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Abstract

This study presents a bi-level framework de-
signed for the optimal control (OC) of aircraft.
Overall, the goal is to calculate trajectories for
the aircraft under external and internal uncertain-
ties that give a worst-case approximation of the
uncertainty interval.

The bi-level OC framework is set up as follows:
Within the lower level, standard deterministic
trajectory optimization problems by gradient-
based optimization are solved.  The solved
problems only ditfer in their numerical values set
for the uncertain parameters. It should be noted
that this makes it easy to parallelize them, as they
are independent of each other. The calculation of
the uncertain response of the system is based on
the generalized polynomial chaos (gPC) method.
The upper level problem provides the numer-
ical values of the uncertain parameters and is
optimized using a differential evolution (DE)
strategy. Thus, the connection from the upper
to the lower level are the numerical values of
the uncertain parameters. Conversely, the lower
level provides the upper level with the optimized
trajectory at each of the uncertain parameter’s
positions yielding the statistical moments.

We use case studies from a vertical take-off and
landing vehicle (VTOL) transition maneuvers to
show the viability of the approach.

1 Introduction

The use of gPC [1] is very popular within the en-
gineering research community to model the ef-
fects of uncertainties in dynamic systems. It is
for instance used within heat transfer problems
[2], flow simulations [3], and spacecraft attitude
propagation [4]. Normally, the upcoming expan-
sion integrals are solved using the stochastic col-
location (SC) approach by applying a Gaussian
quadrature [5]. Within this study, we use the SC
approach with LAGRANGE polynomials instead
of the standard Gaussian quadrature [5].

That is done due to the following reason: With
the Gaussian quadrature approach, there are pre-
defined expansion nodes where the system must
be evaluated. This is very simple to program
but lacks the quality to quantify the error of the
expansion. This is generally also not possible
with the LAGRANGE polynomials in the standard
setup for the SC [5]: But, with the proposed bi-
level OC formulation we are able to provide an
idea of the approximation error and in some sense
the worst-case result.

This quantification of the accuracy of the gPC ex-
pansion recently became a more researched topic
within the community [0, 7, 8, 9]: Study [6] uses
Monte-Carlo (MC) techniques to verify the re-
sults of gPC. The authors as well compare gPC
expansions to analytic solutions obtained for sim-
plified problems and showed their accordance.



However, this method still relies on a sampling
based MC techniques, where convergence speed
is slow and unknown a priori.

The authors of study [7] again use MC methods
to verify their gPC method that is based on Stielt-
jes procedure for the construction of orthogonal
polynomials. The authors apply the method to
crosstalk simulation and receive a good approxi-
mation quality.

Again, the MC method is used in [8] to quantify
uncertainties within a stochastic system. Addi-
tionally, the authors introduce accuracy, conver-
gence (in approximation and moment), and error
analysis methods. Here, they especially consider
the accuracy of the statistical moments calcula-
tion.

Finally, study [9] compares the gPC expansion to
different Kalman filter implementations for un-
certainty quantification. Furthermore, the authors
compare their results with a MC method to verify
them.

From the previous literature research it is evident
that most of the methods used to verify gPC ex-
pansions are based on MC methods. This study,
on the other hand, introduces a new method for
gPC verification based on a bi-level OC scheme.
This framework should enhance the approxima-
tion capabilities and provide results on a global
scale.

The study is organized as follows: Section 2
introduces the gPC method in general and the
LAGRANGE interpolation SC method in specific.
Additionally, it introduces the calculation of the
statistical moments. Within section 3, the pro-
posed bi-level OC setup is explained. Therefore,
both the lower level, gradient-based OC problem
formulation is introduced as well as the combina-
tion of gPC and lower level to the bi-level frame-
work. The test case, including the optimization
model, is introduced in section 4, while conclu-
sive remarks are given in section 5.

