computed by counting the number of 
0’s and 1’s in the ANN predictions. Comparison studies show that the classification approach 
requires a much smaller training set compared with regression approach, as the former gives binary 
predictions rather than reproducing the entire function. As a result, more samples should be 
allocated on the areas close to the constraint, which is achieved in [36] by using Particle Swarm 
Optimization (PSO), maximum entropy, and Sobol’ sequences. The classification approach was 
extended to random field and random process problems in [37,38]. Other implementations of the 
classification approach include [39,40] using Probabilistic Neural Networks (PNN) and [36,41,42] 
using Support Vectors Machines (SVM). 
ANN is utilized in [43,44] to solve an inversed reliability problem, where design variables and/or 
distribution parameters (means and standard deviations) need to be identified, given a pre-specified 
probability of failure (or reliability index). A similar double loop paradigm is employed to produce the 
training set, where the outer loop produces random samples of the design variables and/or 
distribution parameters using Latin Hyper Cube (LHC), while for each sample, an inner loop is 
applied to compute the corresponding probability of failure using the First Order Reliability Method 
(FORM). These samples are then used for training the ANN, whereas the probability of failure is 
considered as an input whilst the design variables and/or distribution parameters are considered as 
outputs. This ANN is then utilized to map any desired probabilities of failure to proper values of the 
design variables and/or distribution parameters. 
The existing approaches are categorized into four groups (A1 to A4) and summarized in Table 1. It 
can be seen that all the approaches utilize the double loop paradigm for either training or application 
of the ANN. In both cases, the computational cost (number of searching iterations multiplied by 
number of model evaluations for uncertainty propagation) could be very large, even when 
considering the reduction by applying the ANN and advanced sampling strategies.  
Furthermore, as mentioned in Section 2.1, when the ANN is implemented as a classifier, the outputs 
themselves can be interpreted as posterior probabilities. This feature has not been exploited in the 
published literature, which motivates our proposed method that is presented in the next section. 
 
Table 1 – Summary of the general approach 

  Outer Loop: Search Design Space 

 Inner Loop:  
o Train ANN 
o Reliability analysis using ANN 

 Outer Loop: Search Design Space 

 Inner Loop:  
o Reliability analysis using original 

model 
 Train ANN 

Regression A1: [29,30,32–35], Second approach in 
[31] 

A3: [43,44] 

Classification A2: [35–42] A4: First approach in [31] 

3. Methodology 
The proposed approach uses the classification approach. However, different from the existing 
approaches which employ a double loop for training or application, it solves the problem with a 
single loop only, where the probability of constraint satisfaction is obtained as a direct output of the 
ANN.  
The steps of the proposed approach are illustrated in Figure 3, using the notations defined in 
Section 2.2. The architecture of the ANN needs to be decided first. The number of input neurons is 
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equal to that of the design variables, while the number of output neurons is equal to that of the 
constraints. Each output neuron provides the probability of satisfying the corresponding constraint. It 
should be noted that the uncertain variables are not considered as inputs for this ANN. There is 
currently no theoretical guidance for the number of hidden layers and the numbers of neurons in 
each hidden layer. According to the literature, one or two hidden layers are usually sufficient for 
problems of comparable scale, while the number of neurons in the hidden layer can be estimated as 
two times the number of ANN inputs. In this research, we use the logistic function as the activation 
function [22]. 
To prepare the training set, the design space is first sampled 𝑀 times. This could be done with LHC, 
Sobol’ sequences, pure random, or full factorial design of experiment. The samples are represented 
as a 𝑀 × 𝑛 matrix: 
 

𝑫 =

⎣
⎢
⎢
⎢
⎡ 𝑑ଵ

(ଵ)
𝑑ଶ

(ଵ)

𝑑ଵ
(ଶ)

𝑑ଶ
(ଶ)

… 𝑑௡
(ଵ)

… 𝑑௡
(ଶ)

… …

𝑑ଵ
(ெ)

𝑑ଶ
(ெ)

… …

… 𝑑௡
(ெ)

⎦
⎥
⎥
⎥
⎤

 

( 5 ) 

where 𝑑௜
(௝) is the 𝑗௧௛ sample of the 𝑖௧௛ design variable and each row is a design point in the multi-

dimensional design space. 

