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Abstract  

Aeroelastic characteristics considering wake 
effects for helicopter ro tor blades in hover and 
forward flight were inv estigated. To take in to 
account the large deformations of rotor blades, 
a large deflection beam model was used. Also, 
to estimate unsteady wakes and calculate its 
induced velocities, a freewake model w as 
applied. The aerodynamic forces of the  rotor 
blades were obtained by using a vortex lattice 
method (VLM) in hover and forward fligh t. In 
the case of the hovering flight, Newton-Raphson 
iterative method was applie d to the aeroelastic 
analysis to obtain the numerical solutions for 
steady-state blade deflections. The flap, lag, and 
torsion deflections considering wake effects by 
using the freewake model were investigated. The 
p-k method in the frequency domain was used to 
predict the lag damping and frequency, which 
are directly relevant to the dynamic stability of 
helicopter rotor blades. The numerical results 
were compared to the experiments and the ones 
using a tw o-dimensional quasi-steady model 
with a un iform inflow model. For the fo rward 
flight, nonlinear periodic blade responses were 
obtained by integrating the full fin ite element 
equation in time through a coupled procedure 
with a vehicle tr im. After th e periodic blad e 
deflections were obtained, the stability analysis 
was performed for the linear lized stability 
equations with a Floquet transition matrix. The 
numerical results using the fre ewake model 
were compared to the ones using the two-
dimensional quasi-steady model. 

1    Introduction 

Several helicopter accidents reportedly occur 
when the aircraft is cruising [1]. The helicopter 
is frequently put at risk by an unstable and 
complicate flow field. Unsteady wakes are 
generally generated by rotary wings. The flow 
field around the helicopter rotor blades is 
tremendously complicated. For these reasons, 
the helicopter is subjected to a strict vibratory 
environment because of the unsteady wakes. 
Thus, aeroelastic analysis that predicts the 
vibratory stability of rotor blades is a highly 
aspect of helicopter research and lots of studies 
for dynamic stability analysis have been 
implemented [2-7]. 

In most studies on the aeroelastic responses 
of helicopter rotor, nonlinear beam models are 
applied to describe one-dimensional large 
deformations and rotations. Helicopter rotor 
blades are usually modeled as one-dimensional 
beam since this approach is able to reduce the 
computational cost. Nonlinear beam models 
with one-dimensional global deflections are 
generally classified in terms of two types of 
beam theory. One is the moderate deflection 
beam theory based on ordering schemes. This 
theory has been applied to most rotor blade 
structural models [8-11]. The other is the large 
deflection beam theory [12-13] and this theory 
use of Euler angles without any artificial 
restrictions. Aeroelastic analysis requires the 
interaction of aerodynamic forces with 
structural characteristics. A two-dimensional 
aerodynamic model that is essentially based on 
Greenberg’s theory [14] has been applied to 
most aeroelastic models as a way of reducing 
the computational time and simplifying the 
aeroelastic model [15-20]. However, the two-
dimensional aerodynamic model has limitations 
with regard to wake effects. Wake models, on 
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the other hand, have become popular in three-
dimensional aerodynamic models where wake 
effects are taken into account in the aeroelastic 
analysis. A freewake model is one of the wake 
models that overcome these limitations [21-22].  

For aeroelastic simulation, in this study, a 
large deflection beam model, which considers 
the nonlinear behavior of the helicopter rotor 
blades, was used to the structural model. Also, 
the wake effects were accounted for by using 
the freewake method. The stability analyses in 
hover and forward flight have been performed, 
and the damping results were considerably 
affected by the wake effects. 

2    Governing Equations 

2.1 Deflections for the Equilibrium State  

The governing equation for the equilibrium 
state requires that the following parameters be 
defined: the kinetic energy, the strain energy, 
and the virtual work of external forces. The 
kinetic energy, T , the strain energy, U , and 
the virtual work,  W , for a rotating cantilever 
beam can be expressed as follows: 
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where a vector of velocity  V  is defined by the 

elastic blade velocity on the rotating coordinates 
and the velocity of the coordinate rotation;  e  

and    represent the strain and moment strain 

at the elastic axis, respectively; A , B , and D  
are  3 * 3 matrices which depend on the material 
properties and geometry of the cross section; 

 f  is the aerodynamic force vector; and T , 

U , and W  are extended by means of the 
transformation matrix  1xT [13,20]. When T , 

U , and W  are substituted in Hamilton’s 
principle, the governing equation can be defined 
as follows: 
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where  qM  is the mass matrix,  qG  is the 

gyroscopic matrix,  qP  is the internal elastic 

force vector,  qCP  is the centrifugal load vector, 

and  qAP  is the converged steady aerodynamic 

force vector. The aeroelastic stability can be 
estimated on the basis of the equilibrium state. 
On the assumption of an equilibrium state, Eq. 
(4) can be simplified by ignoring the time-
dependent terms as follows: 
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Using the Taylor series extension, Eq. (5) can 
be rewritten as follows as a relation between 
stiffness and force: 
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where  1i

TK ,  1i
CK ,  1i

AK  are the tangential, 
centrifugal and tangential aerodynamic matrix, 
respectively. The aeroelastic deflections on the 
equilibrium state can be obtained by using the 
Newton-Raphson iterative method in Eq. (6).  