2 Generalized Polynomial Chaos

The gPC expansion was developed by XIU and
KARNIADAKIS in [I] and is an extension of
NORBERT WIENER’S work on Gaussian uncer-
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Table 1: Continuous probability distribution - or-
thogonal polynomial connection within Wiener-
Askey scheme (after [5])

| Probability Distribution [ Support Q | Orthogonal Polynomial |

Gaussian/Normal =00, 00| Hermite

Gamma [0,00] Laguerre
Beta -1,1 Jacobi

Uniform -1,1 Legendre

tainties [10]. Within subsection 2.1 the definition
of gPC is stated, while subsection 2.2 introduces
the LAGRANGE interpolation approach to calcu-
late the gPC expansion. Subsection 2.3 gives
some remarks on the computation of the statis-
tical moments by using the gPC expansion with
LAGRANGE polynomials.

2.1 Definition

The gPC expansion is defined by a Fourier-like
expansion formula as follows [5]:

Y(2:0)~ Y §im(z)Pu (6) (1)

Thus, gPC decomposes the uncertain system re-
sponse y € R™*! into a finite sum approximation
of order M. Here, the expansion consists of ex-
pansion coefficients § € R™*M that only depend
on the deterministic parameters z € R"*!, while
the uncertain parameters © € R"*! are only re-
lated to the orthogonal polynomials ® € R¥*!,
The appropriate orthogonal polynomial basis is
given by the WIENER-ASKEY SCHEME and is
only dependent of the probability distribution of
the uncertain parameters. This is depicted in Ta-
ble 1 for some continuous distributions in gPC.
Generally, the only remaining issue in solving
Eq. 1 is the determination of the expansion coef-
ficients. This is achieved by a LAGRANGE inter-
polation within this study that approximates the
coefficients as a whole (subsection 2.2).

2.2 Lagrange Interpolation

One of the simplest approximations of Eq. 1, i.e.,
the complete polynomial chaos, is given by a LA-



Bi-level Trajectory Optimization for Uncertainty Interval

GRANGE interpolation as follows:
M—1
0) ~ Z Y (z) Dy, (6
m=0

Vo (2)

~ ) n(2) L (8)

m=0
This basically removes the task to calculate the
expansion coefficients of Eq. 1 by e.g., SC [5]
due to the fact that the gPC expansion is approxi-
mated as a whole by the LAGRANGE coefficients
§ € R»*M_ These coefficients are calculated as
sample solutions at nodes specified by the user.
The chosen nodes must represent the system re-
sponse surface accurately. The nodes are then
also part of the LAGRANGE interpolation poly-
nomial (Eq. 3).
The LAGRANGE interpolation polynomial itself
is defined as follows [11]:

"0 — 8
Z;(0) = ’
/ L10,—6;

i#]j

Take into account that this gives an approxi-
mation of the gPC for all possible probabil-
ity distributions and not only the ones within
the WIENER-ASKEY SCHEME that have a corre-
sponding orthogonal polynomial (Table 1).

A disadvantage of the method is that the cal-
culation of statistical moments is more sophisti-
cated than for the normal SC approach [5] and
the selection of the evaluation nodes for the LA-
GRANGE polynomials in Eq. 3 is not straight-
forward. Especially, the selection of evaluation
nodes is addressed within this study as we use
the upper level of the bi-level OC formulation for
this task.

3)

2.3 Statistical Moments

Statistical moments are straightforward to write
down for the gPC expansion using LAGRANGE
interpolation, but require the numerical evalua-
tion of an integral for the LAGRANGE polyno-
mial over the uncertainty domain. This is gen-
erally very time consuming, but can be handled
as a pre-processing step using symbolic deriva-
tions.

For instance, the mean [E is calculated as follows:

Zym /«i”

The calculation of higher order moments is
straightforward and can be achieved using the
standard definition for e.g., variance or skewness
[I1]. Consequently, this requires the integration
of higher order products of LAGRANGE polyno-
mials.

p(0)de (4)

3 Bi-level Framework

This section introduces the proposed bi-level OC
methodology used to calculate the worst-case ap-
proximations of the uncertainty interval for the
trajectories. Subsection 3.1 introduces the gen-
eral OC problem, while subsection 3.2 gives an
overview of the proposed bi-level framework.

