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Abstract

In the paper at hand, an optimal reentry trajectory
for a winged hypersonic vehicle is calculated,
where the maximum heat flux at the stagnation
point is minimized. The main contribution of this
paper is the robustification of the optimal reentry
trajectory against air density fluctuations result-
ing in a robust trajectory, where the heat flux over
the flight time is less sensitive against perturba-
tions in air density. For this purpose, sensitivi-
ties describing the rate of change of the heat flux
with respect to perturbations in air density are
minimized. Solving the associated optimal con-
trol problem is based on direct solution methods,
where the problem is discretized and solved as a
finite dimensional optimization problem. The ro-
bustness is achieved by a two-step optimization.
In the first optimization, the nominal problem,
where the maximum heat flux is minimized, is to
be solved. In the second optimization, high sen-
sitivities are penalized by formulating a new cost
function consisting of the sum of the maximum
heat flux and weighted sensitivities resulting in
robust optimal controls.

1 Introduction

High and long lasting thermal impact is criti-
cal for passengers and the overall structural in-
tegrity of the vehicle and also shortens the lifes-
pan of the vehicle [1]. Factors that contribute to
high heat flux are the vehicle shape [2] as well

as environmental influences such as air density
[3]. In [I, 3, 4], optimized trajectories with re-
spect to constraints on heat flow at critical points
and surfaces of the given vehicle can be found.
Here, context and mission specific models are
presented that serve as a basis for the optimal
control problem which is to be solved.

Due to specific environmental conditions
(e.g. time of day or weather) the air density at one
and the same altitude can vary in time or mea-
surements can contain errors [5]. The U.S. Stan-
dard Atmosphere [5] serves as a basis for many
air density models used in literature [4, 6]. These
assume a perfect air density without any distur-
bances and errors. To obtain a more realistic de-
scription of air density, uncertainties can be taken
into account by modelling them as e.g. continu-
ous deviations from the nominal air density pro-
file [3].

A trajectory, that results from models, that do
not take into account uncertainties, is called nom-
inal trajectory. In contrast, a trajectory, that does
not change a certain system output of interest sig-
nificantly when parameter values are perturbed,
is called robust trajectory. Influences of parame-
ter changes on system outputs or on the trajectory
can formally be expressed by the derivative of the
output with respect to the parameter, the so called
Sensitivity.

The aim of this paper is to compute heat min-
imal reentry trajectories, that are robust against
perturbations in air density, by introducing uncer-
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tainties of air density and an extended cost func-
tion to be minimized that penalizes high sensitiv-
ities. The study is structured as follows: In sec-
tion 2, the dynamic, aerodynamic, thermal and
environmental models are presented. Section 3
presents the idea of direct optimal control theory.
Section 4 describes the nominal and robust op-
timal control problem with sensitivity penalties.
In section 5, the optimized nominal and robust
reentry trajectories are calculated, discussed and
compared. In section 6, a conclusion and an out-
look follows.

2 Modelling

In this section, the model of the dynamic system,
the aerodynamics, heat flux and air density based
on [4, 3, 7] are described as they are used in the
optimizations.

2.1 Dynamic Model

The state dynamics of the reentry vehicle are
given by a point mass model with the following
differential equations:
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where £ is the altitude, V the velocity, 7y the flight
path angle, y the course angle, u the bank angle
and A and @ are the longitude and latitude, re-
spectively. The lift and drag forces are denoted
by L and D. The altitude dependent gravitational
model is described by

g(h) = go (ReRj )2

with gravitational acceleration gg = 9.8067m/s.
The vehicle’s mass is given by m = 115000kg.
The earth’s rotational velocity is given by ®, =
7.2921 x 10 3rad/s and the earth radius by R, =
6371 km.

2.2 Air Density

The air density as described by the US Standard
atmosphere [5] is modelled by a smooth expo-
nential function [4]:

(h) —ex 1l + ch* + esh? +Ci+C5h+C6
P —oxp C7h3—|—08h2—|—C9h—|—610
dy
h 4+d
+cos(c1h™ + 3)d5h+d6
—erexp (e2(h—e3)?) ) (7)

for altitudes up to 200 km. For the coefficients
c,d please refer to [4].

