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Abstract  

This paper presents a review of recent progress 
of the development of weight function method for 
analyzing multiple site damage in aircraft 
structural panels. Classical weight function 
formulations were used, for the first time, for 
solutions of the strip yield models for two special 
collinear crack configurations, three symmetric 
collinear cracks with plastic zones critical 
coalesced and two equal-length collinear cracks 
in an infinite sheet. The plastic zone sizes and 
crack opening displacements were extensively 
verified and validated by excellent agreement 
with available analytical and finite element 
method results. Furthermore, weight function 
method for general collinear cracks was 
developed and applied for fracture mechanics 
analyses of three collinear cracks in an infinite 
sheet. The key fracture mechanics parameters 
including stress intensity factors, crack opening 
displacements and strip yield plastic zone sizes 
for three equal-length collinear cracks are 
presented. The weight function method provides 
a versatile, accurate and very efficient approach 
to the analyses of multiple site damage in 
aircraft structures. 

1   Introduction 

Failure due to Multiple Site Damage (MSD) 
imposes great threat to the safe operation of 
aircraft structures. A historical milestone case of 
this type of failure was the in-flight 
disintegration of a 5.5m long piece of the 

pressure cabin skin of upper fuselage of Aloha 
Airlines Boeing 737-200 over Hawaii in 1988 
[1]. After the Aloha accident, all the major 
commercial airplane manufacturers were 
required to evaluate their aircraft for MSD in the 
critical areas of the wing, empennage and 
pressure fuselage [2]. 

Various models and methods [3-5] have 
been developed to determine the stress intensity 
factors, plastic zone sizes and crack opening 
displacements for the prediction of the fatigue 
life and residual strength for structures with 
MSD. Most current approaches rely mainly on 
advanced numerical techniques, especially the 
Finite Element Method (FEM). Despite its 
powerfulness, reliable FEM solutions for MSD 
require great efforts, time and experience in 
modeling and computation. Classical analytical 
method, e.g. the complex variable method, is 
limited to idealized MSD configurations. The 
weight function method (WFM) is versatile and 
cost-effective for tackling crack problems, 
especially for complex load conditions [6-8]. 
However, to the authors’ knowledge, the 
potential of WFM for MSD problems has not yet 
been exploited. Recent efforts by the present 
authors have shown that the WFM provides a 
valuable approach to the MSD analysis. The 
approach is outlined in this paper.  

2    Weight function method and application 
to special collinear cracks 

The weight function method was first proposed 
by Bueckner [9], and further advancements were 
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made by many researchers. Weight functions for 
various two-dimensional crack problems were 
given in Ref.[10]. 

2.1   Basic principle 

According to the weight function theory, for a 
crack subjected to an arbitrary pressure (x) 
distributed at the crack faces, the non-
dimensional stress intensity factor f can be 
determined by a simple quadrature [10].  
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where m(a, x) is the weight function for the crack 
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E’=E for plane stress, E’=E/(1-2) for plane 
strain,  is a reference stress, a and x are the 
non-dimensional crack length and coordinate 
along the crack normalized by the characteristic 
length W (often taken as unity), here W refers to 
half plate width for the finite width panel 
containing a center crack. fr(a) and ur(a, x) are 
the stress intensity factor and crack opening 
displacement, repectively, for a reference load 
case. 

It should be emphasized that, the (x) in Eq. 
(1a) refers to the stress distribution at the 
prospective crack line, and is determined from 
stress analysis for the same configuration but 
without crack. This fact greatly simplifies the 
crack problem analysis, avoiding all the 
complications related to the singularity behavior 
of the crack tip field and the repeated 
calculations at different crack lengths. The 
method separates the two parameters on which 
the stress intensity factor depends, load and 
geometry. Once the weight function is known for 
a given crack geometry, it can be used to solve 
linear elastic crack problems for any other load 
case for the same cracked body. This particular 
feature is especially useful for the strip yield 
model analysis of multiple site damage, in which 
uniform stress segments are distributed in each 
crack tip region. 