3.1 Trajectory Optimization Problem

The trajectory optimization problem is formu-
lated as follows [12]:

1y

min J=e(z)+ L(z)ds

Z,tr to=0

s.t. f(z;0) =x, (5)
c(z) <0,
y(z)=0

Within the formulation of Eq. 5, the OC goal is
to minimize the cost functional J that is split up
into a final value term e (Mayer term) and an in-
tegrated term L (Lagrange term). The minimiza-
tion is subject to equality ¢ € R”*! and inequal-
ity y € R™>*! path and point constraints respec-
tively. A specialty of OC is that one equality
path constraint is reserved for the state dynam-
ics x € R™>*! that depend on the states x € R™!
and controls u € R™>*! These are combined in
the previously introduced parameter vector z. In
our case the state dynamics also depend on the
uncertain parameters.

The OC problem is transcribed using direct meth-
ods [12] by the OC toolbox FALCON.m [!3] and
solved using the solver Ipopt [14].



3.2 Combination of Generalized Polynomial
Chaos and Trajectory Optimization in
Bi-level Framework

Within our approach to calculate worst-case
approximations of trajectories with uncertainties,
we rely on a bi-level methodology. The structure
of the proposed bi-level framework is illustrated
in Figure 1: Within the lower level multiple
trajectory optimization problems are solved by
using gradient-based optimization (subsection
3.1). The upper level solves a parameter opti-
mization problem by using a DE strategy [15].
This strategy assures a global optimal solution.
The lower level cost functions are standard for
trajectory optimization, i.e., minimal time or
minimal fuel consumption. Conversely, the
upper level tries to e.g., maximize the variance
of the solution to find a worst-case bound.

Both levels are connected by parameter ex-
change: The upper level supplies the lower level
with evaluation parameters for the uncertainties,
1.e., the evaluation points of the LAGRANGE
polynomials. Then, the lower level provides the
upper level with the optimal trajectories at these
nodes that are used for the statistical moment
calculation. Overall, the framework tries to
balance the aim of the upper level to optimize its
cost and the aim of the lower levels to optimize
their costs individually. By this, worst-case
scenarios that are still achievable by the aircraft
can be calculated.

The proposed bi-level structure offers the three
following advantages: First of all, the general
problem of the SC with LAGRANGE polynomials
for the standard gPC application, i.e. the choice
of accurate nodes in order to reproduce the
uncertain response with suitable accuracy, is
overcome. This is based on the fact that the upper
level finds suitable nodes for the optimization of
its cost function, while it also fulfills the lower
level trajectory optimization problem.

Another issue, related to gPC by discrete expan-
sion [5], can also be overcome by the framework:
The accuracy of the moments is unknown for
the discrete expansion approach, because it is
depending on the order of the expansion and
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also the nonlinearity of the uncertain response
surface. Now, the proposed approach overcomes
this issue with a suitable upper level cost func-
tional, e.g., the maximization of the variance,
such that worst-case approximations can be
found.

Finally, the usage of LAGRANGE polynomials
offers another advantage concerning the discrete
expansion: With the LAGRANGE polynomial
approach it is no longer necessary that an or-
thogonal polynomial basis exists. Therefore, we
can also simply model uncertainties that have
no corresponding orthogonal polynomial in the
WIENER-ASKEY SCHEME (Table 1; e.g., the
Weibull distribution).

Overall, the proposed bi-level framework is
a cooperative bi-level approach, because both
the upper and the lower level work together to
optimize the overall cost functional of both levels
and try to achieve a worst-case approximation.
This is e.g., the case for a variance maximization,
1.e., the calculation of a worst-case variance,
presented in section 4.

4 Case Studies

This section introduces the case studies and re-
sults for the proposed bi-level methodology of
this study (section 3). Here, subsection 4.1 in-
troduces the optimization model, while the opti-
mization results are given in subsection 4.2.

4.1 Optimization Model

The optimization model is based on a rigid-
body representation of a VTOL on a fixed-flat
earth [16]. The twelve states comprise the posi-
tion (x,y,z), the velocity (u,v,w), the orientation
(0,0, ), and the rotation (p, g, r). The VTOL and
the aforementioned definitions are also illustrated
in Figure 2.