2.3 Thermal Model

The convective heat flux ¢ at the stagnation point
is described by [?]

P 1/2
q=&<§) V2, (8)

where K, = 5.199111 x 10~ (kg/m?)'/2 is an at-
mosphere specific constant and R, = 4m is the
nose radius of the vehicle.
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2.4 Aerodynamic Model

The lift and drag are modelled by

L(h,V,CL) = p(V,h) F Cp, 9)
D(h,V,C.) = p(V,h) F Cp(C),  (10)

where the reference area is given by F = 305m?.
Air pressure p and the drag coefficient Cp are cal-
culated by

1
p(v.h) = 3p(h)v* (11)
Cp(CL) = Cp, +k C1? (12)

with lift coefficient C; and coefficients Cp, =
0.017 and k = 2 depending on the flight system’s
configuration.

3 Applied Optimal Control

The aim of optimal control is to find a control
history, that minimize a given cost function. Let
n, be the number of controls, n, the number of
states and n, be the number of parameters. A
common optimal control problem can be stated
as follows [8, 9]:

Minimize the Bolza cost functional

J =e(x(tr),u(ts),p,tr)
+ (L)) py de (13)

To

by determining the optimal control histories u
with u: [tg,77] — R"™, the optimal state histories
x with X: [fg,7¢] — R™ and the optimal parame-
ters p € R subject to the state dynamics

x(1) = £(x(z),u(z), p), (14)
model output equation
y(r) = g(x(1),p) (15)

for all ¢ € [to,tf], the initial and final boundary
conditions

Y(x(t0),x(t5)) = 0 (16)

and the equality and inequality constraints

ceq(x(t),u t),p,t):(), (17)
Cineq(X(2),u(t),p,2) <0 (18)

forall t € [to, 7).

In practical applications, the cost function
and the constraints refer to context and mission
specific models. The models in section 2 cor-
respond to equality constraints. Inequality con-
straints can be any kind of bound for a state or
control, e.g. an altitude constraint stating that the
altitude must not exceed a certain value.

When solving an optimal control problem, ei-
ther function space methods or transcription ap-
proaches can be applied [, 9]. In function space
methods, the optimal control problem is con-
sidered as an infinite dimensional optimization
problem in a suitable function space. Here, op-
timization algorithms are directly applied to the
infinite optimization problem. In contrast, tran-
scription approaches aim to discretize the opti-
mal control problem and transfer it to a finite
dimensional optimization problem. Here, opti-
mization methods are applied to the finite dimen-
sional optimization problem. For the evaluation
of the differential equation restrictions numerical
solvers based on e.g. Runge Kutta techniques are
utilized. Common discretization techniques are
single shooting, multiple shooting and colloca-
tion [8, 9]. The method used here is collocation,
where every discretized time step of the states
and controls is contained in the optimization vec-
tor.

4 Sensitivity Penalty

The major task in solving problem (13) - (18) is
to find a solution that fulfills the flight system dy-
namics, i.e. the underlying differential equations.
Since these may not be unique and differ with pa-
rameter perturbations, the optimal system outputs
depending on the states may strongly be affected
by parameter perturbations. This dependency can
be measured by sensitivities describing the rate
of change of the system outputs with respect to
perturbations of parameters.
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The sensitivity Sy of the system outputs y in
equation (15) with respect to parameters p is de-
fined by [3]:

dg(x(1),u(r),p(r))

Sy(t) = p . (19)
A robust optimal trajectory is defined as a trajec-
tory, where system outputs do not change signif-
icantly when perturbing a parameter. The aim of
the robust optimization in section 5.3 is to both
minimize J and Sy at the same time. Optimization
methods that minimize more than one cost func-
tion are e.g. multi-criteria optimization methods
[10] or bi-level methods [6].

