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Abstract

This study deals with the robust optimization of
the transition maneuver for a vertical take-off
and landing drone (VTOL) using a bi-level
optimal control (OC) approach: The upper level,
parameter optimization, problem is optimized
using a differential evolution (DE) genetic
algorithm. By this a global optimal solution is
achieved.

On the other hand, the lower level problem
is solved by using a gradient-based direct OC
scheme.  The distinctiveness of this lower
level setup is the fact that not only the general
mean optimization problem is solved, but an
OC problem (OCP) with uncertainties. This
combination yields the possibility to calculate
robust trajectories.

The uncertainty modeling is done by means of
generalized polynomial chaos (gPC). Thus, the
lower level problems are not only solved at one
specific set of parameters, but on multiple pa-
rameter sets to calculate the uncertainty influence
on the optimal trajectory in distinct parameters.
The developed algorithm is applied to the
transition maneuver, including the climb to
a safe altitude, of a VIOL. The results show
an enhancement of the optimal trajectory in
the sense of robustness with respect to wind
influences regarding the safety of the transition
maneuver.

1 Introduction

Optimization plays an integral part in today’s en-
gineering applications. Especially in aircraft re-
lated topics, where there are both intense com-
petition as well as expensive resources and hard
constraints (e.g., noise emission), the role of op-
timization is crucial.

Up until now, many studies concerned with op-
timization either did not consider uncertainties at
all or did so in a very limited manner [ |, 2]. Thus,
the goal of this study is to show a methodology
for robust OC using a bi-level framework. The
case study is the transition maneuver (including
safe altitude climb) of a VTOL.

Original studies on OC of aircraft with uncertain-
ties did combine the gPC method [3] as a wrap-
per around the OC framework [4, 5]. Thus, these
methods did not calculate robust trajectories in
the sense of this study (i.e., that the calculated
trajectory is least sensitive to the uncertainties),
but mainly calculated an uncertain representation
of the trajectory.

More recent studies in the field of conflict res-
olution [6], short-time climb of supersonic air-
craft [7], and flight in severe weather conditions
[2] still use the gPC method, but now try to find
an incorporation of the gPC expansion within the
OC discretization. Thus, these studies are more
related to the developed framework of this study.



Another approach, used for the calculation of
noise minimal trajectories uses a bi-level OC
framework [9]. By this approach, the calculation
of robust trajectories is split up in two levels, a
parameter optimization and a dynamic model op-
timization level, and afterwards linked by a pa-
rameter dependency between the two levels.
Within this study, we also develop a bi-level OC
framework and extend the methods developed in
[©] by using control effectiveness parameters as
optimization variables of the upper level. Addi-
tionally, the upper level is solved using a DE al-
gorithm.

Therefore, the study is organized as follows: The
gPC method is introduced in section 2. Section
3 introduces the bi-level OC framework that is
proposed within this study and used to calculate
robust optimal trajectories. The test results are
introduced in section 4 and section 5 concludes
the study with an outlook and perspectives.

2 Generalized Polynomial Chaos

The gPC method was developed by XI1U and
KARNIADAKIS in [3] and is an extension of the
work of NORBERT WIENER on Gaussian uncer-
tainties [10]. The next subsections introduce the
general definition of gPC (subsection 2.1), the
stochastic collocation (SC) method that is used to
sample the gPC expansion (subsection 2.2), and
the calculation of the statistical moments (sub-
section 2.3). Overall, the gPC method is the base-
line formulation of the lower level of the bi-level
OCP as introduced in section 3. In the end, the
statistical moment calculation of subsection 2.3
is utilized to shape a robust trajectory.

2.1 Definition

The gPC method is defined by a finite sum ex-
pansion with deterministic expansion coefficients
§ € R»*M and orthonormal polynomials (nor-
malized orthogonal polynomials) ® € RM*! re-
lated to the uncertainties to approximate the sys-
tem outputs y € R™*! as follows [ 1]:

Y(z:0) = Y §in(z) Dy (0) (1)

PIPREK AND HOLZAPFEL

Here, the orthonormal polynomials are chosen
with respect to the probability distribution p of
the uncertain parameters 6 € R"6*1 (Table 1).
The deterministic parameters are summarized
within the vector z € R=*! (including system
states x € R™*! and controls u € R™*! respec-
tively). The expansion coefficients are calculated
using a Galerkin projection as follows [11]:

§n (2) = /Q y(:0) 0, (0)p(0)d6 ()

It is evident that Eq. 2 is not straightforward
to solve as the expansion coefficients are them-
selves depending on the system response.