As controls, the rotor speeds ®; (left wing), m;
(right wing), m3 (front fuselage), and ®4 (rear
fuselage) are used. Additionally, the deflection
of the elevator n and the tilt of the first and sec-
ond rotor 81 and 9, are available.
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Initial Population

Upper Level Problem

Optimal Population

[ ———

Genetic Algorithm

> _ Calculates new Lagrange interpolation points for the
stochastic collocation

- Cost function: e.g., minimize error to mean solution
and maximize the variance

gl . gt

—— g ¢ (EE . EEES J EEES Y EEES ¢ SIS ¢ AN 4 BN ¢ B ¢ IS + S ¢ e+ e

¥(x,u,0W), ..., ¥(x, u,80)

Lower Level Problems

1st Lower Level Problem

Gradient-based Optimization Algorithm
- Calculates new optimal trajectory for 1st Lagrange
collocation point
- Cost function: e.g., minimize flight time

n-th Lower Level Problem

Gradient-based Optimization Algorithm
- Calculates new optimal trajectory for n-th Lagrange
collocation point
- Cost function: e.g., minimize flight time

Fig. 1 : Structure of the bi-level framework for worst-case uncertainty interval calculation.

Now, the rigid-body equations of motion are
given as follows [16]:

X = [1,3,2,1,,,0,0,9, p, g, 7]
0; P 0; 0
0; —Q 0; 0
0; 0; 0 O
0; 0; 03 —I'QI (6)

03><l
F

4| om
03><l
I'M

The zero matrices of appropriate size, denoted by
their index, are given by 0 in Eq. 6 (a single in-
dex indicates a square matrix). The inertia tensor
is I, the mass m, while the forces and moments,
consisting of aerodynamics, thrust, and gravita-
tion, are summarized in the terms F and M re-
spectively. The matrix Q is the skew-symmetric
matrix for the cross product and contains the ro-
tation states. The matrix P and O are the po-
sition and attitude propagation matrices respec-

Fig. 2 : Side view of VTOL including linear and
rotational axes definition with the corresponding
states with exchange between both levels.

tively and defined as follows [16]:

[—1 0 0
P=|0 1 0 (7
|0 0 -1
(1 tan (0)sin(0) tan(0)cos(0)
0=1[0  cos(¢) sin (6) ®)
0 sin(0) cos(¢)
i cos(0) cos()

For the optimization case in subsection 4.2, the
states, controls, and outputs are bounded, scaled,
and offset as defined in Table 2.

The VTOL flies a transition maneuver from hover



Table 2: States, controls, and outputs bounds,
scaling, and offset for optimization.

\ Symbol | Lower Bound | Upper Bound [ Scaling | Offset |
States
X —o0 +oo 1 Om
y —oo o0 1 Om
z Om +25m 1 Om
[ —45° +45° 1 0°
0 —75° +75° 1 0°
v —oo Foo 1 0°
u 10 7m 507 1 0
v —107 107 1 om
W —107 107 1 [
I 302 302 1 02
q —308 1302 1 02
r —152 +15¢ 1 02
Controls
o +0rad +1570.87 1 175074
) +orad +1570.8% 1 17507
o3 +orad +1570.87 1 175074
oy +orad +1570.8% 1 175074
n —25° +25° 1 0°
8 -30° +120° 1 +43°
8 -30° +120° 1 +43°
Outputs
Kinematic Velocity Vi +1077m +25m 1 +10™
Funnel Distance dr +0.1m o0 1 Om

to fixed-wing mode with the initial and final
boundary conditions defined in Table 3. While
transitioning, it also escapes from a funnel. The
distance to the funnel is hereby defined as fol-
lows:

dp =z—s5(x,y) ©)

In Eq. 9, the function s(x,y) is a sigmoid that
models the escape funnel and is defined as fol-
lows:

¢ (x y) s exp (w /x2 y2+Saff> s
- le * RG] hift
) scale exp ( Py Soff) 1 shif

(10)

The sigmoid design parameters are chosen as
follows: Sgcate =5, Soff = —2, and sgir, = —1.
These denote the scaling, offset, and shift param-
eter of the sigmoid function s (x,y) respectively.

