
28TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

1

Abstract

Autonomous UAV technology is currently
limited in its ability to land safely at alternate
airfields that have not been accurately surveyed
and where differential GPS is unavailable. This
paper presents flight-test results of a new system
that is capable of autonomously recovering a
UAV to a previously unvisited airfield. The
system utilizes a priori location information of
airfields (for example ERSA, which provides the
location of the airfield to approximately 100 m)
to decide which airfield is the most feasible for
landing. When the aircraft reaches the vicinity
of the airfield it uses an onboard gimbaled
camera to provide a precise vision-aided
landing.

1 Introduction

UNMANNED air vehicles (UAVs) are
widely used in defense environments to carry
out autonomous or remotely-piloted missions.
Remotely-piloted vehicles require numerous
personnel to operate and maintain – in some
cases more than is required for a manned
aircraft. Autonomy removes much of the low-
level decision making and therefore relieves the
operating personnel of their strenuous workload.
In addition, the operating footprint can be
significantly reduced for autonomous UAVs.
UAVs are also expanding into the civilian
domain for a variety of purposes such as border
patrol, mine monitoring, and bush fire spotting.

Most UAVs typically rely on ground
support infrastructure for asset recovery. Fixed-
wing UAVs require pre-surveyed runways and a
differential GPS correction source to enable
accurate autonomous landing. This paper

addresses the need for a self-contained
autonomous recovery system that enables the
UAV to locate and land on suitable runways
without ground support equipment such as
differential GPS or ILS. Such systems can be
used to recover UAVs in the event of unplanned
mission events such as component failure or
deteriorating weather conditions. The system
can also be used to recover to ad hoc landing
sites, or to simply provide greater robustness to
navigation errors during landing.

The system described in this paper was
designed specifically for dealing with recovery
of fixed-wing aircraft to runways. However, its
applicability extends to wider areas such as
rotary-wing UAVs landing on moving decks.
Unlike recent work presented in [1][2][3] which
uses LIDAR to generate detailed maps of
landing zones, our system is capable of landing
safely using only passive vision sensors.
Additional sensing can be used to augment our
solution to handle issues such as obstacles.
However, the implementation presented here
focuses on the central problem of landing the
UAV in a robust manner.

The system presented in this paper
combines several key technologies that enable a
truly autonomous recovery system for UAVs: 1)
Onboard auto-routing system for generating
waypoints through complex no-fly regions [4],
2) Gimbaled camera control and associated
image processing algorithms for runways [5], 3)
Closed-loop image processing and flight control
robust to occlusions.

This paper is organized as follows: First, a
review of the Intelligent Landing concept is
presented; next, an overview of the capability of
the system is given; the implementation of our
approach in simulation and on real-time

INTELLIGENT LANDING SYSTEM FOR LANDING
UAVS AT UNSURVEYED AIRFIELDS

Paul Williams, Michael Crump
BAE Systems Australia

paul.williams6@baesystems.com;michael.crump@baesystems.com

Keywords: UAVs, autonomous landing, computer vision

PAUL WILLIAMS, MICHAEL CRUMP

2

hardware is presented; finally, simulation results
and flight-test results are presented that
demonstrate the effectiveness of the system
when implemented with low-cost sensors.

2 Intelligent Landing System

UAV systems that are currently used
operationally do not have cognitive abilities.
Human operators are required to plan and
undertake missions, with the UAV flight
computer performing the low-level task of
flying the aircraft. Some operational UAVs
have a fully automatic takeoff and landing
capability. However, the landing phase is
usually carried out using a combination of pre-
surveyed runway with known landing
waypoints, an accurate height sensor for
determining height above ground, and
differential GPS. These requirements can
severely limit the operational case of modern
UAV technology. There are several examples
of unplanned mission events that can lead to a
UAV operator needing to land the aircraft as
soon as possible, such as: engine performance
problems (temperature/oil pressure);
deteriorating weather conditions; bird strike or
attack damage; flight control problems related
to malfunctioning hardware (single lane on
multi-lane flight control systems, actuator
failure); and so on. In current systems, the
above situations can easily lead to the complete
loss of the aircraft. The operator must either
attempt a recovery to a mission alternate
runway, or in the worst case, undertake a
controlled ditching. Most modern UAV control
systems allow multiple alternate landing sites to
be specified as part of the mission plan.
However, the limit with these alternate landing
sites is that they require the same level of a
priori knowledge (i.e., accurate survey) and
support infrastructure as the primary recovery
site. Therefore, this generally limits the number
and location of the alternate landing sites. This
is due to the amount of time and manpower
required to setup, maintain, and secure the sites.
The combined cost/effort and low probability of

use detracts from the willingness to establish
alternates. As mission requirements become
more complex, it may not be possible for the
aircraft to reach one of its alternate landing
runways, and controlled ditching may result in
recovery of the aircraft by enemies, or could
result in injury or third party damage. To
enable truly autonomous UAV operations, a key
feature of the flight control computer would be
its ability to select and land at a suitable
alternate not previously surveyed and without
any existing landing aids. This is the core idea
of the Intelligent Landing System.

The system presented in this paper differs
from similar concepts of using vision for aiding
the landing of UAVs. Tang et al. [7] presented
an algorithm for estimating the position and
attitude of a UAV relative to a runway by
projecting arbitrary points from the runway into
the image frame. This assumes full knowledge
of the runway position and orientation.
Fitzgerald et al. [8] consider forced landing site
selection using machine vision. However, their
approach considers general landing sites such as
paddocks and does not consider the more
desirable case of landing on available runways.
Their approach has not been used to land a
UAV. Daquan and Hongyue [9] present
simulation results of an algorithm that uses
runway landing lights observed through an
onboard camera to estimate a UAV’s position
and attitude relative to the runway. The results
showed reasonably large errors. Their approach
does not consider locating the runway initially,
nor how to handle gaps in image data. Pan et al.
[10] consider the estimation of approach angle
and height of a UAV using a combination of
monocular and stereo vision. The approach has
not been used with imagery of real runways.
The approach also requires continuous
observation of the runway and does not consider
initially locating the runway. Joo et al. [11]
considered estimating the motion of a UAV
during landing relative to a runway by using a
ground-based camera system. However, this
defeats the purpose of the Intelligent Landing
System considered in this work. Pouya and