 

Figure 4 – Steps of the proposed method 
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For each design point, only one realization of the uncertain variables is drawn from the original joint 
PDF, Π(𝑢ଵ, 𝑢ଶ, … 𝑢௠), using either pure or quasi-random samples. Similarly, the result is noted as a 
matrix: 
 

𝑼 =

⎣
⎢
⎢
⎢
⎡ 𝑢ଵ

(ଵ)
𝑢ଶ

(ଵ)

𝑢ଵ
(ଶ)

𝑢ଶ
(ଶ)

… 𝑢௠
(ଵ)

… 𝑢௠
(ଶ)

… …

𝑢ଵ
(ெ)

𝑢ଶ
(ெ)

… …

… 𝑢௠
(ெ)

⎦
⎥
⎥
⎥
⎤

 

( 6 ) 

By combining the design and uncertain variables, an 𝑀 × (𝑛 + 𝑚) matrix is obtained, where each 
row is a complete input vector: 
 

𝑰 =

⎣
⎢
⎢
⎢
⎡ 𝑑ଵ

(ଵ)
𝑑ଶ

(ଵ)

𝑑ଵ
(ଶ)

𝑑ଶ
(ଶ)

… 𝑑௡
(ଵ)

… 𝑑௡
(ଶ)

… …

𝑑ଵ
(ெ)

𝑑ଶ
(ெ)

… …

… 𝑑௡
(ெ)

𝑢ଵ
(ଵ)

𝑢ଶ
(ଵ)

𝑢ଵ
(ଶ)

𝑢ଶ
(ଶ)

… 𝑢௠
(ଵ)

… 𝑢௠
(ଶ)

… …

𝑢ଵ
(ெ)

𝑢ଶ
(ெ)

… …

… 𝑢௠
(ெ)

⎦
⎥
⎥
⎥
⎤

= ൦

𝒅(ଵ), 𝒖(ଵ)

𝒅(ଶ), 𝒖(ଶ)

…
𝒅(ெ), 𝒖(ெ)

൪ 

( 7 ) 

For each row, the analysis models are evaluated. 
 𝑔௜

(௝)
= 𝑔௜൫𝒅(௝), 𝒖(௝)൯, 𝑖 = 1,2, … , 𝑁, 𝑗 = 1,2, … , 𝑀 ( 8 ) 

Note that the models will be executed 𝑀 times and there are 𝑁 different constraints in total. 
Therefore, the output is an 𝑀 × 𝑁 matrix: 
 

𝑮 =

⎣
⎢
⎢
⎢
⎡ 𝑔ଵ

(ଵ)
𝑔ଶ

(ଵ)

𝑔ଵ
(ଶ)

𝑔ଶ
(ଶ)

… 𝑔ே
(ଵ)

… 𝑔ே
(ଶ)

… …

𝑔ଵ
(ெ)

𝑔ଶ
(ெ)

… …

… 𝑔ே
(ெ)

⎦
⎥
⎥
⎥
⎤

 

( 9 ) 

By verifying each constraint, a label matrix could be produced, where 1 indicates constraint 
satisfaction, while 0 means failure to satisfy the constraint:  
 

𝑳 =

⎣
⎢
⎢
⎢
⎡ 𝑙ଵ

(ଵ)
𝑙ଶ

(ଵ)

𝑙ଵ
(ଶ)

𝑙ଶ
(ଶ)

… 𝑙ே
(ଵ)

… 𝑙ே
(ଶ)

… …

𝑙ଵ
(ெ)

𝑙ଶ
(ெ)

… …

… 𝑙ே
(ெ)

⎦
⎥
⎥
⎥
⎤

 

( 10 ) 

 
𝑙௜

(௝)
= ൝

1 𝑖𝑓 𝑔௜
(௝)

≤ 0

0 𝑖𝑓 𝑔௜
(௝)

> 0
 

( 11 ) 

The final training set contains all the design variables and labels, which are considered as the 
observed inputs and outputs, respectively. However, the uncertain variables are not included in the 
training set. As mentioned earlier, the uncertain variables are not used as the inputs of this ANN, 
instead, they are regarded as noises in the sampling process. 