4.2 Optimization Results

The lower level optimizations are calculated with
respect to the following cost function:

J=1t; (11)

Thus, we are optimizing the problem to achieve a
minimal transition time.
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Table 3: Initial and final state and output condi-
tions for the optimization.

| Symbol | Initial Value Bounds | Final Value Bounds |

States
X Om free
y Om free
Z +0.1m > +4.5m
0 0° 0°
0 0° free
v 0° 0°
u +0.1 % free
v = 0%
w 0% free
’
4 : 0
Outputs
Vk auto set > +20%
Yk free [-0.5;+0.5]°

In the following we look at two case studies in
order to test the bi-level framework proposed in
subsection 3.2: At first, subsection 4.2.1 looks
at the maximization of the final time variance.
Then, subsection 4.2.2 gives further results re-
lated to the maximization of the position standard
deviation. Both test cases also minimize the dis-
tance to their respective mean values to assure
a comparability with the standard gPC results.
Additionally, the results for different gPC orders
ranging from M = 2 — 5 are looked at.

It should be noted that the reference (comparison)
results are calculated using the gPC expansion by
Gaussian quadrature as introduced in [5].

Take into account that the sidewards wind ve-
locity has been chosen as the uncertainty with a
UNIFORM distribution defined as follows:

vWE£U<—5?,+S?) (12)

4.2.1 Maximization of Final Time Variance

This section summarizes the test case results for
the case study with maximization of the final time
variance using the proposed bi-level framework.
As mentioned before a minimization to the refer-
ence mean final time is also sought to make the
results comparable.

Table 4 summarizes the results for the bi-level



Table 4: Results for the maximization of the final

time variance for different expansion order.

| Order [ E[ts] (@PO) [ E[t] BL) [ o[t] @PO) [ o[ty BL) |

2 1.4003s 1.3905s | 0.00020838s | 0.00088112s
3 1.3925s 1.3821s | 0.00043615s | 0.0036978s
4 1.3881s 1.3767s 0.0010594s | 0.0016458s
5 1.3921s 1.3823s 0.0010851s | 0.020941s

(BL) and the standard gPC optimization (gPC)
for different orders. Additionally, Table 5 sum-
marizes the results for the optimized node posi-
tions of the LAGRANGE polynomials.

Now the results are described: First of all, Table 4
shows that the mean value matching is achieved
fairly well and that therefore it is reasonable to
compare the results. Additionally, it can be ob-
served that the expansion of order 2 depicts the
problems related to low order gPC expansion that
these cannot accurately cover higher order mo-
ments (in this case the standard deviation). In
this example the problem is overcome with the
4'h and 5" order expansion that seem to con-
verge to a standard deviation and a mean value
(E [tf] ~1.39s and G [t] ~ 0.001s).

Now the bi-level framework shows that the 3"
and 5" order expansion create the highest stan-
dard deviations. This behavior is also seen in Ta-
ble 5: Here, the 3" and 5" order expansion shift
their nodes both towards negative velocities. This
seems to be the shift direction to a worst-case
approximation of the standard deviation. It can
further be observed from the results that polyno-
mials with an odd highest order exponent seem
to approximate the response in a better way and
therefore lead to the possibility of a worst-case
approximation. Following this argumentation it
is reasonable to assume that also the real system
response surface is related to a polynomial with
odd highest order exponent.

Overall, the results of this subsection depict that
the proposed bi-level framework is able to ap-
proximate a worst-case statistical moment re-
sponse of an uncertain system. Now, subsection
4.2.2 continues with a more sophisticated exam-
ple.
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Table 5: Node positions for the bi-level results
to optimize the final time variance with different
expansion order.