3

INTELLIGENT LANDING SYSTEM FOR LANDING UAVS AT
UNSURVEYED AIRFIELDS

Saghafi [12] simulated the use of a fuzzy logic
controller with runway relative position
measurements for controlling the landing of a
UAV. Their approach does not consider the
actual image processing or its limitations.
Meng et al. [13] considered the detection of
runways within images based on template
matching. They used actual images of runways
in their work, but only considered the case
where the aircraft is already on approach to the
runway. Miller et al. [14] consider the use of
image registration using a priori imagery of the
runway to enable vision-aided landing. They
demonstrated their approach via Microsoft flight
simulator. To the best of our knowledge, all
previous approaches to vision-aided landing of
UAVs on runways have been based on a visual-
servoing approach. These approaches are
limited in nature and do not address the
requirement for initially locating and planning
an approach to the runway. The Intelligent
Landing System described in this paper
addresses all of these limitations.

3 Intelligent Landing Overview

3.1 Assumptions

In order to design a robust and reliable
Intelligent Landing System capable of landing
the plane as quickly as possible, it is necessary
to make certain assumptions about the
availability of runway locations. It is unrealistic
to expect the UAV to perform a fast landing
without any prior knowledge of nearby airfields.
In fact, our system assumes a similar level of
information is available to the flight control
computer as is available to a manned aircraft in
a similar situation. Our system utilizes an
onboard database of airfields compatible with
industry standard definitions such as Jeppesen
NavData. The results presented in this paper
were acquired using the En-Route Supplement
Australia (ERSA) [15], which contains
information about all airfields in Australia. An
example of the key airfield data provided from
ERSA is shown in Fig. 1. The important
information used by the Intelligent Landing

System is: 1) location of the airfield reference
point (latitude = -38,05.5, longitude = 146,57.9),
height above mean sea-level (93 feet), magnetic
field offset (+12 deg), number of runways (3),
runway surface characteristics (2 grass, 1
bitumen), runway lengths (1527, 699, 500 m)
and width (30 m), and runway magnetic heading
(44, 87, and 133 deg). Note that the airfield
reference point gives the approximate location
of the airfield to the nearest tenth of a minute in
latitude and longitude (±0.0083 deg). This
equates to an accuracy of approximately 100 m
horizontally. Furthermore, the reference point
in general does not lie on any of the runways
and cannot be used by itself to land the aircraft.
It is suitable as a reference point for pilots to
obtain a visual of the airfield and land. The goal
of the Intelligent Landing System is to perform
a similar airfield and runway recognition and
plan a landing/approach path. Note that the
minimal amount of information required is the
approximate location of the airfield. The
remaining information is utilized, if available,
but not required.

FIG. 1. EXAMPLE ERSA AIRFIELD DATA FOR

WEST SALE AERODROME [15].

FIG. 2. EXAMPLE ERSA AIRFIELD REFERENCE

POINTS ().

Airfield reference point

PAUL WILLIAMS, MICHAEL CRUMP

4

In order for the UAV to identify and
perform an autonomous landing on the desired
runway, the navigation solution must be
accurate. In low-cost UAVs, a GPS-aided INS
system is the norm. In fact, GPS is heavily
relied upon due to the poor performance of low-
cost inertial measurement units. GPS has very
good long term stability, but can drift in the
short term due to variations in satellite
constellation and ionospheric delays. The
amount of drift is variable, but could be in the
order of 20 m. This is one of the main reasons
why differential GPS is a requirement for
automatic landing of UAVs. Differential GPS
allows accuracies of the navigation solution on
the order of approximately 1-2 m. The
Intelligent Landing System is assumed to have
no differential GPS available.

The intended operation of the Intelligent
Landing System is through the use of image
processing to extract information about the
airfield. The main reason for this is that
virtually all UAVs are equipped with gimbaled
cameras as part of their mission system.
Therefore, in an emergency situation, the
camera system can be re-tasked to enable a safe
landing of the system. Other sensors such as
LIDAR cannot always be assumed to be
available. A core assumption is that additional
sensors are not required to be installed on the
platform to enable the Intelligent Landing
System to work. Hence, only image processing
can be used.

3.2 Intelligent Landing System Features

The Intelligent Landing System is designed
as a plug-in mission system to existing UAV
flight control computers. For the flight tests
described in this paper, the flight control
computer has been developed by BAE Systems
Australia, and has been flown on the Mantis and
Herti UAVs. It is a highly capable autonomous
system with existing mission system interfaces.
The Intelligent Landing System exploits many
of the features of the flight control computer,
such as routing and waypoint control.

The primary flight control computer is
responsible for initiating an autonomous
recovery via its internal health monitoring

algorithms. A recovery can also be initiated via
an operator command. Once a recovery has
commenced, the Intelligent Landing System is
fully responsible for commanding the UAV
until it has completed the landing. If there is an
active communications link, the Intelligent
Landing System can be disabled. This is a
feature that is required for flight testing in
civilian airspace.

When the Intelligent Landing System is in
control of the UAV, it finds the nearest suitable
airfield using a tailored search algorithm. It
must take into account runway surface
characteristics, runway length, and flight time.
Flight time is obviously affected by prevailing
wind conditions, flyable regions, and current
UAV position relative to neighboring airfields.

The Intelligent Landing System guides the
UAV to the vicinity of the airfield, where
onboard image processing algorithms locate the
runway from background clutter. The system is
able to distinguish the runway from other
similar looking features such as roads and
taxiways. A localization algorithm is able to
convert image data into runway positioning
information. Armed with this data, the
Intelligent Landing System creates an alternate
return-to-base (RTB) landing waypoint set,
which includes inbound, and circuit waypoints.

In the final stage of the approach and
landing, the onboard camera provides closed-
loop information about the relative track error of
the UAV from the desired landing path. The
system accounts for the potential occlusion of a
non-retractable undercarriage, as well as
variations in satellite constellation that could
result in relative errors between the aircraft and
runway at touchdown. This results in the
system typically landing close to the runway
centerline. For the purposes of flight
demonstration, the system aims to land
longitudinally at roughly the runway
designation marking, as shown in Figs. 3 and 4.