Thus, subsection 2.2 introduces the SC method
that employs a Gaussian quadrature [|2] and de-
terministic sampling to evaluate the integral in
Eq. 2.

2.2 Stochastic Collocation

Using the SC method, the integral in Eq. 2 gets
expanded into a Gaussian quadrature sum as fol-
lows [11]:

i) = 3y (100) @ (60) o (6) )

J=1

Here, 0) and o (9(j )) are the expansion nodes

and expansion weights respectively. These are,
again, determined by the orthonormal polynomi-
als and their corresponding probability distribu-
tion (Table 1) [12].

Therefore, the problem of calculating the integral
in Eq. 2 reduces to a deterministic sampling at
the expansion nodes and subsequent evaluation
of Eq. 3. Consequently, the OCP must be solved
at each expansion node.

2.3 Statistical Moments

Statistics are obtained fairly easy from the gPC
expansion formula in Eq. 1 by using the basic
definition for statistical moments as follows [12]:

E[6"] = /Q 0%p (6)d6 4)
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Table 1: Continuous probability distribution - orthogonal polynomial connection within the Wiener-

Askey scheme (after [11])

| Probability Distribution | Weight Function p

[ Support Q | Symbol [ Orthogonal Polynomial |

Gaussian/Normal \/% exp (%2) |—o0,00] N (u,0) Hermite
Gamma eo;?’&pibm [0, 0] Y(u,0,0) Laguerre

T 2 :

Beta 2a+ﬁ+1(r?§f;3r)(ﬁ+1) (1-0)*(1+6) | ]=1,1[ | B(a,b,0,B) Jacobi
Uniform % ]-1,1] U (a,b) Legendre

For instance, the mean u (k =0 in Eq. 4) and
standard deviation G (the square root of the vari-
ance with k = 1 in Eq. 4 and centered around the
mean value) are only dependent on the expansion
coefficients themselves and given by [1 1] as fol-
lows:

(&)

Higher order statistics can be calculated as well
by using Eq. 4, but are no longer independent of
the orthonormal polynomials [ 1].

As mean and standard deviation are used within
this study as main indicators of robustness, the
statistics given in Eq. 5 are sufficient.

3 Bi-level Framework

This section introduces the bi-level OC frame-
work used in this study to calculate robust
trajectories for the transition of a VTOL. The
general structure of the framework is depicted in
Figure 1.

It is illustrated that the lower level (subsection
3.1) uses the gPC formulation and the SC
approach to calculate statistical moments for the
optimal trajectories. Gradient-based OC methods
are used to calculate the optimal trajectories.
The statistics are then given to the upper level
(subsection 3.2) that in turn tries to optimize the
uncertainty in the trajectory to be minimal. For
this, an optimization based on DE is proposed.
The upper level ultimately enforces control
authority factors on the lower level that shape
the trajectory by changing the state dynamics

and statistics of the optimal trajectory. It should
be noted that the control authority factors are
constant along the trajectory.  Therefore, a
trade-off for the whole trajectory is sought.

The overall optimization procedure is sum-
marized as follows: The upper level problem
optimizes the parameters ki,...,k, that are
control effectiveness parameters in this study
and are therefore directly able to shape the
trajectory. These parameters are assigned to the
lower level OCP that is evaluated with these
upper level control effectiveness parameters to a
gPC expansion. This yields the response of the
aircraft to uncertain parameters. Finally, these
responses are used to calculate the moments of
the uncertain trajectory (e.g., mean and standard
deviation) that are then again fed to the upper
level problem and its cost functional. This
cost functional is e.g., the minimization of the
standard deviation or sensitivity of the optimized
trajectory.

Overall, this procedure leads to a robust trajec-
tory, as the optimized trajectory is then subject to
a minimized uncertainty influence based on the
upper level cost function.

The developed robust bi-level OC structure
is examined in a case study for the transition
maneuver with climb of a VTOL in section 4.