Order 2 3 4 5
- q —4.5921
—3.5876
—4.6308 —1.7645
~1.009 —~1.7334
Nodes Tl -1.1104| % Y1 1-035844| %
1.1592 2.0011
4.2083 1.8682
4.6542
- - 4.1578

4.2.2  Maximization of Position Standard Devi-
ation

This case study introduces the proposed bi-level
framework in the context of finding the maxi-
mal position standard deviation of the trajectory.
Here, the standard deviations at each point of the
trajectory are summed up and therefor an overall
maximized results is sought rather than a result
that exceeds the standard deviation of the refer-
ence case in each point. Again a minimization to
the reference mean value from gPC is looked for
to make the results comparable.

Now, Figure 3 introduces the mean trajectories
to escape from the funnel. In the following fig-
ures, the reference results from standard gPC
are depicted by a solid, red line, while the re-
sults of the proposed bi-level framework (worst-
case) is given by a dashed, green line. It can be
seen that the trajectories lie one above the other.
This shows that the minimization to the reference
mean value is successful and that the standard de-
viation results can be compared.

As it was already observed in subsection 4.2.1
the 3" and 5" order expansion gave the best
worst-case approximations of the response sur-
face in this optimization setup. Therefor Figure
4 and Figure 5 give the corresponding standard
deviation results for the 3" and 5 of this case
study respectively. A very similar behavior can
be observed in the x-axis: The standard devi-
ation increases with roughly a quadratic behav-
ior. Also the results for the y-axis are very sim-
ilar. Here, it can be seen that the standard de-



Trajectory comparison of both controls (mean)

E[z] in [m]

1 n
10 0 Standard
-20 . Worst-Case
E[x] in [m]

Fig. 3 : Mean optimized trajectory for reference
(standard) gPC optimization and bi-level opti-
mization (worst-case).

viation of the worst-case is reduced compared to
the reference results. This shows the previously
mentioned capability of the cost function to find
a globally optimal solution instead of a solution
that is worse in each point but might not be glob-
ally optimal. For the z-axis a rather different be-
havior can be seen: The 3"¢ order expansion (Fig-
ure 4) is smaller overall but tends to a constant
value in the end, while the 5 order expansion
(Figure 5) is larger overall but has a very similar
behavior as the reference case.

This different behavior can also be seen looking
at the cost function of the bi-level OC, i.e., in this
case the upper level. The cost functions are given
as follows:

3| = 22.4035

I = 34.9636 (1)
Thus, Eq. 13 shows that the 5 order expansion
creates a more optimal result in the sense of the
cost function for this case as it creates a larger
cost index for the upper level (a maximization is
the goal).

Concluding, the proposed bi-level methodology
has again shown its applicability in the context
of aircraft trajectory optimization to calculate
worst-case trajectories. These results can be used
to get an impression of the uncertainty interval
and how the approximation might be in a worst-
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" Different trajectory time histories for comparison (std)
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Fig. 4 : Comparison of standard deviation results
for standard gPC and worst-case approximation
with an order 3 expansion.
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Fig. 5 : Comparison of standard deviation results
for standard gPC and worst-case approximation
with an order 3 expansion.
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case sense.

5 Conclusion and Perspective

Within this study, we developed a methodology
to calculate optimal trajectories with uncertain-
ties and their worst-case approximations. For
this, the gPC methodology is incorporated into
a bi-level OC framework. A basic problem of the
gPC method, namely the fact that the quality of
the results for e.g., mean and standard deviation,
have no defined bounds, is overcome using the
bi-level formulation as it gives the possibility to
calculate the worst-case bounds.

Here, the LAGRANGE collocation approach is
used that makes it also possible to use the
gPC methodology for uncertainty distributions
not covered by the WIENER-ASKEY SCHEME.
Within the bi-level approach the SC nodes are
chosen in the upper level by a parameter opti-
mization problem in a manner that the worst-case
approximation for the lower level is achieved.
The lower levels calculate the optimal trajecto-
ries at these SC nodes.

Future research should be concerned with a faster
update of the upper level problem using sensitiv-
ities. Ultimately, the proposed framework is also
not only limited to OC: On the contrary, the lower
level provides also space for a simulative assess-
ment. This could e.g., be used in the context of
step responses to test a control circuit. Here, also
worst-case LAGRANGE points are of interest to
calculate a stability area of the control circuit.
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