FIG. 3. STANDARD RUNWAY MARKINGS [16].

INTELLIGENT LANDING SYSTEM FOR LANDING UAVS AT
UNSURVEYED AIRFIELDS

FIG. 4. RUNWAY THRESHOLD MARKING

GEOMETRY [16].

4 Camera Control and Calibration

One of the key features of our system is its
ability to work effectively even when low-cost
sensor packages are used. The rationale for
employing low-cost sensors is to demonstrate
the robustness of the algorithms. It is
reasonably straightforward to extend the system
to use other sensing packages depending on the
customer’s requirements. It is, in general, much
more difficult to go from using expensive
sensors to using low-cost sensors due to the
large difference in accuracy and reliability. A
large amount of effort is required to mitigate the
effects of sensor errors when using low-cost
sensors.

The key requirement of the system is the
presence of a gimbaled camera on the UAV. A
gimbaled camera allows the Intelligent Landing
System to control the direction and zoom level
of the imagery it is analyzing. We have
installed a turret manufactured by Rubicon with
model number AHIR25D, shown in Fig. 5. This
turret includes an electro-optical (EO) and
infrared (IR) camera, and is capable of

performing full 360 pan and -5 to 95 deg tilt.
For the Intelligent Landing System, we have
exclusively used the EO camera, which is a
Sony FCB-EX408C. The camera uses the
VISCA binary communication protocol, which
is transmitted over RS-232. Turret control
commands are transmitted to the Rubicon
device using an ASCII protocol, also over RS-
232.

Care must be taken when communicating
with the Rubicon device to avoid packet
collisions or sequential commands sent too
quickly. Message rate handling is dealt with via
algorithms implemented in Simulink. All turret
and gimbal control is handled via the Simulink
model, and translation of Simulink commands
into a byte-stream occurs via a software codec.
The Simulink implementation of the interfaces
matches the interface used on the actual device,
minimizing the need for hand written code.

FIG. 5. RUBICON AHIR2
INTELLIGENT LANDING TE

4.1 Camera Coordinat

A pinhole camera m
relates measurements in
image frame (,)u v , as sh

  0

1
/ ,

s s

u

u y x u
f

 

where
u
f and

v
f are the

and
0

u and
0

v are pixel o
5

5D TURRET USED FOR

ST FLIGHTS.

es

odel is assumed which
the sensor frame to the
own in Fig. 6,

0

1
(/)

s s

v

v z x v
f

  (1)

camera focal lengths,

ffsets (principal point).

Rubicon turret

PAUL WILLIAMS, MICHAEL CRUMP

6

FIG. 6. PINHOLE CAMERA MODEL USED TO

CONVERT PIXEL MEASUREMENTS INTO

MEASUREMENTS IN MEASUREMENT FRAME.

The bearing and elevation measurements
are derived from the pixel information
according to

 1

0
tan /

u
u u f      

(2)

 1

0
tan cos /

v
v v f      

(3)

Note that distortion effects must be accounted
for before using the raw pixel coordinates. This
step has been omitted here. The uncertainty of a
measurement is specified in the image plane,
and must be converted into an equivalent
uncertainty in bearing/elevation. The
uncertainty in bearing/elevation takes into
account the fact that the intrinsic camera
parameters involved in the computation given in
Eqs. (2) and (3) are not known precisely. The
uncertainty is computed via

T T

BE x p  
                                          

y y y y

x x p p
(4)

where
0 0

[, , ,]T
u v
f f u vp , ,

T
    y ,

[,]Tu vx ,
x

 is the uncertainty in the pixel

plane coordinates, and
p

 is the uncertainty in

the camera parameters.
In order to compute the camera position in

the Earth-Centered-Earth-Fixed (ECEF) frame,
the coordinate frames used by the system must
be first explained. Fig. 7 shows the coordinate

frames used by the system. The ECEF frame
(, ,)X Y Z is the reference frame used for

navigation. The local navigation frame
(, ,)N E D is an intermediate frame used for the

definition of platform Euler angles and is
common across external interfaces for
navigation. The NED frame has its origin on
the WGS84 ellipsoid. The IMU/body frame is
aligned with the vehicle body axes and has its
origin at the IMU. The installation frame

(, ,)i i ix y z has its origin at a fixed point on the

camera mount. This allows some of the camera
extrinsics to be calibrated independently of the
mounting on the airframe. The gimbal frame

(, ,)g g gx y z has its origin at the center of the

gimbal axes. Finally, the measurement frame
has its origin at the focal point of the
camera/sensor system.

FIG. 7. COORDINATE FRAMES USED BY

GIMBALED CAMERA.

The position of the camera in the ECEF
frame is given by

(())e e e n b b i i g
m b n b i i g g m

   p p C C p C p C p (5)

X

Y

Z

N E

D

b
x

b
y

b
z

i
x

i
y

i
z

i
x

i
y

i
z g

x

g
y

g
z

g
x

g
y

g
z

m
x

m
y

m
z

Image frame
Object in sensor frame

s
x

s
y s

z

u

v

7

INTELLIGENT LANDING SYSTEM FOR LANDING UAVS AT
UNSURVEYED AIRFIELDS

where e
b

p is the position of the aircraft/IMU in

the ECEF frame, e
n

C is the direction cosine

matrix representing the rotation from the NED

frame to the ECEF frame, n
b

C is the direction

cosine matrix representing the rotation from the

body to the NED frame, b
i

p is the position of

the installation origin in the body frame, b
i

C is

the direction cosine matrix representing the
rotation from the installation from to the body

frame, i
g

p is the position of the gimbal origin in

the installation frame, i
g

C is the direction cosine

matrix representing the rotation from the gimbal

frame to the installation frame, and g
m

p is the

origin of the measurement frame in the gimbal
frame.

The direction cosine matrix representing
the rotation from the measurement frame to the
ECEF frame is given by

e e n b i g
m n b i g m

C C C C C C (6)

where g
m

C is the direction cosine matrix

representing the rotation from the measurement
frame to the gimbal frame.