3.1 Lower Level Problem Formulation

As stated in previous paragraphs, the lower level
problem in the bi-level OC framework is based
on gradient-based OC. The problem formulation
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Initial Population
=

Optimal Population
Upper Level Problem ‘ ‘ P P
—

Genetic Algorithm
- Calculates new limits for control authority or new
checkpoints for Bezier curve
- Cost function: e.g., minimize the standard deviation
of the trajectory with uncertainties

h 4

Ky, o ke

Ely(x, u,8)], var[y(x,u, )]

dy(x,u,8)
5]

Lower Level Problems

1st Lower Level Problem

Gradient-based Optimization Algorithm
- Calculates gPC representation of trajectory with
uncertain parameters by discrete expansion
- Cost function: e.g., minimize flight time

n-th Lower Level Problem

9(1)‘ .., em

Gradient-based Optimization Algorithm ¢

- Calculates gPC representation of trajectory with
uncertain parameters by discrete expansion
- Cost function: e.g., minimize flight time

Fig. 1 : Structure of the robust bi-level optimal control framework for the robust trajectory optimization
algorithm of this study.

is as follows [13]:

min J=e(z)+ / L(z)dt
Z,tf 1o=0
s.t.  f(z;0) =x, (6)
c(z) <0,
v(z) =0 Fig. 2 : View on used VTOL model for the bi-

level optimal control of the transition maneuver
including body-fixed frame of reference with pa-
rameter exchange between the two levels.

The goal is to minimize the cost functional J (de-
scribed by Mayer e and Lagrange L term) subject
to the equality path-/pointconstraints y and the
inequality path-/pointconstraints ¢ respectively.
Additionally, the state dynamics f including un-
certainties must be fulfilled.

For the transcription of the OCP, the MATLAB-
based toolbox FALCON.M [14] is used. The so-

a minimal flight time, i.e., J =17, and evaluated
according to the gPC expansion (section 2). The
statistics are calculated according to Eq. 5.

lution of the transcribed OCP is achieved by us-
ing the open source optimizer IPOPT [15].

The optimization model is based on a rigid body
representation [ 16] of a VTOL as depicted in Fig-
ure 2 (subsection 4.1). The figure also contains
the definition of the body-fixed reference frame.
The lower level OCP is optimized with respect to

3.2 Upper Level Problem Formulation

The upper level problem is a parameter optimiza-
tion problem with no dynamic model. It uses a
DE [17] strategy to optimize the statistics of the
lower level problem. The structure of the imple-
mented DE algorithm is given in Figure 3. Take



Robust Trajectory Optimization of VI'OL Using Bi-Level Optimal Control

into account that step 4, i.e., the calculation of
the new cost values, is the most time consuming
as here the lower level OCP must be solved. But,
as they are independent of one another, this part
is parallelized fairly easy.

Overall, the upper level tries to find the optimal
control authorities that minimize its cost. This
cost in turn shapes a robust trajectory by adapting
the control authorities as it depends on the uncer-
tain representation of the OC trajectories. This
makes it possible to calculate the robust trajecto-
ries desired in this study.

It should be noted that after the DE algorithm cal-
culated a suitable optimal parameter set, a further
gradient based optimization is conducted with
this initial parameter set. This is done to really
calculate the optimal parameter set in a local area,
while the DE algorithm is consequently used to
find the region of the optimal set.

4 Test Case

This section introduces the test case results for
the bi-level OC framework. Subsection 4.1 de-
scribes the model for the test case with the re-
sults given in subsection 4.2. The optimization is
based on the transition of a VTOL including an
escape from a funnel, i.e., a climb to a safe alti-
tude.

4.1 Optimization Model

The optimization model is based on a rigid body
representation of a VTOL on a fixed flat earth en-
vironment [ 1 6]. The states and controls with their
bounds for the OC are listed in Table 2. Addition-
ally, this table also includes the constraint outputs
for the OCP.

As it is seen from Table 2, we are using the stan-
dard states for a rigid body model of an aircraft
including quaternions as the VTOL is also able
to climb vertically. The equations of motion are

Start DE Algorithm
Checktheinteger
constraints

Max iter
Suocess Finish DE Algorithm
Infeasible

7.) Evaluate 3)a

Convergence Criterion

calculation and
enforcement

Selection
Constraints
Fig. 3 : Flowchart of differential evolution algo-

rithm used in this study for the optimization of
the upper level optimal control problem.




stated as follows [16]:

E; 034 03 03

0453 Eq 0453 0453
03 03 x4 mE3 ngG
03 03,4 mReg 1

03 03><4 P 03
043 30 043 043
03 034 —Q 03
0; 03,4 —mI'RQ —T710QI
03x1
04><1
+ 11
%(F—QQrCG)
I"'M

(7

The identity and zero matrix of appropriate size
as given by the index are denoted by E and 0 re-
spectively (if only one index is given the matrix
is square). The mass is given by m, the inertia
tensor by I. The forces and moments that act on
the VTOL (containing aerodynamics, propulsion,
and gravitation) are denoted by F and M respec-
tively. The aerodynamics and propulsion mod-
ules are based on lookup tables, while the gravi-
tation and atmosphere are modeled according to
the ISA atmosphere [18].