Crack opening displacements can also be 
easily determined when the relevant weight 

function, m(a, x), is available. From Eq. (1b), we 
have 

0
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Where the non-dimensional stress intensity f (s) 
is obtained using Eq. (1a).   

2.2   Weight function method for some special 
collinear crack configurations 

Consider two multiple site damage cases: i) one 
large center crack formed by coalescing three 
un-equal length center cracks in a panel of finite 
width, with compressive yield stress s 
uniformly acting along the un-cracked ligament 
and in the crack tip region, Fig.1a; and ii) Strip 
yield model for two equal-length collinear cracks 
in an infinite sheets shown in Fig.2.  

These two cases can be treated as a single 
crack. For the first case in which the plastic 
zones are coalesced, the analysis is conducted by 
assuming the coalesced three un-equal length 
cracks as one single fictitious crack subjected to 
segment pressure distribution in plastic zones, in 
addition to the applied external load, Fig.1b.  

Essentially, the Dugdale strip yield model is 
the superposition of two linear elastic solutions. 
One is for remote uniform tension stress, which 
is available in Ref. [11]. Another is for segment 
uniform compressive yield stress acting in the 
plastic zones. The stress intensity factor and 
crack opening displacement for this load case 
can be determined by using WFM, equations (1) 
and (2). The weight functions for a center crack 
in a finite sheet are given in Ref.[10]. 

For the three coalesced cracks, the critical 
applied stress and the fictitious crack length are 
determined based on the following conditions [4]:  
i)  Vanishing of the stress singularity at the 
fictitious crack tips shown in Fig.1b; and  
ii)  Zero of the minimum crack opening 
displacement at the ligament [a1, a1+d]. 

For a given crack configuration where 
a1=0.3, a2=0.1 and d=0.2, the critical applied 
stress c/s and fictitious crack length a equal to 
0.3777 and 0.7417 respectively. Figure 3 shows 
the corresponding crack opening displacements 
determined by WFM and FEM, and very good 
agreement is observed. 
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Fig.1 A coalesced center crack in a finite width panel containing three un-equal cracks, the total length of the 
fictitious crack includes all the strip yield zones. 
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Fig.2 Strip yield model for two equal-length collinear cracks in an infinite sheet. 
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Fig.3. Crack opening profile for the fictitious crack of three un-equal length cracks with coalesced plastic zones. (in 
Fig.1, a1 = 0.3, d = 0.2, 2a2 = 0.2, the half length of fictitious crack a = 0.7417). 

For two equal-length collinear cracks in 
an infinite sheet, it is treated as a single crack 
due to the symmetry. The strip yield plastic 
zone sizes are determined by following the 
concept of Dugdale model[12], which is zero 
stress intensity factors of the fictitious crack 
tip A’ and B’. That is, 
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where '
s
AK ( '

s
BK ) and ( ) represent the 

stress intensity factors of fictitious crack 
tip

'AK 'BK

'A ( ' ) due to the strip yield stress σs and the 
remote uniform stress σ, respectively. They are 
available in Ref.[13] and Eqs.(4) and (5), 
respectively.  
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where 2a=c-b, mA(b,c,x) and mB(b,c,x) are 
weight functions for the inner and outer crack 
tip shown in Fig.2. The expressions are given 
in Ref.[6]. 
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 (b) rB/rA 

Fig.4. Variation of the inner and outer plastic zone size 
with applied stress – comparison with Collins and 
Cartwright [5]. 
 

For a given uniform stress σ, the 
corresponding plastic zone sizes are determined 
by solving the above nonlinear equations. Figure 
4a shows some typical results of the inner plastic 
zone sizes as a function of the applied stress. 
These results are normalized by the plastic zone 
size r0 of a single Dugdale crack of the same 
length, r0=a[sec(0.5σ/σs)-1], a=(c-b)/2. In 
Fig.4b, the ratios between the outer and inner 
plastic zones size (rB/rA) are plotted against the 
applied stress. Also shown in these figures are 
the results for the plastic zones critical 
coalescence. To verify the solution accuracy of 
the present weight function approach, the results 
are compared to those given by Collins and 
Cartwright [5] by using complex stress function 
method. Figures 4 show the perfect agreement 
between the two approaches. 