The robust optimization approach in this pa-
per is as follows: In order to keep the sensitiv-
ity Sy small, its weighted norm is minimized to-
gether with the cost function J. This gives rise to
a robust optimal control problem:

f
minimize J+ / 1Sy ()T A(1)Sy(1)]| di (20)
To

with constrains from section 3. Here, the diag-
onal matrix A(f) € R" contains the weights for
each parameter sensitivity and ||-|| defines a suit-
able norm.

This can be seen as a multi-criteria opti-
mization problem. Another way to interpret the
cost function (20) is that the squared sensitivities
STASy are penalized. The higher the weights in
A the greater the penalty.

The sensitivity matrix Sy can be calculated by

_dg  0Jg ox

21

0 o
The first parts, ﬁ and 58 , can be computed ana-

X

lytically. The part g—p describes the sensitivity of
the states x with respect to parameters p. Here, it
is denoted by Sy and can be calculated by solving
the sensitivity differential equation [&]:

Sur) = af(x(t),git),p(t)) S

| (@) u(),p(0)) 7 (22)
Jp

Sx(t0) = x(19).

For numerical computation, Sy is defined as an
additional state in the optimization problem (13)-
(18) fulfilling the differential equation (22) and
can then be computed simultaneously with the
other states x. A similar approach can be found

mn[l1].
5 Numerical Results

For the nominal trajectory, the reentry problem
is solved with unperturbed parameters in the fol-
lowing scenario: Minimize the parameter ¢y
that represents the maximum heat flux value,
such that

q4(t) < Gmax (23)

for all ¢ € [to,tf], by determining optimal con-
trols, namely the lift coefficient

Cr €10.1,0.18326]
and the bank angle
ueE[—m/2,7/2].
The bounds on the states are set to

h € [0,200000] m
V €[0,8000] m/s

Y € [—=,m| rad

X € [—m, ] rad

A€ [—m/2,m/2] rad
¢ € [—m, | rad

g €[0,00) J/m?

The initial and final boundary conditions are
given by

State H o ‘ ly

h [m] 120 x 10° | 24 x 10°
V [m/s] || 7000 80

Y [rad] 0 -

X [rad] —0.659 -

Afrad] | - 0.192

¢ [rad] - 0.83778
gJ/m*] [ 0 -
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Please note that there are no initial boundaries
set for the position due to the fact that these are
also supposed to be optimized. The starting posi-
tion of the vehicle influences the optimal solution
due to influences on e.g. range or flight time. The
increase in heat flux is negligible when manoeu-
vring to the starting position in the lower earth
orbit. Therefor, the starting velocity is fixed. Fur-
thermore, the load factor n, = ng is constrained
to the interval [—1,2.5]. The optimization is per-
formed with the optimal control tool FALCON.m

[12].

5.1 Nominal Optimization Results

The nominal optimal trajectories and controls are
depicted in figure 1 and figure 2, respectively, by
black lines.

In the first phase, the vehicle descends at a
steep angle until an altitude of 54 km, where air
density increases faster and the maximum heat
flux value is reached, before it descends at a
smaller angle until an altitude of 40km. After-
wards, it performs skips that become more and
more shallow until the final boundary conditions
are met. The heat flux peak is reached at a value
of 2.1699 x 10° m/s? and is hold constant for
430s while the shallow reentry phase.

In figure 3, the sensitivities (%)2 are pre-
sented. The heat flux is highly sensitive to air
density fluctuations before the skip at an altitude
of 40km, where air density increases and where
the maximum heat flux value is reached.