𝑺 =

⎣
⎢
⎢
⎢
⎡ 𝑑ଵ

(ଵ)
𝑑ଶ

(ଵ)

𝑑ଵ
(ଶ)

𝑑ଶ
(ଶ)

… 𝑑௡
(ଵ)

… 𝑑௡
(ଶ)

… …

𝑑ଵ
(ெ)

𝑑ଶ
(ெ)

… …

… 𝑑௡
(ெ)

𝑙ଵ
(ଵ)

𝑙ଶ
(ଵ)

𝑙ଵ
(ଶ)

𝑙ଶ
(ଶ)

… 𝑙ே
(ଵ)

… 𝑙ே
(ଶ)

… …

𝑙ଵ
(ெ)

𝑙ଶ
(ெ)

… …

… 𝑙ே
(ெ)

⎦
⎥
⎥
⎥
⎤

 

In this research, cross-entropy [21,22] is employed as the cost function for training, while the 
backpropagation algorithm is used to update the weight factors (as defined in Section 2.1). After 
training, the ANN could be used to predict the probability of satisfying each constraint given any 
arbitrary vector of design variables.  

𝑷෡∗ = 𝐴𝑁𝑁(𝒅∗) 

where 𝒅∗ = [𝑑ଵ
∗ , 𝑑ଶ

∗ , … , 𝑑௡
∗ ] is an arbitrary point of interest in the design space, while 𝑷෡∗ =

[𝑃෠ଵ, 𝑃෠ଶ, … , 𝑃෠ே]. Note that there is no need to produce any realization of the uncertain variables or run 
MCS on this ANN.  

4. Evaluation 
4.1 Illustrative Example  
In this section, an illustrative example is utilized to highlight the differences in mathematical 
formulations between the proposed and existing approaches. Consider a problem with two design 
variables, 𝒅 = [𝑑ଵ, 𝑑ଶ], and two uncertain variables, 𝒖 = [𝑢ଵ, 𝑢ଶ]. The design variables are bounded 
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in the intervals [0,1] and both uncertain variables follow independent Gaussian distributions 
𝒩(0, 0.5), with means, 𝜇௨భ

, 𝜇௨మ
= 0, and standard deviations, 𝜎௨భ

, 𝜎௨మ
= 0.5. The constraint function 

is defined as: 
 𝑔(𝑑ଵ, 𝑑ଶ, 𝑢ଵ, 𝑢ଶ) = (𝑢ଵ + 1) ∙ (𝑑ଵ + 𝑑ଶ) + 𝑢ଶ − 1 ( 12 ) 

If both 𝑢ଵ and 𝑢ଶ are fixed at their mean values (𝑢ଵ, 𝑢ଶ ≡ 0), the feasible design space is illustrated 
in Figure 5 (a). However, because the values of 𝑢ଵ and 𝑢ଶ are varying randomly, every point in the 
designs space has a probability of failure, even if it is located inside the feasible region. For 
instance, given a design point 𝐷𝑃ଵ at (0.25, 0.25), to satisfy the constraint (𝑔 ≤ 0), the uncertain 
variables need to fulfill the following relationship: 
 𝑔 ≤ 0 ⟺ (𝑢ଵ + 1) ∙ (0.25 + 0.25) + 𝑢ଶ − 1 ≤ 0 ⟺ 0.5𝑢ଵ + 𝑢ଶ − 0.5 ≤ 0 ( 13 ) 

 

 

Figure 5 – Visualization of the design space (a) and uncertain variable space (b) 

 
As illustrated in Figure 5 (b), the probability of constraint satisfaction corresponding to the 
highlighted design point 𝐷𝑃ଵ can be computed by: 
 