In the case of a body-fixed camera, the

matrix b i g
i g m

C C C is a fixed quantity and can be

calibrated reasonably reliably. However, when
a turret is used, the gimbal frame is constantly
changing with respect to the installation frame.
This makes calibration of the sensor more
difficult, particularly where there are
uncertainties in the timing, and is addressed in a
later section.

4.2 Gimbal Control

The commands sent to the turret are in the
form of rate commands about the pan and tilt
axes. This is required if the stabilization
function is to be used on the turret. The
stabilization mode uses gyroscopes in the turret
to mitigate the effects of turbulence on the
pointing direction of the camera. A velocity
control loop is executed on our turret control
subsystem, which is responsible for control of

the turret, camera system, and collecting and
forwarding image data and associated meta-data
to the Intelligent Landing System. The velocity
control loop uses pan and tilt commands and
closes the loop with measured pan and tilt
values. Due to the delays in the turret
communication protocol and the low rate of
feedback sampling, the control loop employs a
predictive mechanism to provide for fine
angular control.

High-level pointing commands are
received by the turret controller from the
Intelligent Landing System. The Intelligent
Landing System arbitrates to select from
commands issued from a ground controller, and
its own internally generated commands. In all
cases, the ground controller has priority and can
manually command the turret to move to a
specified angle, angular rate, or point at a
selected latitude/longitude/height. The operator
must manually relinquish control for the
autonomous system to be in control.

During intelligent landing, the turret is
commanded to point in a variety of different
modes controlled through a single interface.
The turret can be made to “look at” selected
points specified in different reference frames
(camera frame, body frame, NED frame, ECEF
frame). The most useful mode is a bounding
box mode that adaptively changes the pointing
position and zoom level to fit up to 8 points in
the camera field-of-view. The turret control
algorithm computes a line of sight and uses a
Newton algorithm to iteratively calculate the
required pan/tilt angles.

4.3 Zoom Control

Camera zoom is either controlled
independently of the pointing command, or
coupled to it. The zoom can be set via a direct
setting command as a ratio or rate, or can be
specified as an equivalent field-of-view
measured by its projection onto the ground
plane (i.e., units are in meters). This type of
control maintains an area in the image quite
well by adjusting the zoom level as a function of
the navigation position relative to the pointing
location. The combined zoom mode uses up to
8 points in the ECEF frame to select a zoom

PAUL WILLIAMS, MICHAEL CRUMP

8

setting such that all 8 points lie within the
image.

4.4 Image and Gimbal Timestamp

In addition to running the abstracted turret
control loop, the turret control subsystem is
responsible for capturing still images from the
camera video feed and timestamping the data.
The turret control subsystem obtains 100 Hz
navigation data from the Intelligent Landing
System, and zoom and gimbal measurements
from the camera and turret, respectively. These
measurements are buffered and interpolated
upon receipt of an image timestamp
(timestamps are in UTC Time). Euler angles
are interpolated by using a rotation vector
method, whereas other quantities can be
interpolated in a straightforward manner.

Navigation data is timestamped according
to the UTC Time of the IMU data packet used
on the 100 Hz frame, which is kept in
synchronization with GPS time via the PPS line
from the GPS unit. Gimbal data is timestamped
on transmission of a trigger pulse sent by the
turret controller to the turret. The trigger is used
by the turret to sample the gimbal angles, which
is transmitted to the turret controller after it
receives a request for the triggered data. Zoom
data is timestamped by the turret controller on
transmission of the zoom request message.
Note that the camera does not provide a means
for accurate timestamping of the zoom. We
have assumed a constant delay time between
writing the binary stream to the serial port and
the sampling of the zoom position. This
assumption is reasonable and is alleviated
somewhat through the use of discrete zoom
levels by the turret controller. Images are
timestamped upon receipt of the first byte from
the video capture card, and is intercepted on a
device driver level. However, this does not
provide the time that the image was actually
captured by the camera. We have computed the
assumed constant offset by placing an LED light
in front of the camera in a dark room. A static
map of pixel location versus pan position was
obtained by manually moving the turret to
various positions. The turret was then
commanded to rotate at various angular rates

while simultaneously capturing images. By
extracting the position of the LED, and by using
the inverse map of pan position, we were able to
estimate the image capture time and compare it
with the time of arrival of the first image byte.
We found a constant offset of approximately 60
ms between the image capture time and the
arrival of the first byte at the turret controller.

4.5 Intrinsic Calibration

Intrinsic calibration refers to estimating the
properties of the camera lens system. The key
parameters that must be calibrated are: 1) focal
lengths, 2) principal point, 3) radial and
tangential distortion. These parameters can be
estimated using standard calibration techniques
involving a checkerboard of known geometry.
The lens parameters are determined by solving a
least squares problem so as to minimize the
error in pixel coordinates for the corners of the
checkerboard tiles. This is done over a large
number of images photographed at various
orientations relative to the camera. The
parameters are stored as a function of zoom
level and interpolated by the turret control
subsystem during operation. The interpolated
intrinsic parameters are attached as meta-data,
together with camera extrinsic parameters and
navigation data, and passed to the Intelligent
Landing System. This interface allows the
turret control subsystem to be swapped for an
alternate one without impacting the
configuration of other subsystems.

We note that our choice of low-cost turret
results in in-house development of camera and
gimbal control algorithms. Much more
expensive turrets can be used off-the-shelf.

4.6 Extrinsic Calibration

Extrinsic calibration refers to the
estimation of the position and orientation of the
camera relative to the navigation solution’s
reference axes on the aircraft. In our case, we
are interested in estimating the installation
position and installation angles, using the
terminology given in Fig. 7. When the turret
control subsystem is installed into the aircraft,
the position and orientation is known coarsely,

9

INTELLIGENT LANDING SYSTEM FOR LANDING UAVS AT
UNSURVEYED AIRFIELDS

but not to the accuracy required for accurate
localization of targets. In general, the
installation angles dominate the projection error
compared to the installation position. A
dedicated flight is performed to obtain data to
enable extrinsic calibration to be performed.
The method used is described in this section.

