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Abstract  

A new approach based on path constraint 
control is proposed in this paper for re-entry 
vehicle trajectory planning and guidance. A 
unified formula has been obtained which 
reveals the inherent characteristic of path 
constraints in r-V plane. And an analytical 
trajectory planning method with fewer 
parameters is developed. Dynamic inverse 
guidance law is designed to tracking the 
reference trajectory. Simulation results verify 
the feasibility of the approach. 

1   Introduction 

The flight of re-entry vehicle covers large range 
in a short time with hypersonic velocity. The 
vehicle faces severe aerodynamic heating and 
aerodynamic loads problems. Constraints like 
heating rate, dynamic pressure and aerodynamic 
load are strict. It brings great challenge to the 
re-entry guidance system which has to guide 
vehicle to the required states safely. The path 
constraints have to be satisfied to guarantee the 
structure integrity and crew safety [1]. 

The trajectory planning and optimization 
methods of high lifting re-entry vehicle can be 
classified in to two categories: predictor-
corrector method and nominal trajectory method. 
The predictor-corrector methods integrate 
trajectory and cost a lot of time. To improve the 
algorithm convergence and speed, the searching 
parameters should be as few as possible. So lots 
of trajectory design methods used constant bank 
angle [2]. The nominal trajectory methods design 
the basic geometry profile of re-entry trajectory 

based on the engineering experience, and then 
adjust the profile using range predict formula to 
reach certain performance. It can avoid 
trajectory oscillations. The space shuttle re-entry 
trajectory profile was divided into five parts and 
fitted with different expressions to make the 
trajectory geometry fitting the shape of the 
constraint boundary as much as possible. The 
design parameters of fitted expression were 
searched to satisfy path constraints [3]. 

To enforce path constraint, Ref.[4] flatted the 
peak of heating rate and the vehicle flied with a 
constant heating rate during a short time. Ref.[5] 
divided trajectory into two parts: the first part 
flied with constant heating rate while the second 
part flied without any constraint. Ref.[6] used 
QEGC (Quasi-Equilibrium Glide Condition) 
and converted the constraints into the upper 
boundary of bank angle. Then the bank angle 
profile was designed under the upper boundary. 
However, the QEGC is not available in the 
whole flight. 

Although the above trajectory planning 
methods have successfully satisfied path 
constraints, there are also some limitations in 
terms of fast convergence, efficiency, and 
versatility. Since the predictor-corrector method 
has to search a lot of parameters, it could not 
provide a systematically and effectively way to 
deal with path constraints. The nominal 
trajectory method also has to adjust a lot of 
parameters and usually based on engineering 
experience.  

This paper firstly analysis the path constraints 
of heating rate, dynamic pressure and 
aerodynamic load in r-V plane. Based on the 
definition of these constraints, a unified 
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analytical math formula which reflects the r and 
V relationship of constraint boundaries is 
obtained through derivation and integral. The 
characteristics which are very useful for re-entry 
trajectory of this formula are discussed. A new 
trajectory planning method is developed and 
dynamic inverse guidance law is also designed 
for trajectory tracking. The simulation results 
demonstrate the validity of the proposed 
methods. 

2    Problem Description 

2.1   Dynamic Equations 

Three dimensional motion point-mass dynamics 
of the re-entry vehicle over a sphere rotating 
Earth described by dimensionless equations is 
used [7]. The distances are normalized by R0, the 
radius of the Earth at the equator. Time is 
normalized by √ (R0/g0), where g0 is the 
gravitational acceleration magnitude on the 
surface of the Earth. The velocities are 
normalized by √(R0g0). 
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2.2    Path Constraints 

During re-entry flight, the vehicle is in 
hypersonic condition and must satisfy path 
constraints for safety and vehicle integrity such 
as heating rate, dynamic pressure and 
aerodynamic load constraints. These three most 
common path constraints in re-entry guidance 
will be discussed in detail in this paper. 
1) Heating rate constraint 

 0.5 3.15
maxQ

Q K V Q 
   (2) 

Where Q is the heating load. The constant 
42.8125 10

Q
K    

for the specific vehicle in this 

paper. The allowed maximum heating rate maxQ  

is determined by the thermal protection material 
and body structure. V is velocity and ρ is air 
stream density modeled as [8]: 
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Where H is a constant and ρ0 is the sea level 
atmosphere density. The altitude h=R0(r-1), r is 
the normalized radial distance from the center of 
the Earth to the vehicle. The lower boundary of 
heating rate in r-V plane is: 
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2) Dynamic pressure constraint 
 2

max0.5q V q   (5) 

The allowed maximum dynamic pressure is 
mainly determined by body structure and 
thermal protection. The attitude is usually 
control through control surfaces. In order to 
guarantee the normal work of the control 
surfaces and avoid too large hinge moment, the 
constrained dynamic pressure should also 
consider these factors. The lower boundary of 
dynamic pressure in r-V plane is: 
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3) Aerodynamic load constraint 

  2 2
maxn L D n    (7) 

To simplify the following derivation, the L 
and D are normalized by mg. m is vehicle mass 
and g is gravity acceleration. The normalized lift 
and drag are: 
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Sref is reference area. CL and CD are lift and 
drag coefficients. The allowed maximum load is 
determined by vehicle structure strength and the 
load range of onboard equipments. The lower 
boundary of aerodynamic load in r-V plane is: 
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The entry trajectory terminates at some 
distance from landing site where the guidance is 
handed over to the TAEM (terminal area energy 
management).  

