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Abstract

Computer simulations of the ice accretion process
provide an attractive method for analyzing a wide
range of icing conditions at low cost. An ice ac-
cretion model that accurately predicts ice growth
shapes on arbitrary airfoils sections is valuable
for the analysis of the sensitivity of airfoils for ice
accretion. Furthermore the analysis of the influ-
ence of flow variables such as airspeed and angle
of attack, pressure, temperature and humidity on
ice accretion is studied easily. Such an approach
can also be used to assess the energy requirements
necessary to prevent and/or remove ice from an
airfoil. Once the method has been validated, it
will provide a cost-effective means of perform-
ing icing research studies which now rely, for an
important part, on experimental techniques. In
this paper, a computational method is presented
that computes three dimensional ice accretion on
multiple-element airfoils in specified icing condi-
tions. The main part of the method is the method
to compute the distribution of the supercooled wa-
ter impinging on the wing surface, which is a chal-
lenge especially for so-called super-cooled large
droplets (SLD). To this aim, for a given flow field
solution, the numerical method (Droplerian) uses
an Eulerian method to determine the spatial distri-
bution of the Liquid Water Content (LWC) and the
droplet velocities. To solve the equations for the
droplet velocities and liquid water content distri-
bution, Droplerian uses a Finite Volume Method
for unstructured grids. Through the droplet veloci-
ties and Liquid Water Content at the surface of the

airfoil the droplet catching efficiency is calculated.
The method can handle a multi-disperse droplet
distribution with an arbitrary number of droplet
classes (bins) and contains a droplet splashing
and droplet rebound model. The splashing and
rebound models are indispensable for correctly
treating impingement of SLD’s. Once the droplet-
catching efficiency and droplet impact velocity are
determined, they are used as input for the icing
model, which is based on Messinger’s model for
ice accretion.

1 3D Eulerian Droplet Tracking

In previous studies the Eulerian droplet tracking
method was validated by comparing its results
with results from previous computational mod-
els and from two dimensional experimental data
from Papadakis et al. for a NACA 23012 airfoil at
2.5◦angle of attack (AoA) [3–6]. The originally
two dimensional method has been extended to
three dimensions and was compared to the same
experimental impingement data and to the previ-
ous two dimensional results. The droplet quan-
tities ρd and ~Ud are considered; where ρd is the
droplet density in kilogram water per cubic meter
of air, and ~Ud is the droplet velocity. The gen-
eral Eulerian equations for mass and momentum
conservation are formulated as:

∂ρd

∂t
+~∇ ·ρd~Ud =0, (1)

∂ρd~Ud

∂t
+~∇ ·

(
ρd~Ud

)
~Ud=ρd~fD +ρd

(
1− ρa

ρw

)
~g,

(2)
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with ρw the density of water and ρa the density
of air. The only other source-term considered,
besides the drag force ~fD, is due to gravity; for
the present case other forces, such as lift force and
Basset history force, are neglected.

A splashing model is employed in the Eulerian
method, which uses the method by Honsek and
Habashi [2], based on work of Trujille [8]; which
has been described in [6]. A rebound model based
on work from Bai and Gosman [1] was also in-
cluded, both models are present in both the 2D
and 3D methods.

In the following sections, the necessary
changes to the 2D method are described as well
as the resulting 3D catching efficiencies and ice
accretion shapes. These results are compared to
results of the 2D method and to experimental re-
sults.

2 Boundary Ordering

In 2D, the ice accretion method is fairly simple:
starting at the stagnation point, the temperature
Ts and freezing fraction f can be calculated, one
control volume after another. In 3D the stagnation
point has become a stagnation line, leading to a
2D surface flow.

This means that the sequential ordering of con-
trol volumes becomes less than trivial. This would
mean that the surface flow could; either be solved
iteratively, or, an alternative boundary ordering
has to be found. In order to save on the computa-
tional cost that would be implied by solving the
surface flow iteratively, while recursively itera-
tion for temperature, the boundary order will be
determined.

Considering the surface flow on an airfoil:
similar to the 2D case, surface flow starts at a
stagnation panel, continuing downstream in mul-
tiple directions. Assuming that direction of the
surface flow is completely determined by the flow
of air along the surface:

~Us,i∣∣∣~Us,i

∣∣∣ =
~Ua,i∣∣∣~Ua,i

∣∣∣ , (3)

for the ith control volume.