3   Weight function method for general 
collinear cracks  

The WFM for single crack configuration is 
successfully extended to analyze some special 
multiple collinear crack problems. However, it 
was found that there is marked difference 
between the weight functions for single and 
multiple cracks [8]. 

3.1   Weight functions 

The derivation of the weight function method for 
general collinear cracks is based on the 
reciprocity theorem and the superposition 
principle [8]. It was found that the weight 
functions for general collinear cracks are quite 
different from that for a single crack 
configuration. Take a typical MSD configuration 
- three collinear cracks in an infinite sheet shown 
in Fig.5 as an example. The weight functions for 
the crack tips A, B and C are given in Eqs.(6-8), 
respectively [8].  
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Fig.5. Three symmetric collinear cracks in an infinite 
sheet subjected to (a) remote uniform stress and (b) 
segment uniform pressure. 
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where the non-dimensional stress intensity 
factors frA (a,b,c), frB (a,b,c) and frC (a,b,c) for 
remote uniform tension stress were given by Sih 
[13]. And, the corresponding crack opening 

displacements for center and side crack 
and are given in the 

following Eqs.(9a) and (9b), respectively.  
1 ( , , , )ru a b c x 2 ( , , , )ru a b c x
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For the general collinear cracks, the weight 
function for a considered tip is related to the 
crack opening displacement of all the cracks, as 
given by Eqs.(6-8), whereas for a single crack, 
the weight function is derived from its own crack 
opening displacement. 

3.2  Stress intensity factor solutions 

With above weight functions, the non-
dimensional stress intensity factors for crack tips 
A, B and C under arbitrary loading are easily 
determined by the following equations [8], 
respectively. 
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where L=[0,a] [∪ b,c] and ma(a,b,c,x), mb(a,b,c,x) 
and mc(a,b,c,x) are given in Eqs.(6-8), 
respectively. Herein these equations are used to 
calculate the stress intensity factors for the load 
case shown in Fig.5b as an example. 

Stress intensity factors for crack tips A, B 
and C are determined by using Eqs.(10-12), 
respectively. Some typical results for l1=l2=l3=l 
and 2a=(c-b) denoted by fAseg, fBseg and fCseg, 
respectively, are shown in Fig.6. It is noted that 
the difference of stress intensity factors between 
cracks tips A and B is rather small. The stress 
intensity factor fseg for a single center crack in an 
infinite sheet subjected to two segments of 
uniform stress acting in the immediate wake of 
each crack tip is [11] 

1 2 arcsin 1seg f l a             (13) 

As expected, when these crack tips are far 
apart, (2a/(a+b)=0.1 in Fig.6), the stress 
intensity factors for crack tips A, B and C agree 
very well with a single center crack, Eq.(13). For 

the special case of l/a=1, i.e., the whole crack 
length is loaded by uniform pressure, the stress 
intensity factors obtained from Eqs.(10-12) 
should be equal to the corresponding results 
given in Ref.[13]. Figure 6 shows that the end 
points of the curves agree perfectly with the 
corresponding square symbols obtained from 
Ref.[13]. 
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Fig.6. Non-dimensional stress intensity factors for three 

equal-length collinear cracks subjected to segment 
uniform pressure.  