3   Re-entry Corridor 

Re-entry corridor is determined by heating 
rate, dynamic pressure and aerodynamic load 
constraints. The space shuttle used drag 
acceleration and velocity to describe the 
corridor (D-V plane). It is because the 
navigation technique could not provide accurate 
information of velocity and altitude at that time. 
Another reason is that through tracking drag 
acceleration profile, the velocity could be 
controlled with small error at the condition of 
disturbance and uncertainties. As the 
development of navigation technique, the high-
precision navigation becomes possible and the 
altitude and velocity are used (r-V plane) to 
describe the corridor. Actually, the D-V plane 
corridor and r-V plane corridor are one to one 
mapped. Here we use r-V plane to describe the 
corridor. 

Different from iteration method or 
complicated analytic equations, here we 
proposed a laconic formula to describe the re-
entry corridor. 

Differentiating Eqs.(2), (5), and (7)with 
respect to V: 
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With the given maxQ , maxq , maxn , we can have: 

d d d
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Then the first order derivatives of r to V along 
the boundary of heating rate, dynamic pressure 
and aerodynamic load constraints are obtained 
respectively: 
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(18) 
The terms contain coefficients CL and CD in 

Eq.(18) are relatively small compared with the 
first term and  Eq.(18) can be written as follow 
by ignoring the last two terms:
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Integrating Eqs.(16)-(17), and (19), it is found 
that the heating rate, dynamic pressure and 
aerodynamic load constraints can be expressed 
in r-V plane as: 
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  (20) 

From above derivation, we can conclude that 
when the allowed maximum value of heating 
rate, dynamic pressure and aerodynamic load 
are given, the constraint in r-V plane can be 
expressed as: 

lnr k V C        (21) 
Where k is valued as 6.3H/R0, 2H/R0, and 

2H/R0 for heating rate, dynamic pressure and 
aerodynamic load respectively. C is integral 
constant. The same value of k for dynamic 
pressure and load constraints means these two 
constraint boundaries are parallel or coincident 



ZHANG RAN, LI HUIFENG, CAO XUDONG  

4 

and only one (the upper one in the r-V plane) of 
them works. This useful conclusion simplifies 
the problem significantly. 

At the intersection point of constraints, the 
corresponding velocity is: 

   0 0

4.3 4.3or
n qQ QR C C R C C

H HV e V e
 

 
 

   (22) 
If the trajectory is in the form of Eq.(21), then: 

d

d
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With omission of the Coriolis acceleration 
term in the Eq.(1) we can have: 
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The flight path angle can be obtained by: 

1
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          (25) 

If the flight path angle can be predicted 
during the trajectory planning, we can know 
whether QEGC is satisfied and then improve the 
range prediction. 

4   Trajectory Planning 

The Eq.(21) represented the inherent common 
of path constraints in r-V plane and is useful for 
trajectory planning and optimization. Here we 
take longitudinal trajectory design for example 
to show the application. It has unique 
superiority in dealing with path constraints. 

The range vehicle has flied: 
VdV

R
D

     (26) 

The Eq.(25) indicates that the range can be 
predicted through designing D=D(V). Since the 
D-V plane corridor and r-V plane corridor are 
one to one mapped, we can find an appropriate 
r=r(V) to satisfy the requirements of range and 
other performances. 

In Fig.1, the dashed line is heating rate 
constraint; dot-dashed line is load constraint. 
Re-entry trajectory can be designed as: 

1 1 1
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  (27) 

If the k1=6.3H/R0 and k2=2H/R0, that means 
the trajectory is parallel to the constraint 
boundaries. The intersection velocity is denoted 
as Vint. 

Then the trajectory can be adjusted 
conveniently to satisfy the path constraints 
when the following conditions hold true: 

1
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The value of constants parameters C1 and C2 

are used to adjust the range. Since the range is 
monotonous with C1 and C2, it will be very fast 
to find out the right value of these two 
parameters. There are lots of parameter 
searching algorithms can be used. This method 
makes sure that the vehicle can reach any 
landing site within footprint. 

 
Fig.1 Illustration of constraints for trajectory design 

The advantages of this method are as follow: 
1) The trajectory can be designed latch on the 

lower boundary of constraints. So the 
minimum range can be obtained which 
enhances capability in solving footprint 
inner boundary. 