This means that by following the flow of air
along the surface, the order in which the surface
flow passes through the control volumes can be de-
termined. As an intermediate step an array [rank]
can be determined, starting at 1, increasing for
each control volume the flow has passed.

As a first step, the approximate stagnation
point (or stagnation line in 3D) is determined:

ranki = 1 :


ua,i < 1×10−5 & va,i < 1×10−5

ua,i < 1×10−5 & wa,i < 1×10−5

va,i < 1×10−5 & wa,i < 1×10−5

.

(4)
Starting from these points, which are most likely
stagnation points, the flow can be followed down-
stream, numbering the control volumes consecu-
tively: if the velocity of the flow is in the same
direction as the vector from one control volume
to the next, the rank is determined. This process
is repeated until no control volumes change rank.
This is clarified in Algorithm 1 and illustrated in
Fig 1.

Input: Initial ranking
Output: Final ranking
changed = True
while changed do

changed = False
for i = 1,Nconn do

A = element left of i
B = element right of i
if ~Ua,A · (~xB−~xA) and rankB <
rankA +1 then

rankB = rankA +1
if not changed then
changed = True

else if
~Ua,B · (~xA−~xB) and rankA <
rankB +1 then

rankA = rankB +1
if not changed then
changed = True

Algorithm 1: Rank calculation

The order of calculation is then determined
by looping over all ranked cells, shown in Algo-
rithm 2 and Fig. 2. The order-counter starts at
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~U

1 1 1 1 1 1

(a) Initial values, stag-
nation line

~U

1 2 3 4 5 6
2 3 4 5 6 7

(b) First iteration

~U

1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9

(c) Last iteration

Fig. 1 : Illustration of rank calculation on a flat
plate

orderi = 1, for the first cell i, with ranki = 1. It
increases for every cell with ranki = 1. If all cells
have been checked, the process is repeated for
ranki = 2. Note that the order can change depend-
ing on the grid cell ordering.

Input: Final ranking
Output: Order
k = 1
while k ≤maxval [rank] do

j = 1
for i = 1,Ncell do

if ranki = k then
orderi = j
j = j+1

Algorithm 2: Order calculation

The resulting array [order] contains the surface
element numbers, ordered in flow direction, such
that:

order1
order2

...
orderNcell

=


first cell to process

second cell to process
...

last cell to process.



~U

1 3 6 10 14 18
2 5 9 13 17 21
4 8 12 16 20 23
7 11 15 19 22 24

(a) Cells ordered up-
down-left-right

~U

1 2 4 7 11 15
3 5 8 12 16 19
6 9 13 17 20 22

10 14 18 21 23 24

(b) Cells ordered left-
right-up-down

Fig. 2 : Illustration of order calculation on a flat
plate

3 Catching Efficiency Calculation

Apart from the preprocessing of the boundary the
catching efficiency (β) has to be determined on the
surface. For each control volume on the surface
the catching efficiency is determined:

β =
ρd~Ud ·~n

LW C
∣∣∣~Ud,∞

∣∣∣
βi =

ρd,i~Ud,i ·~ni

LW C
∣∣∣~Ud,∞

∣∣∣ .
(5)

Any droplets that splash or rebound are al-
ready accounted for due to the change in mass
and momentum introduced in [3], so the mass loss
coefficient should not be included in Eq. 5.

4 Messinger Iteration

With the boundary order and catching efficiencies
known, it is possible to calculate the heat and
mass balance in every control volume. Because
this is a 3D method, the Messinger model has to
be modified somewhat.

4.1 Mass Flow

The Messinger model assumes a 2D flow, with sur-
face flow entering the control volume (CV) from
one side and leaving it from the other. In 3D, the
surface flow enters and leaves as determined by
the surface flow direction. However, for the local
mass and energy balances the control volume is
still considered 2D, see Fig 3. The 3D flow comes
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into play in determining which control volumes
receive the run back mass going out of the cur-
rent control volume. The mass flowing out of the
control volume, ṁout , has to be converted to a 3D
vector:

~̇mout,i = ṁout,i
~Ua,i∣∣∣~Ua,i

∣∣∣ , (6)

such that

ṁin,B =
Nconn

∑
i=1

ṁout,A
~Ua,B∣∣∣~Ua,B

∣∣∣ ·~nA,B. (7)

Water

Ice

ṁin,i

ṁice,i

ṁout,i

ṁimp,i ṁev,i

CVi

Fig. 3 : Messinger control volume, 3D, mass flows

Assuming that all surface flow is instanta-
neous, Algorithm 3 can be used to determine the
inflow into every control volume.