3.3 Crack opening displacement solutions 
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Crack opening displacements are often required 
for residual strength analysis and fatigue crack 
life predictions of structures with MSD. The 
WFM provides a powerful tool for determination 
of crack opening displacements for multiple 
collinear cracks. To illustrate the approach, the 
three collinear cracks subjected to segment 

uniform stress are taken as an example, Fig.5b. 
The crack opening displacements for the central 
and outer cracks are denoted by u1(a,b,c,x) and 
u2(a,b,c,x), respectively. Because weight 
function is a property of crack geometry, and is 
independent of the load case, the following 
relationship holds. 
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where ma(s,b,c,x), mb(a,s,c,x) and mc(a,b,s,x) 
given in Eqs.(6-8), are the weight functions for 
crack tips A, B and C, respectively. s is 
integration variable. The integral intervals are: 
L1=[0, s]∪[b, c], L2=[0, a]∪[s, c], L3=[0, a]∪[b, 
s]. The stress distribution along the crack faces 
σ(x) for the load case of Fig.5b is   
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0   ; else
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

(16) 

3.4 Strip yield model solutions  

Figure 7 shows a strip yield model for three 
collinear cracks in an infinite sheet. The crack tip 
plastic zone sizes (rA, rB and rC) are determined 
by superposition of two linear elastic solutions. 
One is the stress intensity factors for the 
fictitious cracks subjected to remote uniform 
tension σ. The other is for compressive yield 
stress -σs in the strip-yield zones. With the 
condition of vanishing stress singularities at the 
fictitious crack tips, the plastic zone sizes can be 
obtained by solving the following equations. 
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where, frA’, frB’ and frC’ are the non-dimensional 
stress intensity factors for the fictitious cracks 
under remote uniform stress given in Ref.[13]; 
fA’seg, fB’seg and fC’seg are the non-dimensional 
stress intensity factors due to the compression 

yield stress –σs in the plastic zones, which can be
 obtained by using Eqs.(10-12). 
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Fig.7. Strip-yield model for three collinear cracks, with 
separated plastic zones. 

 

Figure 8a shows the plastic zone sizes rA as 
a function of the applied stress σ/σs obtained 
from solving Eqs.(17) for three equal-length 
collinear cracks. The results are normalized by 
the plastic zone size of a single center Dugdale 
crack of the same length. The plastic zone sizes 
for crack tip B and C were given in Ref.[8]. 
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Fig.8. Variation of the normalized plastic zone sizes rA 
for three equal-length collinear cracks with the applied 
stress σ/σs, r0=a0[sec(0.5σ/σs)-1]. 

Having determined the plastic zone sizes, 
crack tip opening displacements can be obtained 
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by the WFM and superposition of two crack 
opening displacement solutions. One is due to 
remote uniform stress σ, Ref.[11], the other is 
due to segments uniform compressive yield 
stress -σs in the plastic zone, which can be 
obtained by using Eqs.(14-15).  
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Fig.9. Variation of the normalized  crack tip opening 
displacement for three equal-length collinear cracks 
with the applied stress σ/σs, 
8a0·s/(E)·ln[sec(0.5s)]. 

 
Figure 9 shows the crack tip opening 

displacements δA for three equal-length collinear 
cracks as a function of the applied stress σ/σs. 
The results are normalized by the crack tip 
opening displacement δ0 of a single center crack. 
The crack tip opening displacements for crack 
tip B and C were given in Ref.[8]. 

4 Conclusions 

An analytical approach, the weight function 
method for dealing with the MSD problems is 
presented in this paper. The following 
conclusions can be made:  

For special collinear crack configurations 
which can be treated as a single crack problem, 
e.g. three collinear cracks with strip yield plastic 
zones critical coalescence in a finite sheet and 
two equal-length collinear cracks in an infinite 
sheet, the strip yield model solutions can be 
easily solved by the weight functions for a single 
crack. The results are in perfect agreement with 
existing solutions in the literature. 

Weight function formulas for more general 
collinear cracks have been derived, which are 
markedly different from those for the single 
crack case. With the derived weight functions, 
the key fracture mechanics parameters, stress 

intensity factors and crack opening displacement 
for the three collinear cracks under arbitrary load 
conditions are easily computed by a simple 
quadrature. Furthermore, the strip yield plastic 
zone sizes and crack tip opening displacements 
are presented.  

The present WFM for MSD is characterized 
by its versatility, simplicity, reliability and cost-
effectiveness, thus provides a powerful and 
efficient tool for residual strength and fatigue life 
predictions for MSD-contained aircraft structures.  
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