𝑃{𝑔 ≤ 0} = 𝑃{0.5𝑢ଵ + 𝑢ଶ ≤ 0.5} = න න 𝜋௨భ
(𝑢ଵ)𝜋௨మ

(𝑢ଶ)𝑑𝑢ଵ𝑑𝑢ଶ

଴.ହି଴.ହ௨భ

ିஶ

ାஶ

ିஶ

 
( 14 ) 

In this case, 0.5𝑢ଵ + 𝑢ଶ is a linear combination of Gaussian distributions. Therefore, equation ( 14 ) 
can be solved by considering 𝑢 = 0.5𝑢ଵ + 𝑢ଶ as a new uncertain variable: 
 

𝑃{𝑢 ≤ 0.5} = 𝑃

⎩
⎨

⎧

𝑢∗ ≤
0.5

ට0.5ଶ ∗ 𝜎௨భ
ଶ + 𝜎௨మ

ଶ

⎭
⎬

⎫

= Φ(0.8944) = 0.8145 

( 15 ) 

where 𝑢∗ follows a standard Gaussian distribution, and Φ is the corresponding Cumulative Density 
Function (CDF), for which the value can be obtained from a lookup table. 
The steps to solve the illustrative problem with the proposed and existing approaches (A1 to A4) are 
summarized in Table 2.  
In A1 and A2, the inputs of the ANN are the uncertain variables 𝒖 = [𝑢ଵ, 𝑢ଶ]. A Monte Carlo 
simulation is applied on this ANN by varying 𝑢ଵ, 𝑢ଶ with fixed 𝑑ଵ, 𝑑ଶ. Therefore, each design point 
requires a distinct ANN and MCS. 
In A3, A4, and the proposed approach, the inputs of the ANN are the design variables 𝒅 = [𝑑ଵ, 𝑑ଶ]. 
Therefore, only one ANN is needed. However, A3 and A4 require to conduct reliability analysis for 
each design point using the original model, that is, the training process requires a double loop of 
model execution. Furthermore, this (inner loop) reliability analysis is not needed in the proposed 
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approach. 
Another important difference between the existing approaches and the proposed one is that: for the 
former, the safe and failure points are “perfectly separable”, and the boundary is “noise-free” [36], 
while in the proposed approach, the boundary is “noisy”, because the uncertain variables are 
realized only once for each design point. This “blurred” boundary is intended, so that the reliability 
problem becomes similar to an image recognition one, where the uncertain variables are considered 
as noises and the outputs of the ANN classifier converge to posterior probabilities as more training 
points are used. 
For instance, the training sets used in the proposed approach and A2 are illustrated in Figure 6 (a) 
and (b), respectively. In the former, the points are sampled in the design space [𝑑ଵ, 𝑑ଶ], while in the 
latter, the samples are in the uncertain variable space [𝑢ଵ, 𝑢ଶ], associated to a specific point in the 
design space (e.g., 𝐷𝑃1 in Figure 5). It can be noted that, in the proposed approach, the feasible 
and infeasible samples are mixed together, while there is a clear boundary in the case of A2.  
The resulting ANN classifier is shown in Figure 6 (c) and (d), respectively. The ANN obtained by the 
proposed approach is smoother, and its output is directly the probability of constraint satisfaction for 
any arbitrary design point (e.g., 𝑃෠{𝑔 ≤ 0} ≈ 0.7458 for 𝐷𝑃1). The ANN obtained by A2 is steeper and 
can be used to assess the probability of constraint satisfaction for 𝐷𝑃1 only. To do that, one 
additional MCS is applied on this ANN and the probability could be estimated by the number of 
predictions larger than 0.5 divided by the total number of MCS samples. Note that the 0.5 threshold 
is used in [35], and that other rules exist depending on the type and implementation of the ANN. 