Calibration is performed using an
expectation maximization algorithm. A set of 5
white targets are placed in an accessible
paddock near the airfield with the aid of a
surveyor’s GPS (accuracy ~2 cm), as shown in
Fig. 8. The aircraft is flown in a manner to
allow the turret to be pointed at the targets from
a variety of positions and attitudes. The flight
path is designed to incorporate a large number
of alternating turns to give good observability of
the true aircraft heading by the navigation
system. During the flight, the turret is manually
pointed at the targets with zoom settings
covering the range from maximum to minimum.

FIG. 8. EXAMPLE OF CAPTURED GEO IMAGE

SHOWING CALIBRATION TARGETS.

The algorithm used to determine the
extrinsic calibration parameters may be
summarized as follows:

1) The current best estimate of the extrinsic
parameters is used to approximately
calculate if the targets are visible in any
particular image.

2) If the targets are estimated to be visible,
a blob detection algorithm is performed

on the image to extract the pixel
coordinates of the targets.

3) Using the known position of the targets,
and the meta data associated with the
image, together with the extrinsic
estimates, the projected pixel
coordinates of the targets are calculated.

4) A Mahalanobis gate is used to reject
detected blobs that are too far away from
the predicted pixel coordinates. All
surviving coordinates are added to a list,
together with the associated target index.

5) A sequential quadratic programming
problem is solved to minimize the cost
function of the pixel error squared
divided by pixel uncertainty (uncertainty
is the combined blob pixel uncertainty
and the uncertainty in pixel coordinates
arising from the use of the navigation
solution in the calculation), summed
over all images in the list.

6) The process is repeated starting at (1)
until the estimated extrinsic parameters
converge to within a tolerance.

We have found that the above iterative
procedure converges quickly with an accuracy
that depends on the combination of timestamp
accuracy and navigation solution drift during
the flight. We have also found that performing
the calibration makes a large difference in the
localization accuracy of the system.

5 Simulation Architecture

All components of the system are
implemented in the Simulink environment
(running MATLAB R2010b SP1). Simulink
provides a powerful model-based design
environment that can be linked to a set of
functional requirements described in a set of
IBM Rational DOORS modules. In fact, all
system interfaces are described in DOORS
modules, from which a complete set of interface
code for C++ and MATLAB is autogenerated.

The complete flight vehicle is modeled
using Simulink blocks (engine, undercarriage,
aerodynamics, actuators), together with a
representative model of the environment (wind,
gust, turbulence, gravity, atmosphere, ground).

PAUL WILLIAMS, MICHAEL CRUMP

10

Flight physics are modeled in the Earth-
Centered-Earth-Fixed (ECEF) coordinate frame.
In additional to the physics model of the
vehicle, a complete sensor simulation with
interfaces and noise characteristics matching the
real sensors is performed (Inertial Measurement
Unit, GPS, air data, etc). The sensor data is fed
into a Simulink model of the flight control
computer to enable simulation of the closed-
loop control system. Note that because the
flight control computer code is generated from
the Simulink models via Real-Time Workshop,
the simulation is virtually an exact match to the
implementation on the target hardware on the
real vehicle. The high fidelity simulation
environment allows the Intelligent Landing
algorithms to be tested completely without ever
having an aircraft in the sky.

Two levels of simulation based testing are
performed. In the first level, the image
processing algorithms are not in the loop (as
they require a detailed synthetic environment to
be generated). This enables the full Intelligent
Landing System to be developed and tested
without relying on a working image processing
system. In the second level of tests, the model
of the image processing algorithms is replaced
with a Simulink S-function that communicates
to an external vision processing module. The
vision processing module runs on a dedicated
PC that renders the camera view from the turret.
The captured view from the turret is fed into the
image processing algorithm code to exercise its
logic and returns messages matching the
software interface. During the rendering and
image processing testing, the simulation in
Simulink is held and waits for the vision
processing module to return. This ensures that
timing anomalies of the test system do not
interfere with algorithmic development.
Communication with the vision processing
module is done over UDP.

6 Embedded Real-Time Implementation

The algorithms that are designed,
implemented and tested in Simulink are
converted into C code by the Real-Time
Workshop Embedded Coder. As noted above, a

set of software interfaces to the code is
autogenerated from DOORS, minimizing the
amount of hand-code that is required to run the
software as an executable on the target
hardware. The C code is wrapped in C++ with
appropriate data and message handling code. It
is scheduled using a real-time scheduler which
runs in the main thread at 100 Hz. The linux
operating system running a real-time kernel is
used for the Intelligent Landing System. The
Green Hills Integrity operating system is used
for the actual flight control computer.

In addition to the core algorithms, an
additional process is executed to log the input
and output data of the algorithmic code. All the
inputs and outputs are logged, which enables
offline data replays to be conducted using a set
of support tools that we have developed. This
enables bugs to be found and removed in a rapid
fashion.

7 Hardware Overview

The flight vehicle platform that we have
used to conduct flight operations is the
Kingfisher 2 vehicle, shown in Fig. 9.
Kingfisher 2 was designed and built by BAE
Systems Australia to allow rapid prototyping of
payloads and is not a production system. The
key characteristics of the platform are given in
Table 1.

The flight control computer forms the core
product of the vehicle management system,
which consists of an actuation unit, two GPS
units, an IMU, an air data system, weight on
wheel sensors, an accurate height sensor, and a
C2 communications system. The FCC uses a
Radstone IMP2A as the hardware board. The
FCC runs a variety of core processes in separate
address spaces to maintain a high integrity
system. The FCC enclosure with IMU is shown
in Fig. 10. The FCC mounting in the airframe,
together with the Intelligent Landing System
computer and turret, is shown in Fig. 11.

INTELLIGENT LANDING SYSTEM FOR LANDING UAVS AT
UNSURVEYED AIRFIELDS

TABLE 1. KINGFISHER PLATFORM ATTRIBUTES.