The distance vector rog contains the distance be-
tween the equation of motion reference point and
the center of gravity with the cross product skew-
symmetric matrix given by Rcg. This distance
relates to a coupling of translation and rotation,
and by this longitudinal and lateral plane. This
can also be seen in the results in subsection 4.2.
The skew-symmetric matrix of the rotation states
is denoted by Q.

Now, the matrix P is the projection of the veloc-
ity on the position propagation for the fixed-flat
earth and simply given as follows:

—

®)

S = O
o O
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The attitude propagation for the quaternion is
given as follows [16]:

0 —p —q —r
_|lp 0 r  —q

0= g —r 0 p 9)
r g —p 0

After stating the equations of motion, the system
outputs (Table 2) containing the funnel distance
dr that enforces the VTOL to climb to a safe alti-
tude are considered. The funnel is hereby defined
by using a sigmoid shaped function as follows:

( ) exp(\/x2+y2+s0ff> n
S(X,¥) = Sscale Sshift
’ seate exp(WJrsoff)Jrl shif

(10)

Here, sscate = 3, soff = —2, and sgi5; = —1 de-
note the scaling, offset, and shift parameter of the
sigmoid function s (x,y) respectively. The funnel
distance dr is consequently the height above the
funnel.

The initial and final state bounds for the OCP are
listed in Table 3. Here, especially the output con-
straints show that we need to achieve a full tran-
sition with at least 20T as the final velocity and
a flight condition close to the straight level hori-
zontal flight.

Overall, the OCP in Eq. 6 is optimized with re-
spect to the following cost:

J=1; (11)

Thus, we are seeking a time optimal transition
within the robust OC framework.

4.2 Optimization Results

This section discusses the results for the robust
OC of the VTOL with the model introduced in
subsection 4.1. First of all, the sidewards wind
velocity (i.e., the wind from the east direction)
is modeled as the uncertainty with a UNIFORM
distribution in the interval [—5;+5] . In the sce-
nario of the VTOL transitioning this is a mean-
ingful uncertainty as the influence of the side-
wards wind is crucial for a stable transition.

Additionally, seven control authority factors are
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Table 2: States, controls, and outputs for the
VTOL optimization model.

\ Description [ Symbol | Lower Bound | Upper Bound [ Scaling [ Offset |
States
x Position X —oo o0 1 Om
y Position y —oo oo 1 Om
Altitude z Om oo 1 Om
Quaternion 0 40 —1 +1 1 0
Quaternion 1 q1 —1 +1 1 0
Quaternion 2 q —1 +1 1 0
Quaternion 3 93 -1 +1 1 0
Body x Velocity u +1077™ +50% 1 o
Body y Velocity v —35%2 +35% 1 [
Body z Velocity w —35% +35% 1 o
Body x Rotation p —20% +202 1 02
Body y Rotation q —20% +202 1 02
Body z Rotation r —20% +202 1 02
Controls
Rotor 1 Speed (Left) o +0rd +1570.8"4 1 +75074
Rotor 2 Speed (Right) | o, +07ed +1570.8744 1 +750224
Rotor 3 Speed (Front) | o3 +07d +1570.8744 1 +75074d
Rotor 4 Speed (Rear) [ ~Fozd +1570.8744 1 +750%44
Elevator n —25° +25° 1 0°
Rotor 1 Pitch 3 —30° +120° 1 +43°
Rotor 2 Pitch [ —30° +120° 1 +43°
Outputs
Kinematic Velocity Vk +10772 +25% 1 +10%
Kinematic Climb Yk 785“ +85° 1 0°
Funnel Distance dp +0.1m o0 1 Om
Roll Angle [ —30° +30° 1 0°
Yaw Angle \ —oo +oo 1 0°

Table 3: Initial and final state and output condi-
tions for the VTOL OC.

| Symbol | Initial Value Bounds | Final Value Bounds |

States

X Om free
y Om free
z +0.1m > +4.5m
q0 +1 free
q1 0 free
q 0 free
q3 0 free
u +0.17% free
v 0% 0%
w = free
” : 0
4 5 03

Outputs
Vk auto set > +20%
Yk free [-0.5;+0.5]°
[0} auto set 0°
v auto set 0°

introduced and limited as follows:

ke, € [+0.9;4+1.0], kg, € [+0.9;+1.0]

kg, € [40.9;4+1.0], ka, € [+0.9;+1.0]

kne[+07;+Lm, ks, € [+0.6;41.0]
€ [+0.6;+1.0]

(12)

These factors are multiplied with their control
commands respectively (Table 2). Thus, if the
factor is < 1, the commanded value is reduced
and the control authority is limited. This shapes
a different trajectory design and ultimately cre-
ates a robust trajectory.