 

Figure 6 – Comparison of the training set and resulting ANN classifier. 
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Table 2 – Comparison of the proposed and existing approaches 

Steps Proposed Approach A1 A2 A3 A4 

Sample the 
design 
space 

Produce 𝑀 pairs of 
[𝑑ଵ, 𝑑ଶ] 

Produce 𝑀ை௨௧ೣ
 pairs of [𝑑ଵ, 𝑑ଶ] 

 

Sample the 
uncertain 
variable 
space for 
each design 
point 

Produce one 
realization of [𝑢ଵ, 𝑢ଶ] 
for each pair of [𝑑ଵ, 𝑑ଶ] 

Produce 𝑀ூ௡ೣ
 realizations of [𝑢ଵ, 𝑢ଶ] for each pair of [𝑑ଵ, 𝑑ଶ] 

 

ANN 
training for 
each design 
point 

N/A Train the ANN using the 𝑀ூ௡ೣ
 samples of [𝑢ଵ, 𝑢ଶ] 

 

N/A 

ANN predicts an 
approximation 𝑔ො. 

ANN predicts a value 𝑙መ 
between 1 or 0 to 
indicate if 𝑔 ≤ 0. 

Applying 
reliability 
analysis for 
each design 
point 

N/A Produce additional 𝑀ெ஼ௌೣ
 pairs of [𝑢ଵ, 𝑢ଶ] for MCS 

using the ANN. 
 

Conduct reliability analysis using the original model 
with the 𝑀ூ௡ೣ

 samples of [𝑢ଵ, 𝑢ଶ] 

𝑃෠{𝑔 ≤ 0}

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑔ො ≤ 0)

𝑀ெ஼ௌೣ

 

𝑃෠{𝑔 ≤ 0}

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝑙መ ≥ 0.5)

𝑀ெ஼ௌೣ

 

ANN 
training for 
entire 
design 
space 

Train the ANN using 
the 𝑀 samples of 
[𝑑ଵ, 𝑑ଶ].  

ANN predicts 𝑃෠{𝑔 ≤
0}, given a pair of 
[𝑑ଵ, 𝑑ଶ] 

N/A 
 

Train the ANN using the 𝑀ை௨௧ೣ
 samples of [𝑑ଵ, 𝑑ଶ] 

ANN predicts a value 
𝑙መ between 1 or 0 to 
indicate if 𝑃෠{𝑔 ≤ 0} ≥
𝑝ோ௘௤, given a pair of 
[𝑑ଵ, 𝑑ଶ] 

ANN predicts 𝑃෠{𝑔 ≤ 0}, given 
a pair of [𝑑ଵ, 𝑑ଶ]. 
(In [43,44] an inverse 
problem is solved, where 
ANN predicts 𝑑ଵ or 𝑑ଶ, given 
a predefined probability 𝑝ோ௘௤) 

Total Cost 𝑀 𝑀ை௨௧ೣ
∙ 𝑀ூ௡ೣ

 



APPLICATION OF ARTIFICIAL NEURAL NETWORKS FOR EFFICIENT RELIABILITY-BASED DESIGN 
OPTIMIZATION 

11 

 

 

The computational cost is measured by the number of evaluating the original models. In Table 2, 𝑀 
is the number of model evaluations for the proposed method. For this specific problem, the 
predicted probability against the computational cost is shown in Figure 7. It can be seen that the 
error is reduced to 6% with 100 samples and 3% with 1000 samples. For this illustrative example, 
not much effort has been devoted to refining the ANN architecture and training process, therefore, 
there is still a large room for improving the efficiency. 

 

Figure 7 – Convergence of the prediction and error against computational cost 

 
For the existing approaches, 𝑀ை௨௧ೣ

 and 𝑀ூ௡ೣ
 are the numbers of model evaluations in the outer and 

inner loops, for the 𝑥௧௛ approach, respectively. In A1 and A2, there are 𝑀ெௌ஼ೣ
 additional samples for 

the MCS in the inner loop. However, these samples are evaluated using the ANN as the surrogate 
which is much faster than the original model in a real application. Therefore, these samples are 
ignored in measuring the computational cost.  
Specific values of these 𝑀ை௨௧ೣ

 and 𝑀ூ௡ೣ
 need further investigation. Here a quantitative assessment 

is applied. For A1 and A2, 𝑀ை௨௧భ
 and 𝑀ை௨௧మ

 are the numbers of iterations in the optimization 
process, therefore they are expected to be much lower than 𝑀, especially if a gradient based solver 
is used. 𝑀ூ௡భ

 and 𝑀ூ௡మ
 are the number of points used to train the ANN in each design iteration. For 

this simple problem, 𝑀ூ௡భ
 and 𝑀ூ௡మ

 are expected to be lower than 𝑀, where 𝑀ூ௡మ
 is expected to be 

lower than 𝑀ூ௡భ
. 