Attribute Value
Mass (including payload) 125 kg

Wing span 4.13 m
Wing area 2.67 m2

Max. airspeed 100 kts

Max. cross-wind 15 kts
Max. tail-wind 10 kts

FIG. 9. KINGFISHER 2 VEHICLE ON APPROACH TO

WEST SALE.

A ground station that communicates over a
C2 link is used to control and monitor the
vehicle. It uses the same hardware as the FCC
for reliability, but additionally utilizes a
Windows-based graphical user interface.

A manual handset is used by an external
pilot to take over control in the case of failure of
a flight critical component (such as IMU or air
data). The pilot’s commands are sent to the
vehicle via the ground station and bypass the
core autonomous processes (the inputs are
scaled and limited to prevent the pilot from
overstressing the airframe). In the flight tests
reported in this paper, the pilot was never
required to take control of the vehicle.

FIG. 10. BAE SYSTEMS AUSTRALIA’S FLIGHT

CONTROL COMPUTER (FCC) USED FOR VEHICLE

MANAGEMENT OF KINGFISHER 2 PLATFORM.

FIG. 11.
HARDWARE

The Int
are housed
features a C
running th
described i
dedicated to
System and
addition, inp
are logged o
control subs
and is resp
control and
minute fligh
data.

FCC
Intelligent Landing
KINGFISHER 2
COMPONENTS FO

elligent Landin
on a Kontron C
ore-2 Duo. One
e All-Source
n [6], and th

running the
path generation
uts and output

n a solid state h
ystem runs on
onsible for m
logging all ra

t generates roug

System computer
Turret controller and
R

g
P
c

N
e
In

s
ar

a
a
w
h

11

SHOWING CORE

AR SYSTEM.

System algorithms
308 board, which
ore is dedicated to
avigation system

second core is
telligent Landing

[4] algorithms. In
from all processes
d drive. The turret

Kontron CP307,
naging the turret

imagery. A 50
ly 40 GB of image

turret

PAUL WILLIAMS, MICHAEL CRUMP

8 West Sale Aerodrome Operations

The Kingfisher 2 vehicle is operated and
maintained at a facility situated near the West
Sale Aerodrome, see Figs. 12 and 13. The
ground station is housed in the hangar, and
communication antennae as well as a
differential GPS antenna are mounted on the
hangar roof.

FIG. 12. VIEW OF BAE SYSTEMS AUSTRALIA’S

HANGAR FACILITY.

FIG. 13. AERIAL PHOT

AERODROME SHOWING

AUSTRALIA’S HANGAR FAC

The vehicle is first p
the hangar, and navigation
flight tests are conducted o
The aircraft is connected
source to prevent the in
running low. Once stand
system is confirmed, it is to
trailer to one of the ends of

13). The takeoff direction is specified either via
air traffic control (when inside ATC hours), or
by the wind direction (when outside ATC
hours). After the appropriate set of radio calls
are made to ATC, the vehicle is deployed to the
runway and becomes airborne under
autonomous control.

During UAV operations, other aircraft
frequently takeoff and land at the Aerodrome,
and the operations crew must ensure separation
is maintained (this is achieved via the
autonomous system using features such as
loiter, heading hold, altitude hold, etc.).
Aircraft deconfliction can sometimes interrupt a
flight test. The Intelligent Landing System is
designed to perform its recovery uninterrupted.
If the flight vehicle is routed away from the
runway area, the Intelligent Landing process is
manually restarted.

9 Intelligent Landing Results

9.1 Simulation Results

Simulations of the complete system were
conducted using the MATLAB/Simulink test
environment described earlier. Simulation
results are presented in this section using two
sets of flight extents: a relaxed set that allows
the UAV to perform the way it would in normal
operations if the Intelligent Landing System
were to be used, and the actual extents used for
12

O OF WEST SALE

BAE SYSTEMS

ILITY.

repared for flight at
alignment and pre-

utside of the hangar.
to an external power
ternal batteries from
ard operation of the
wed on the back of a
the runway (see Fig.

the flight tests. The actual flight extents restrict
the UAV to fly North of the airfield at all times.
Fig. 14 shows an expanded set of flight extents
that allows the vehicle to perform orbits of the
runway. This should be contrasted with the
actual flight extents used during flight tests, as
shown in Fig. 15.

BAE Systems hangar

13

INTELLIGENT LANDING SYSTEM FOR LANDING UAVS AT
UNSURVEYED AIRFIELDS

FIG. 14. FLIGHT AREA WITH EXPANDED FLIGHT

EXTENTS AROUND AIRFIELD.

FIG. 15. FLIGHT AREA WITH RESTRICTED FLIGHT

EXTENTS AROUND AIRFIELD.

The first set of simulation results is for the
case where the flight extents are more generous
around the airfield than is actually the case. Fig.
16 shows the major simulation results for this
case, including the aircraft trajectory and RTB
set. The Intelligent Landing System is initiated
with the vehicle directly north of the airfield
flying in a northwest direction. The Intelligent
Landing System generates the magenta route in
Fig. 16, which takes the vehicle from its original
position, through the flight extents and into the
route that passes close to the runway. The route
forces the vehicle to climb to 700 m ellipsoid
height. After locating the runway, a full set of
inbound waypoints are generated by the
Intelligent Landing System (Fig. 16). The
inbound waypoints form a tree that the flight
control computer uses to determine the shortest
path into circuit from the location that a landing

command is received. The inbound waypoints
are guaranteed to allow the aircraft to reach the
runway from within any flight extent, and
results in a complex tree. When the vehicle
enters into inbound state in this example, it
chooses the first inbound point connected to the
terminal inbound points, which allows it enough
time to descend from altitude and join circuit at
the correct height. The set of circuit waypoints,
together with the circuit trajectory are also
shown in Fig. 17. It can be seen that the system
utilizes the available flight area to its fullest to
enable the longest possible approach.

Fig. 18 shows the height profile during the
landing phase. The aircraft enters landing state
at 70 m ellipsoid height. The runway is
simulated at 28 m height above ellipsoid, which
is consistent with the approximate height of the
navigation solution after touchdown. Fig. 18
shows that the sink rate is maintained fairly
constant until flare, which arrests the down
velocity.