Overall, the bi-level framework tries to optimize
these parameters to create a trajectory that has a
maximized mean funnel distance during the tran-
sition and escape.

The optimized values for the control authority pa-
rameters obtained from the bi-level OC frame-
work for the VTOL transition optimization are as
follows:

ko, = 0.90002, kg, ~ 0.98738
ks = 0.99994, ke, ~ 0.96472
kn &~ 0.90088, ks ~ 0.90845
ks, ~ 0.77290

(13)

It is intersting to observe from the control effec-
tiveness factors in Eq. 13 that the control ef-
fectiveness is not adapted symmetrically. This
is based on the fact that the VTOL has a lateral
offset of the center of gravity from the symmet-
ric plane and therefore the reference point. This
offset is to the right wing and leads to a neces-
sity to control the VTOL asymmetrically. This
asymmetry is then also seen in the control effec-
tiveness factors.

Another interesting observation from Eq. 13 is
the fact that the control effectiveness factor for
the first rotor kg, is close to the lower bound
of the feasible domain (Eq. 12). As a conse-
quence, a new optimization should reduce the
bound value further to see if another optimal so-
lution can be obtained. This behavior is also an
issue of the proposed bi-level OC framework as
the control effectiveness limits in Eq. 12 are un-
known a priori.



Figure 4 depicts the transition trajectories of the
VTOL to escape from the funnel for the non-
robust (solid red) and the the robust (dashed
green) case. It is observed that the non-robust tra-
jectories takes a slightly longer trajectory, while
it also is a more steep in the beginning and climbs
to a higher altitude.

The positional state development over the transi-
tion maneuver time is given in Figure 5. The be-
havior of Figure 4 is again observed. The small
lateral deviations are due to the center of gravity
shift as mentioned before. It is also observed that
the transition time is approximately 0.4s longer
for the robust case.

Finally, Figure 6 depicts the mean value and the
standard deviation of the funnel distance for the
robust and the non-robust transition maneuver. It
is observed that the robust maneuver stays well
above the minimal distance separation of +0.1m
(Table 2), while the non-robust trajectory meats
this limit (approximately at 0.7s). Evidently, con-
sidering further model errors (e.g., unmodeled
dynamics or uncertainties) this close proximity to
the limit is not robust in the end.

It is also observed in Figure 6 that the standard
deviation of the funnel distance is slightly larger
for the robust trajectory. This is due to the slower
transition and climb and therefore larger time in-
terval of exposition to the uncertainty.
Additionally, there is a weighting of minimal
transition time and maximal funnel distance by
the control effectiveness parameters. As these pa-
rameters are assigned to each of the gPC OCP
equally, different trajectories that either prioritize
the final time or the funnel distance are calcu-
lated. This behavior and the limitation of its in-
fluence within the bi-level OC is subject to future
research.

Nonetheless, the distance to the funnel consider-
ing this increased standard deviation is still large
enough. For future studies an incorporation of the
standard deviation in the upper level cost can be
considered as well, such that both the funnel dis-
tance is maximized and the funnel distance stan-
dard deviation is minimized. This yields a trade-
off based on the user’s priorities.
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5 Conclusion and Perspective

This study presented a robust OC framework us-
ing a bi-level setup. The framework combined
DE optimization in an upper level with gradient
based OC in multiple lower level OCP.

A distinct feature of the lower level is the cal-
culation of uncertain representations of optimal
trajectories. This gives the upper level the capa-
bility to optimize statistical moments and by this
ultimately the capability to increase the robust-
ness by shaping the trajectories.

The developed bi-level framework is applied to
the optimization of the transition maneuver of a
VTOL. It showed its applicability in aircraft OC
scenarios. The results show that the algorithm is
capable of calculating robust trajectories with re-
spect to specified parameter uncertainties.
Future research should consider the development
of gradient based updates for the upper level
based on postoptimal OC and gPC sensitivities.
This will increase the convergence speed of the
bi-level framework.

Additionally, different parameter settings in the
upper level, including time varying control au-
thority factors, can be considered to improve the
robust trajectory results.
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