A3 and A4 require to explore the design space, therefore 𝑀ை௨௧య
 and 𝑀ை௨௧ర

 are expected to be higher 
than 𝑀ை௨௧భ

 and 𝑀ை௨௧మ
, but could be lower than 𝑀, because the samples in A3 and A4 are less noisy. 

𝑀ூ௡య
 and 𝑀ூ௡ర

 could be higher than 𝑀ூ௡భ
 and 𝑀ூ௡మ

, because reliability analysis normally requires 
more points than training the ANN, otherwise there is no need to use the ANN as a surrogate. 
However, in the specific implementation of [43,44], where FORM is used, 𝑀ூ௡ర

 should be lower than 
𝑀ூ௡య

. If MCS is used, they are expected to be the same. 

In summary a rough estimated relationship is as below: 
 𝑀ை௨௧భ

, 𝑀ை௨௧మ
≪ 𝑀ூ௡భ

, 𝑀ூ௡మ
, 𝑀ை௨௧య

, 𝑀ை௨௧ర
< 𝑀ூ௡య

, 𝑀ூ௡ర
, 𝑀 ( 16 ) 

With the current assumptions, the computational cost of the proposed approach 𝑀 could be higher 
than that for any inner or outer loops. However, as the total cost of the existing approaches is 
computed by 𝑀ை௨ ೣ

∙ 𝑀ூ௡ೣ
, the proposed approach can still be more efficient in potential. Especially 

if the objective function is complex and requires a large number of 𝑀ை௨ ೣ
 to explore the design 

space. 

4.2 Realistic Test-case 
A realistic but not real problem is utilized to test the scalability and accuracy of the proposed 
approach. The computational model is an aircraft sizing code called USMAC [45]. 
As summarized in Table 3, the problem has 6 design variables, 5 uncertain variables, and 4 
constraints. Because the aim is to explore the entire design space, no objective function is defined. 
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Table 3 – Summarize of the realistic test-case. 

Category Variable Name Symbol Value/Distribution/Constraint 

Design 
Variables 

Sea Level Static Thrust [𝑁] 𝑆𝐿𝑆𝑇 [110000, 130000] 

Bypass Ratio 𝐵𝑃𝑅 [5, 6] 

Wing Area [𝑚ଶ] 𝑆ௐ [110, 130] 

Span [𝑚] 𝑏 [35, 40] 

Quarter Chord Sweep Angle [𝑑𝑒𝑔𝑟𝑒𝑒] Λ଴.ଶହ [25, 30] 

Thickness to Chord Ratio 𝑡/𝑐 [0.08, 0.12] 

Uncertain 
Variables 

Cruise Altitude [𝑓𝑡] ℎ஼ோ௓ Uniform: 𝒰(35000, 36000) 

Cruise ISA deviation [𝐾] Δ𝑇 Triangular: 𝒯𝓇𝒾(−5, 0, 5) 

Cruise Specific Fuel Consumption 
Calibration Factor 

𝑘ௌி஼ Gaussian: 𝒩(1, 0.03) 

Cruise Lift over Drag Calibration Factor 𝑘௅௢஽ Gaussian: 𝒩(1, 0.03) 

Empty Weight Calibration Factor 𝑘ௐಶ
 Gaussian: 𝒩(1, 0.03) 