2.2 Stability Analysis in Hover 

The aerodynamic model based on Greenberg’s 
theory [14] was combined with the unsteady 
aerodynamics based on the freewake model for 
the purpose of analyzing the dynamic stability. 
The aerodynamic forces and moment are 
defined as follows: 
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The unsteady aerodynamics can be written as 
follows: 
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where   is the angular velocity, b stands for the 
half value of the chord length, a indicates the 
elastic axis position, and  C k  is the Theodorsen 

lift deficiency function.  
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Fig.1 Sectional aerodynamics of the rotor blade
 
The induced velocity according to the freewake 
model was employed to calculate the lift 
deficiency function. The steady and unsteady 
aerodynamic forces and moments are shown in 
Fig. 1. Then, Eq. (3) can be rewritten as follows: 
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where AM  is the aerodynamic mass matrix, AG  
is the aerodynamic damping matrix, and AP  is 

the steady aerodynamic force vector. Using Eqs. 
(1, 2) and Eq. (14), the governing equation can 
be written as follows: 
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The p-k method is applied with the normal 
mode method. Then, the governing equation can 
be linearized as follows: 
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The eigenvalue problem of Eq. (20) is solved, 
and the damping and frequency, which are 
related to the aeroelastic instabilities such as 
flutter, can be estimated. 

2.3 Stability Analysis in Forward Flight 

The periodic steady response is obtained using 
a time finite element approach [23]. The virtual 
energy for the Hamilton’s weak form can be 
expressed as follows: 
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where Q  is the generalized force and L  is the 
Lagrangian of the system. qL  and qL  are the 

partial derivatives of L  with regard to 
generalized coordinates q and q , respectively, 
which are composed of displacements and 
angles, whereas qp L   is the column vector of 

the generalized moment. i  and f  represent 

the initial and final states of time, respectively. 
Using a first-order Taylor-series of the left-hand 
side of Eq. (26) about a given state vector y , 
the governing equation can be derived as 
follows: 
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where K is the local tangent matrix. Also, qqL  . 

qqL , qqL , qQ  and qQ  indicate the second and first 

derivatives with respect to the subscripts, 
respectively. The time period for one revolution 
is discretized into a number of time elements 
with cubic variation. After assembling elements 
in a global system, a periodic boundary 
condition is imposed by folding the row and 
column of the assembled matrix and vector. The 
trim analysis is fully coupled with earlier blade 
steady response analysis to solve the blade 
response, pilot control inputs, and vehicle 
orientation simultaneously. The vehicle trim 
solution is calculated from the overall nonlinear 
vehicle equilibrium equations: three force 
equations and three moment equations.  
 For stability analysis, the blade perturbation 

equations of motion are linearized about the 
equilibrium position. 
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where 0q  is the trim solution as a function of 
azimuth angle and  q t  is small perturbation 

about the periodic equilibrium position. These 
equations include periodic coefficients and can 
be integrated in time for the proper initial 

conditions of displacements and velocities. The 
initial value of the perturbed blade motion is 
taken to be 00.1*q  at a proper time position. 
From the initial perturbation the blade is set free 
to move, and the blade perturbation equations of 
motion are integrated by the fourth-order 
Runge-Kutta method. To obtain more accurate 
modal damping and frequency, the initial 
perturbation of the blade is given only in the 
particular mode of interest [24]. 

3   Results 

3.1 Aeroelastic deflections and aerodynamics  

In this study, the freewake method was used to 
investigate the wake effects on the aeroelastic 
characteristics.  
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Fig.2 Sectional lift and thrust at pitch angle 8º 
 
Fig. 2 shows the sectional lift computed with the 
freewake method based on VLM. The aspect 
ratio of the blade is about 6. The radius of the 
rotor is 3.75 ft and rotation speed at the tip is 
491 fps. The blade was assumed to be rigid to 
ignore the elastic deformations, which means 
that the structural characteristics were not 
considered. The results were compared with 
measurement [25], and those results were good 
agreement with the experiment [25].  
The lead-lag motion is generally sensitive and 

weak for the dynamic stability of helicopter 
rotor blades. For this reason, deflections in lead-
lag mode were investigated. Isotropic rotor 
blades were modeled and analyzed. The rotor 
model is a two-bladed with a radius of 0.9615 m 
and a chord length of 0.0864 m. The structural 
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properties and the rotor parameter values are 
given in Table 1. 
 