5 Results

To validate the 3D model results are compared
with results obtained with a similar 2D model, val-
idated and explained in [6]. For a first comparison,
the 2D geometry of [7] is expanded by 1 meter in
the third dimension. A zero flux wall condition
is imposed on the sides of the domain. The 3D
results should be similar if not identical to the 2D
results.

The input conditions from the Papadakis cases
are listed in Table 1 and Table 2. An example of
a catching effiency obtained using the input from

Input: Order, ṁout,i
Output: [ṁin]
UX = 0
for j = 1,Nconn do

A = element left of j
B = element right of j
UX j = 1

2

(
~Ua,A +~Ua,B

)
· ~xB−~xA
|~xB−~xA|

if A == i and UX j > 0 then
UX =UX +UX j

else if B == i and UX j < 0 then
UX =UX−UX j

for j = 1,Nconn do
A = element left of j
B = element right of j
UX j = 1

2

(
~Ua,A +~Ua,B

)
· ~xB−~xA
|~xB−~xA|

if A == i and UX j > 0 then
ṁin,B = ṁin,B +

UX j
UX ṁout,A

else if B == i and UX j < 0 then
ṁin,A = ṁin,A− UX j

UX ṁout,B

Algorithm 3: Inflow calculation

Table 1: Conditions for selected cases [7]

MVD AoA c LWC
20 µm 2.5◦ 0.9144 m 0.19 g/m

236 µm 2.5◦ 0.9144 m 1.89 g/m
U∞ T∞ p∞

78.23 m/s 299 K 101330 Pa
78.23 m/s 299 K 101330 Pa

Table 2: 10-Bin droplet distributions for selected
cases [7]

Droplet LW C Droplet size [µm]
bin [%] 20 µm M V D 236 µm M V D

1 5.0 3.850397 16.25037
2 10.0 9.390637 63.65823
3 20.0 13.80175 135.4827
4 30.0 19.60797 298.5197
5 20.0 25.4820 508.4572
6 10.0 30.73474 645.4684
7 3.0 35.19787 715.8689
8 1.0 38.32569 747.3936
9 0.5 40.66701 763.2455

10 0.5 44.36619 1046.767
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(a) Catching efficiency

(b) Ice accretion shape

Fig. 4 : Three dimensional results for NACA 23012 at an MVD of 236 µm

Table 1 and Table 2 is shown for the 236 µm MVD
in Fig. 4. As an example, the 3D ice accretion
shape, obtained by lowering T∞ to 263 K is also
shown.

The same catching efficiency is plotted in two
dimensions in Fig. 5. The points mark the 3D
results, the solid line marks the 2D results. This
shows that 3D and 2D are very similar, however,
due to the large variation in orientation of the 3D
surface element a larger variation is observed in
the catching efficiency.

A more interesting case can be created by
sweeping the geometry. The NACA 23012 airfoil
is swept by 25◦. Furthermore, the wing is now
finite, it fills only half the width of the computa-
tional domain. This should allow for a difference
in catching efficiency from root to tip and show
some 3D effects. All other parameters are kept
according to Table 1 and Table 2.

Looking at Fig. 6, the droplet trajectories are
observed having a 3D component. The droplet
move from root to tip. For the ice accretion shape,
an increase in ice thickness is observed near the
root of the wing, due to a smaller amount of run-
back water.
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β
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Catching Efficiency β

3D catching efficiency
2D catching efficiency

Fig. 5 : Three dimensional catching efficiency for
NACA 23012 at an MVD of 236 µm
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(a) Element order and droplet trajectories

(b) Ice accretion shape

Fig. 6 : Three dimensional results for NACA 23012 at an MVD of 236 µm
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6 Conclusion

A 3D ice accretion method has been created by ex-
tending an existing 2D Eulerian ice accretion code.
It has been shown that this extended model, in-
cluding a splashing and rebound model, provides
similar results to its 2D predecessor. For a semi-
2D straight airfoil ice accretion shapes, droplet
trajectories, and catching effiencies are just as eas-
ily obtained in three dimensions; however, due to
the large variation in element orientation for this
unstructured method, leads to results which vary
along the span of the airfoil. For swept wings an
expected variation in ice thickness was observed.
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