Fig. 19 shows the 09 runway end together
with the runway position uncertainty converted
into uncertainty in the runway corners. It can be
seen that the real runway corners (selected for
illustration as the piano key corners) lie within
their corresponding error ellipses. In fact, the
error is on the order of a piano key width (1.5
m). Similar results can be seen for the 27 end of
the runway in Fig. 20. Fig. 21 shows the
complete runway solution, which illustrates the
accuracy of the runway position. In the
simulation, the aircraft is able to land on the
runway centerline without any major issues.

Simulation results for the case of normal
extents (flight extents to be used for actual
flights) are shown in Fig. 22. In this example,
the aircraft commences the Intelligent Landing
process to the west of the airfield flying in a
westerly direction. The aircraft immediately
performs a left-hand turn and returns to the
vicinity of the airfield. The aircraft is forced to
fly further North of the airfield due to the flight
extents boundary.

PAUL WILLIAMS, MICHAEL CRUMP

FIG. 1
AERO

FIG. 1
LAND

EXPAN

FIG.
ELLIPS

EXPAN
6. SIMULATED LANDING A
DROME WITH EXPANDED FL

7. CLOSEUP OF CIRCUIT F

ING AT WEST SALE AER

DED FLIGHT EXTENTS.

18. VEHICLE HEIGHT A
OID DURING LANDING

DED EXTENTS CASE.

IL System starts

Circuit
14

T WEST SALE

IGHT EXTENTS.

OR SIMULATED

ODROME WITH

BOVE WGS84
PHASE FOR

FIG. 19. RUNWAY POSITIONING SOLUTION FOR

SIMULATED EXPANDED FLIGHT EXTENTS (09
RUNWAY END).

FIG. 20. RUNWAY POSITIONING SOLUTION FOR

SIMULATED EXPANDED FLIGHT EXTENTS (27
RUNWAY END).

FIG. 21. RUNWAY POSITIONING SOLUTION FOR

SIMULATED EXPANDED FLIGHT EXTENTS

(COMPLETE RUNWAY).

Inbound

INTELLIGENT LANDING SYSTEM FOR LANDING UAVS AT
UNSURVEYED AIRFIELDS

FIG. 2
AERO

FIG. 2
LAND

NORM

FIG.
ELLIP

NORM
2. SIMULATED LANDING AT

DROME WITH NORMAL FLIGHT

3. CLOSEUP OF CIRCUIT FOR

ING AT WEST SALE AEROD

AL FLIGHT EXTENTS.

24. VEHICLE HEIGHT ABO

SOID DURING LANDING P
AL EXTENTS CASE.

IL System starts

Circuit
Inbound
15

WEST SALE

EXTENTS.

SIMULATED

ROME WITH

VE WGS84
HASE FOR

FIG. 25. RUNWAY POSITIONING SOLUTION FOR

SIMULATED NORMAL FLIGHT EXTENTS (09
RUNWAY END).

FIG. 26. RUNWAY POSITIONING SOLUTION FOR

SIMULATED NORMAL FLIGHT EXTENTS (27
RUNWAY END).

Fig. 23 shows a close-up of the generated
circuit and landing phase of the recovery. The
circuit is restricted to fly through the available
gap in the flight extents following the turn onto
final. The results show that the algorithms
successfully generate a circuit satisfying all
requirements.

Fig. 24 shows the height profile of the
vehicle during the landing phase. Comparing
Figs. 18 and 24 illustrates the similarity of the
two landings performed by the system under
vastly different conditions. The height tracking
is virtually identical.

Fig. 25 shows the 09 runway positioning
solution, which is consistent with the results of
the first simulation. In fact, the accuracy is
improved compared to the first simulation,

PAUL WILLIAMS, MICHAEL CRUMP

16

although this is variable depending on actual
simulation parameters used. Similar results are
obtained for the 27 runway end (Fig. 26). The
true runway corners lie within the error bounds
of the estimate.

9.2 Flight Results

Flight trials of the Intelligent Landing
System were conducted in November 2011.
The flight trials were undertaken to achieve a
variety of objectives, one of which was to flight
test the Intelligent Landing algorithms. A total
of 22 flights were undertaken, but only 14 had
active payload control during landing. All
autonomous landings were carried out
successfully.

The flight trials were segmented into
stages. In the first stage, flights were conducted
with no active image processing. In the second
stage, image processing was used to close-the-
loop in the Intelligent Landing System.
Examples of images captured by the system are
shown in Figs. 27 and 28. Fig. 29 shows
imagery obtained during landing using closed-
loop image processing. This illustrates the
accuracy of the approach and landing using the
system.

FIG. 27. EXAMPLE RUNWAY IMAGE CAPTURED

DURING FLIGHT TEST FOR 09 RUNWAY END.

FIG. 28. EXAMPLE RUNWAY IMAGE CAPTURED

DURING FLIGHT TEST FOR 27 RUNWAY END.

FIG. 29. EXAMPLE OF RUNWAY IMAGERY

DURING CLOSED-LOOP APPROACH TO RUNWAY.

INTELLIGENT LANDING SYSTEM FOR LANDING UAVS AT
UNSURVEYED AIRFIELDS

During the flight trials of the Intelligent
Landing System, the aircraft was restricted from
flying significant distances from the airfield due
to the eyes-on-vehicle flying rules. Although
this does not invalidate the results of the
algorithms in any way, it renders the flight
scenario somewhat less than ideal for
demonstrating the full capability of the system.
An example of the Intelligent Landing System
flight results is shown in Fig. 30. The
Intelligent Landing System is enabled directly
north of the airfield. The aircraft performs a
right-hand turn followed by left-hand turn to
return to the airfield. Fig. 31 shows that the real
flight system behavior during inbound, circuit
and landing follows the results obtained in
simulation very well. The ground track remains
within the flight extents at all times. Fig. 32
shows the height profile of the vehicle during
the landing phase. Comparison of the height
profile with the simulation results shows that the
vehicle is at a slightly higher height (~2 m
higher) than in simulation when landing
commences. The amount of time spent in the
landing state is slightly longer due to the head
wind present in the real flight. The navigation
height at touchdown is approximately 25 m,
which differs by 3 m from the simulated runway
height.