Constraint Maximum Take-off Weight [𝑘𝑔] 𝑊்ை 𝑊்ை ≤ 80000 

Range [𝑛𝑚] 𝑅 𝑅 ≥ 3300 

Take-off Field Length [𝑚] 𝑇𝑂𝐹𝐿 𝑇𝑂𝐹𝐿 ≤ 2700 

Approach Velocity [𝑘𝑡𝑠] 𝑉஺௉௉ 𝑉஺௉௉ ≤ 135 

 
The selected ANN architecture has 6 inputs, 4 outputs, and one hidden layer with 12 neurons. This 
ANN is trained with a gradually increasing number of samples (10, 50, 100, 500, 1000, 5000, 
10000) in the (6-dimensional) design space.  
After each stage of training, the accuracy of the ANN is measured by computing the Root Mean 
Square Error (𝑅𝑀𝑆𝐸) between the predicted and reference probabilities (𝑃෠௜௝ and 𝑃௜௝

∗ ) for all the 4 
constraints at 50 randomly selected points in the (6-dimensional) design space. The reference 
probabilities are obtained by conducting a MCS with 10000 samples in the (5-dimensional) 
uncertain variable space for each design points (50*10000 samples in total): 
 

𝑅𝑀𝑆𝐸௜ = ඨ
1

50
෍ (𝑃෠௜௝ − 𝑃௜௝

∗ )
ହ଴

௝ୀଵ
, 𝑖 = 1,2,3,4 

( 17 ) 

 
𝑅𝑀𝑆𝐸்௢௧௔௟ = ඨ

1

50 ∙ 4
෍ ෍ (𝑃෠௜௝ − 𝑃௜௝

∗ )
ସ

௜ୀଵ

ହ଴

௝ୀଵ
 

( 18 ) 

 
The plot of 𝑅𝑀𝑆𝐸 against the number of model evaluations (training samples) is shown in Figure 8. 
It can be seen that the average errors are reduced to 0.05 with roughly 500 points. 
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Figure 8 – Root mean square error of the ANN against number of model evaluations 

 
For visualization purposes, a reduced-order problem is performed over a 2-dimensional design 
space of the span and wing area, while fixing the values of the other design variables. Figure 9 
illustrates the validation points (in red) and the ANN predictions (as surfaces) for the 4 constraints. It 
can be seen that this ANN (based on 500 model evaluations) has a good agreement with validation 
points.  

 

Figure 9 – ANN prediction and validation points for each constraint 

 
Figure 10 illustrates the contour lines corresponding to different requirements on the probabilities of 
constraint satisfaction (from 60% to 80%). The area shaded in light blue is the feasible region where 
the design points can meet all the constraints with the required probability. In this specific case, if 
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the requirement is increased to 80%, there will be no feasible region left, which requires to change 
the design variable in the other dimensions or relax some of the constraints. 

 

Figure 10 – Probability contour lines corresponding to different requirements. 

 

5. Conclusion 
Presented in this paper is a novel approach for computing the probability of constraint satisfaction 
using artificial neural networks. In this approach, the constraint satisfaction is formulated as a 
classification problem and the corresponding probability is obtained as a direct output of the artificial 
neural network. While the existing approaches require a double-loop paradigm for either training or 
applying the artificial neural networks, the proposed one is able to give predictions for any arbitrary 
point over the entire design space using only one loop of model evaluations, which could potentially 
reduce the computational cost. 
The differences in problem formulation between the existing and proposed approaches are 
highlighted with an illustrative example, while the usefulness of the latter is further evaluated with an 
aircraft sizing test-case. It has been demonstrated that the proposed approach is able to give 
reasonably accurate predictions for realistic design problem. The current limitation is that the 
proposed approach cannot reproduce the probability distributions for the output. In addition, the 
ANN classifier will introduce some numerical errors by itself. 
Future work will explore different ANN architectures and training procedures to further improve the 
accuracy and efficiency of the proposed approach. A quantitative comparison study will be 
performed to investigate the pros and cons of the existing and proposed approaches. The expected 
impact factors include the amount of uncertainty and the mathematical characteristics of the 
objective and constraint functions. For instance, a complex objective function will increase the 
number of outer loop iterations in the existing approaches, which makes the proposed approach a 
better option in terms of computational cost. Another direction of this research is to implement the 
proposed approach with genetic algorithms for optimization or set-based design space exploration 
[46–48], as these two processes generate large numbers of design samples which can be reused 
for the analysis of uncertainty. 
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