Table 1 Blade structural properties and rotor 
parameter values 

Parameter Blade set 1 
Flap bending stiffness, EI  17.37 N-m2 

Chord bending stiffness, EI  407.7 N-m2 

Torsional rigidity, GJ  6.32 N-m2 
Flap/ Lagwise moment of inertia, 

1mk , 2mk  
0 / 1.911×10-4 
kg·m 

Chordwise center of gravity 0.249 c 
Elastic axis 0.254 c 
Rotor speed,   1000 rpm 

Profile drag coefficient, 0dC  0.0079 

Hub off-set ratio, e  0.1051 

Lead-lag structural damping,   0.00826 

Lock number,   5.115 
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Fig.3 Non-dimensional lag tip deflections 
 
Fig. 3 shows the non-dimensional lag tip 
deflections of the rotor blade. The deflections 
increased as the pitch angle increases and the 
deflections based on the freewake method were 
smaller than those based on the two-
dimensional quasi-steady strip theory model. 
The offsets in the deflections of the freewake 
model and the two-dimensional quasi-steady 
model were resulted from the differences of the 
aerodynamic approach.  
 

Span (r/R)

0.0 0.2 0.4 0.6 0.8 1.0

A
er

od
yn

am
ic

 c
oe

ffi
ci

en
ts

 (C
l, 

C
m

)

0.00

0.02

0.04

0.06

0.08

0.10
Before deflections_Cl

After deflections_Cl

Before deflections_Cm

After deflections_Cm

(a) Pitch angle of 2º 

Span (r/R)

0.0 0.2 0.4 0.6 0.8 1.0

A
er

od
yn

am
ic

 c
oe

ffi
ci

en
ts

 (C
l, 

C
m

)

0.0

0.1

0.2

0.3

0.4
Before deflections_Cl

After deflections_Cl

Before deflections_Cm

After deflections_Cm

(b) Pitch angle of 4º 
Fig.4 Lift and moment coefficients 

 
Fig. 4 show the lift and pitching moment after 
the aeroelastic deflections at the pitch angles of 
2 and 4 degrees. It is obviously found that the 
aerodynamic coefficients decrease due to the 
effect of the deflected blade. 

3.2 Dynamic Stability in Hover 

In most cases, the lag damping obtained from 
the freewake method was smaller than the result 
derived from the two-dimensional quasi-steady 
model. Newly developed aeroelastic module is 
devised in this study. In addition, not only the 
physical characteristics on the dynamic stability 
analysis but also the reliability of the results 
were investigated. Stability analysis of the blade 
model given in Table 1 was performed. Fig. 5 
shows the lag damping of rotor blade. The 
damping values derived from the freewake 
model coincided with the experimental results 
[26] and those results were smaller than the 
results derived from the two-dimensional quasi-
steady model. 
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Fig.5 Lag damping values 
 
Numerical results for two methods increased as 
pitch angle increases. Damping obtained from 
freewake method have similar tendency to 
measurements. Whereas, the discrepancies of 
lag damping between the two-dimensional 
quasi-steady model and experiments increased 
as the pitch angle increased. Also, the rotor 
blade is aeroelastically stable since the lag mode 
is negatively damped. 

3.3 Dynamic Stability in Forward Flight 

Four-noded cubic elements were used to model 
the period of one revolution. The properties of 
the vehicle and rotor are given in Table 2.  
 

Table 2 Vehicle and structural properties 

Main rotor 
Number of blades 4 
Blade aspect ratio 0.055 
Solidity,   0.07 
Thrust level, TC   0.07 

Lock number,   5.5 

Lift curve, 
0

a  2  

Profile drag, 
0dC  0.01 

2 4

0yEI m R  0.01080 
2 4

0zEI m R  0.02680 
2 4

0
GJ m R  0.00615 

Ak R  0.0290 

1mk R  0.0132 

2mk R  0.0247 

Vehicle 
Longitude and latitude offset 0.0, 0.0 
c.g. below hub, /h R  0.2 

Flat plat area, 2/f R  0.01 

 
The present analysis used the full finite element 
method in the displacement-based formulation. 
Fig. 6 shows the flap and lag tip deflections of 
the baseline case for advance ratio of 0.3. The 
present results are compared with those of Ref. 
[27, 28], and the present results have similar 
trend with the references. 
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Fig.6 Periodic tip deflections 
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Fig. 7 shows the variation of lag mode damping 
with advance ratio of 0, 0.1, 0.2 and 0.3. The 
present results are obtained using the Floquet 
theory with the modal basis. The results 
obtained from freewake model were compared 
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with those obtained from Ref. [27, 28]. 
However, it shows some differences between 
the results of two models in hover condition, 
and the differences increase as the forward 
speed increases. The full finite element analysis 
using the large deflection beam theory and 
freewake method gives lower values in the lag 
mode damping due to the different structural 
and aerodynamic approaches. 

4   Conclusions 

In this study, aeroelastic analyses of helicopter 
rotor blades in hover and forward flight were 
presented. The large deflection beam model was 
applied to structural modeling with 
consideration of the nonlinear behaviors of the 
blades. Also, the freewake model was employed 
as a means of considering the wake effects. The 
stability analyses were performed and the 
damping and frequencies in lag modes were 
investigated and verified experimentally. The 
damping which related with aeroelastic 
instability was significantly affected by the 
wake effects. Furthermore, the lag damping 
values derived from the freewake model were 
coincided with experimental results but were 
smaller than the results derived from the two-
dimensional quasi-steady model. In the final 
analysis, this study will be helpful to investigate 
aeroelastic characteristics of blades in the rotor 
design stage. 
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