An example of the runway positioning for
the flight test is given in Figs. 33 and 34.
Results for the 09 runway end clearly show an
almost exact match to the true corner positions.

FIG. 30. EXAMPLE OF FLIGHT

INTELLIGENT LANDING SYSTE

FIG. 31. CLOSEUP OF CIRCUIT FOR EXAMPLE

FLIGHT TEST RESULTS OF AUTORECOVERY

SYSTEM.

FIG. 32. VEHICLE HEIGHT ABOVE WGS84
ELLIPSOID DURING LANDING PHASE FOR

EXAMPLE FLIGHT TEST RESULTS.

Circuit
TEST R
M.

IL System starts
Inbound
17

ESULTS FOR
FIG. 33. RUNWAY POSITION SOLUTION DURING

FLIGHT TEST (09 RUNWAY END).

PAUL WILLIAMS, MICHAEL CRUMP

18

FIG. 34. RUNWAY POSITION SOLUTION DURING

FLIGHT TEST (27 RUNWAY END).

10 Conclusions

The Intelligent Landing System is an
important element to be incorporated into future
UAVs. It allows the UAV to recover to
previously unknown airfields and execute
precise autonomous landings. The Intelligent
Landing System combines several key
technologies, including all-source navigation,
autonomous waypoint generation, and image
processing. Simulation and flight test results
demonstrate that the Intelligent Landing System
is able to negotiate difficult flight areas, locate
the runway, and land without any human
intervention. The system has been proven to
work using low cost sensors and without an
active differential GPS correction source. The
Intelligent Landing System has further
applications to other types of UAV systems,
such as rotary wing UAVs. Future plans
include extending the system to deal with non-
static landing areas such as a moving deck.

Acknowledgements

The authors would like to thank Ramon
Wilkinson, Kynan Graves, Andrew Fairmaid,
Travis Pereira, Nelson Evans, Jason Bult, and
Paul Harbison for their support in making the
system described here a reality. All the
technology described in this paper was funded
internally be BAE Systems Australia.

References

[1] Scherer, S., Low-Altitude Operation of Unmanned
Rotorcraft. PhD Thesis, The Robotics Institute,
Carnegie Mellon University, Pittsburgh, 2011.

[2] Chamberlain, L., Scherer, S., and Singh, S., Self-
aware helicopters: full-scale automated landing and
obstacle avoidance in unmapped environments.
Proceedings of AHS Forum 67, Virginia Beach, May
2011.

[3] Scherer, S., Chamberlain, L., and Singh, S., Online
assessment of landing sites. AIAA
Infotech@Aerospace, Atlanta, April 2010.

[4] Williams, P., and Crump, M., Auto-routing system
for UAVs in complex flight areas. Proceedings of the
28th International Congress of the Aeronautical
Sciences, Brisbane, September 2012.

[5] Graves, K., Visual detection and classification of
runways in aerial imagery. Proceedings of the 28th

International Congress of the Aeronautical Sciences,
Brisbane, September 2012.

[6] Williams, P., and Crump, M., All-source navigation
for enhancing UAV operations in GPS-denied
environments. Proceedings of the 28th International
Congress of the Aeronautical Sciences, Brisbane,
September 2012.

[7] Tang, D., Li, F., Shen, N., and Guo, S., UAV attitude
and position estimation for vision-based landing.
Proceedings of the 2011 International Conference on
Electronic and Mechanical Engineering and
Information Technology, August 2011, pp.4446-
4450.

[8] Fitzgerald, D., Walker, R., and Campbell, D., A
vision based forced landing site selection system for
an autonomous UAV. Proceedings of the 2005
International Conference on Intelligent Sensors,
Sensor Networks and Information Processing,
December 2005, pp.397-402.

[9] Daquan, T., and Hongyue, Z., Vision based
navigation algorithm for autonomic landing of UAV
without heading & attitude sesnors. Proceedings of
the Third International IEEE Conference on Signal-
Image Technologies and Internet-Based System,
December 2007, pp.972-978.

[10] Pan, X., Ma, D.-Q., Jin, L.-L., and Jiang, Z.-S.,
Vision-based approach angle and height estimation
for UAV landing, Proceedings of the Congress on
Image and Signal Processing, May 2008, pp.801-
805.

[11] Joo, S., Ippolito, C., Al-Ali, K., and Yeh, Y.-H.,
Vision aided inertial navigation with measurement
delay for fixed-wing unmanned aerial vehicle
landing. Proceedings of the 2008 IEEE Aerospace
Conference, March 2008, pp.1-9.

[12] Pouya, S., and Saghafi, F., Autonomous runway
alignment of fixed-wing unmanned aerial vehicles in
landing phase. Proceedings of the Fifth International
Conference on Autonomic and Autonomous Systems,
April 2009, pp.208-213.

19

INTELLIGENT LANDING SYSTEM FOR LANDING UAVS AT
UNSURVEYED AIRFIELDS

[13] Meng, D., Yun-Feng, C., and Lin, G., A method to
recognize and track runway in the image sequences
based on template matching. Proceedings of the 1st

International Symposium on Systems and Control in
Aerospace and Astronautics, January 2006, pp.1221-
1224.

[14] Miller, A., Shah, M., and Harper, D., Landing a UAV
on a runway using image registration. Proceedings
of the 2008 IEEE International Conference on
Robotics and Automation, Pasadena, May 2008,
pp.182-187.

[15] Anon., En-Route Supplement Australia (ERSA), Air
Services Australia, March 2012.

[16] Anon., Manual of Standards Part 139 – Aerodromes,
Civil Aviation Safety Authority, Australian
Government, February 2012.

Copyright Statement

The authors confirm that they, and/or their company or
organization, hold copyright on all of the original material
included in this paper. The authors also confirm that they
have obtained permission, from the copyright holder of
any third party material included in this paper, to publish
it as part of their paper. The authors confirm that they
give permission, or have obtained permission from the
copyright holder of this paper, for the publication and
distribution of this paper as part of the ICAS2012
proceedings or as individual off-prints from the
proceedings.