5.2 Simulation

The parameter perturbation in air density is lin-
early modelled by

p3(h) = (1+3)p(h) (24)

with the perturbation parameter 8 € [—0.1,0.1]
describing the deviation from the nominal value
p(h) up to 10%. The trajectories of the heat
flux are simulated with 20 equidistant values for
d € [-0.1,0.1] with the nominal optimal controls
from section 5.1. The impact of air density per-
turbations on the heat flux profile is illustrated in

120

100 ¢

80+

h [km]

60 r

40t

20

0 500 1000 1500 2000 2500

time [s]

0 500 1000 1500 2000 2500

time [s]

X 106

0 500 1000 1500 2000 2500

time [s]

Fig. 1 Nominal (black line) and robust (grey line)
optimal states 2 and V' and state derivative q.

figure 4. In the simulations with & # 0, the max-
imum heat flux value is not constant over a time
period but deviates strongly in the region, where
the nominal heat flux reaches its peak. The max-
imum value of the heat flux differs up to 5.47%
from the nominal one.

5.3 Robust Optimization

The approach for the robust optimization is to
minimize the penalized cost function (20). The
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Fig. 2 Nominal (black line) and robust (grey line)
optimal controls Cy, and u.

sensitivity penalty term is chosen to be

Sy(t)TA()Sy(t)
oo 4D (9g 9\’
=10 g'qm_m'(ﬁ(t)”"(t)a_x(t)) ., (25)

The first weight 10~? is introduced such that Gmax
and Sy have the same order of magnitude. The
weight q.m% penalizes high values of ¢ more than
smaller values. Furthermore, the path constraint

q(t) < 1.01- Gy (26)

for ¢ is introduced, which is based on the nom-
inal optimal heat flux peak ¢, in order to as-
sure that the robust heat flux peak does not devi-
ate from the nominal one more than one percent.
This yields the robust optimal trajectories as de-
picted in figure | and figure 2 in grey lines. In
this case, the heat flux peak is reached at a value
of 2.1916 x 10°W /m?2, which is a deviation of

x10°

1000 1500 2000 2500

time [s]

0 500

Fig. 3 Sensitivities (3¢/08)? of heat flux with re-
spect to air density fluctuations over time of the
nominal (black) and robust (grey) optimal trajec-
tories.

1% of the nominal heat flux peak. Similar to
the nominal trajectory, a skip glide is performed.
Here, an additional skip at an altitude of 53 km
is performed, which can be explained by the fact
that the air density decreases at higher altitudes
leading to a non-increasing heat flux.

On the right hand side of figure 4, the simu-
lated profile of the heat flux for air density per-
turbations as described in section 5.2 is depicted.
The maximum value for the heat flux is perturbed
up to 5.05%. When comparing the sensitivities
from the nominal and robust solution in figure 3,
one can see that over the whole time span, the
sensitivities of the robust solution (black line) are
smaller than the sensitivities of the nominal solu-
tion (grey line). Hence, the deviations from the
robust optimal heat flux are smaller than in the
nominal case, when air density is perturbed. Fur-
thermore, we can see that the sensitivities are the
highest where the maximum heat flux is reached
and at altitudes around 40km, where air density
increases faster.

6 Conclusion and Outlook

A robust heat minimal reentry trajectory is com-
puted, where the maximum heat flux is less sen-
sitive against air density fluctuations. In the pre-
sented robust optimization approach high sensi-
tivities of the heat flux describing the dependency
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Fig. 4 Simulation of heat flux after parameter perturbations with nominal controls. The black line
represents the nominal heat flux, where the grey lines are simulation results with the respective optimal

controls for parameter perturbations up to 10%.

of the heat flux from air density fluctuations are
penalized. The resulting robust trajectory per-
forms a skip reentry, where air density starts to
have significant impact on the heat flux, namely,
where the heat flux reaches its maximum.

In this work, one uncertain parameter was
considered. For future work, a multidimensional
uncertain parameter vector could be considered,
which increases the problem size. Since the com-
putation effort for the collocation of the sensitiv-
ities might be too high, one might consider com-
puting the sensitivities by shooting methods. Fur-
thermore, the uncertainty models can be reformu-
lated by taking into account that at higher alti-
tudes uncertainty in air density is higher. Also,
the vehicle model and especially the thermal
model can be extended, such that the obtained re-
sults reflect more realistic trajectories.
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