2) The designed trajectory is continuous and 
differentiable (first and second derivatives) 
and that makes the trajectory tracking much 
easier. 

3) The vehicle flights with constant heating 
rate, aerodynamic load and dynamic 
pressure. It conquers the hurt to vehicle 
structure from continuous changed loads. 
The reliability such as TPS and vehicle 
safety are strengthened significantly. 

5   Dynamic Inverse Guidance Law 

To tracking the designed trajectory, dynamic 
inverse guidance law is used. It improves the 
adaptability and robustness of guidance system. 

heating ratio constraint
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Taking velocity V as independent variable, 
differentiating the both sides of Eq.(24) with 
respect to V, we can get: 
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cosu L  . 
The altitude tracking error is denoted as: 

refe r r     (30) 

Where rref is the reference altitude. The first 
and second derivatives of e with respect to V are: 
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To achieve closed-loop error dynamics in the 
linear time-invariant form, the tracking altitude 
error is modeled as a second order system: 
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Where ke is a constant gain. ς and ωn are 
damping ratio and nature frequency in velocity 
domain. Then we can have: 
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Using Eq.(29) and (34), the tracking law can 
be obtained: 

2
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(35) 
For conveniently scheduling ς and ωn, we 

investigate the implicit gain scheduling 
relationship between the time domain and the 
velocity domain closed-loop error dynamics and 
eliminate the effects of dimensionless process. 
The following two equations are obtained by 
applying the chain rule: 
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t t t
  ,

22 2
ref

2 2 2

dd d

d d d

re r

t t t
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In ideal case for the tracking law, ke =0 in 
Eq.(33). The closed-loop error dynamics in time 
domain can be expressed: 
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Substituting Eq.(36) and (37) into Eq.(38), we 

can get the dynamics in velocity domain.
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 Eq.(40) illustrates a complicated relationship 
between the time domain and the velocity 
domain for damping ratio and nature frequency. 
Utilizing this discipline, the   and n  can be 

tuned based on the physical meaning and 
engineering experience of ς and ωn which 
represent typical second order dynamic control 
system. 

6   Simulation 

For simulation, the constraint values are set 
as: 

2
max 794425Wa / sQ  , qmax=14364N/s2, 

nmax=2.5g,.The angle of attack is predesigned. 
The re-entry corridor is shown in Fig.2. Because 
for this condition the aerodynamic load 
constraint boundary is upper than the dynamic 
pressure constraint boundary, there are only 
heating rate and load boundaries work in Fig.2. 

The initial conditions are: r=R0+120km, 
V=7622.79m/s, θ= -125.0070°, ϕ=-12.2299°, γ=-



ZHANG RAN, LI HUIFENG, CAO XUDONG  

6 

1.4377°, ψ=36.8122°. And the terminal 
condition is: Vf=908.15m/s, rf=3.0480km.  
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Fig.2 Re-entry corridor 

The re-entry trajectory is divided into three 
phases (as Fig. 4 shows): the initial descent 
phase, the constant constraint phase and the 
check phase. In the initial descent phase, from 
the entry interface to an altitude where 
aerodynamic lift can provide sufficient control 
capability, the vehicle falls with a constant bank 
angle depending on the second phase. The main 
part of the re-entry trajectory is the constant 
constraint phase, in which all of the constraints 
must be observed strictly. The check phase is 
designed to satisfy the terminal condition. 
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Fig.3 Three phases of the entry trajectory 

The designed trajectory is shown with dash 
line while the tracking trajectory is presented 
with solid line. The trajectories in r-V plane and 
are shown in Fig.3 and Fig.4 is the ground track 
trajectory. And the corresponding bank angle, 
angle of attack and flight path angle are shown 
in Fig.5-Fig.7. During initial decent phase, 
angle of attack is set as 45° and bank angle is 
set as 40°. It can be found that the dynamic 
inverse guidance law can track the reference 
trajectory accurately. 
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Fig. 4 Trajectory in r-V plane 
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Fig.5 Ground track trajectory 
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Fig.6 Bank angle 
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Fig.7 Angle of attack 
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Fig.8 Flight path angle 

7   Conclusion 

This paper studies an improvement for 
enhancing guidance system performances in 
meeting path constraints of re-entry vehicle. The 
heating rate, aerodynamic load and dynamic 
pressure path constraints are expressed with a 
unified formula in r-V plane. Based on the 
unified formula a new trajectory planning 
method is developed and used in shaping the 
reference profile in r-V plane to better fit the re-
entry corridor. This method has fewer 
parameters and can satisfy path constraints 
easily. Dynamic inverse guidance law is 
designed to track the trajectory. The proposed 
approach can simplify re-entry trajectory 
planning and tracking problems. 
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