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Abstract 
Advanced Health Monitoring is becoming a 
standard for new engine applications, in order 
to enable in-service event reduction and engine 
maintenance optimization. The efficiency of 
these functionalities is driven by the capability 
to model the engine behavior and to identify 
engines on healthy or unhealthy conditions.
Advances on health monitoring have been made 
possible by the use of machine learning 
techniques for both regression and 
classification. Among recent regression and 
classification techniques, decision tree bagging 
or so-called Random Forest appears to be quite 
promising in terms of accuracy and capacity to 
handle different types of inputs. This paper 
presents possible application of Random 
Forests to engine health monitoring.

1  General Introduction
Advanced Health Monitoring is becoming 

a standard for new engine applications, in order 
to enable in-service event reduction and engine 
maintenance optimization. The goal is to reduce 
operational events such as IFSD (In Flight Shut 
Down), ATO (Aborted Take-Off) et D&C 
(Delay & Cancellation) and to substitute them 
with maintenance operations that are planned 
long enough in advance in order to minimize 
their operational impacts for the airlines. IFSDs 
and ATOs are very seldom but still stressing for 
the pilots and they often produce secondary 
damages that might increase reparation costs. 
D&Cs are often not critical but occur more 
often; their consequences can be traffic 
disorganization, customer dissatisfaction. They 

are partially linked to procedures and controls to 
perform troubleshooting.

The performance of Engine Health 
Monitoring functionalities is driven by the 
capability to model the engine behavior and to 
identify engines on healthy or unhealthy 
conditions. Advances on Health Monitoring 
have been made possible by the use of machine 
learning techniques for both regression and 
classification. For instance, Random Forests 
have become very popular in literature the past 
years. Their capability to handle different types 
of inputs makes them quite versatile. The ability 
to treat discontinuities in the input space 
(operating conditions, change in engine 
configuration…) while controlling robustness 
offers good potential for this method in Engine 
Health Monitoring. These interesting properties 
come with a major drawback in terms of 
understanding for the expert in charge of 
validating the algorithm. Contrary to single 
decision trees, the Random Forest decision 
mechanism suffers from a lack of clarity for the 
expert who can only see it as a black-box model 
and loses the explanation from the input of the 
algorithm to the output diagnostic. In this paper, 
Random Forest is used for prediction and 
classification on some cases. Some ideas about 
the way to present the results to expert for 
validation and the link to the expert knowledge 
to the Random Forest structure are given.

2  Introduction to Engine Health Monitoring 

2.1 EHM General Philosophy
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As described in [1], fault detection algorithm 
can be described as the appending of two 
algorithms:

• CRN (Context Removal and 
Normalization): a standardization 
process that normalize observations 
to make them as if they were 
acquired always in the same context 
conditions;

• FDI (Failure Detection and 
Identification): a detection and 
classification algorithm that first 
diagnoses abnormalities and then 
identifies failures among a 
predefined list of possible 
degradation causes.

This low-level to high level diagnosis 
scheme also proposes a methodology to help 
experts in the analysis process of each possible 
failure. 

This study will focus on CRN and Fault 
classification alternative to FDI.

2.2 CRN description:
CRN is extensively described in [1,4]. The step 
of interest here is the step 9 that corresponds to 
the indicator construction.

Fig. 1. CRN description
To implement such estimation for each 

indicator one need a set of observations Y 
(indicators) and X (context data) of good 
observations. “Good” refer to measurements 

done on engine that have no problem. In fact 
this is an easy task because most of the time 
there is no problem when using an engine. Thus 
building a regression on normal conditions is 
easily feasible. As we can get a lot of such 
observations, the quality of the model can be 
optimized.

Let ),,( 1 myyY K= be the vector of all 
indicators and X be the vector of context data. 

An estimation 
^
Y of an indicator Y is determined 

using an a priori parameterized function f and k
operating conditions variables noted x1…xk as 
shown in eq (1):
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^

kxxfY =
(1)

The result 
^
Y is a crude estimation of Y

taking context data into account. The 
normalized data is thus obtained by computing 

~
Y defined in eq (2):

^~
YYY −=

(2)

This estimation is built from the difference 
of the real observation to the prediction. The 
whole result is readjusted to normal mean 
conditions (or defined standards).

3 Overview of Random Forests

3.1 Philosophy:
Random Forests have been introduced by Leo 
Breiman [3] in 2001 and quickly became 
popular for classification and regression tasks. 
Random Forests are a set of aggregated decision 
trees. All trees are taught on different bootstraps 
and there individual outputs are merged in a 
single output for the Random Forest. During the 
bootstrap, the data that are not used for an 
individual tree is put in a set called the out-of-
the-bag (OOB).

An additional Randomness is introduced in 
the construction of the trees: at each node, a 
subset of all the possible variable is Randomly 
generated for split variable selection.
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Leo Breiman has proposed an interesting 
way of estimating variable importance, which is 
useful to discuss the results with engine experts.

3.2 Variable importance:
The idea of Leo Breiman is to see the effect of 
breaking the dependencies between an input 
variable and the output variable on the Random 
Forest output.

Given a set of inputs and outputs, a model 
is trained and the out-of-the-bag error is 
estimated. The variable whose importance shall 
be estimated is shuffled in order to keep the 
variable marginal distribution but break the link 
with the output variable. This new set of data is 
passed through the Random Forest and the new 
out-of-the-bag error is evaluated.

For each variable, we can estimate the 
importance I(xi). The first step is to compute the 
difference R(xi) (see eq (3) ) between errors 
obtained for the initial order and the random 
order:

i

ii

xoforderinitialwithError
xoforderrandomwithErrorxR

  
)( −= (3)

The results is normalized to get I(xi) as 
defined in eq (4):
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3.3 Feature selection:
The estimation of variable importance enables 
to select the relevant inputs. The idea is to 
introduce artificial inputs, randomly distributed. 
Variables that show less importance than the 
purely random variables are discarded.
Let us consider the data in Tab 1:

Initial input
Y x1 x2 … xk
y1 x1,1 x2,1 … xk,1
y2 x1,2 x2,2 … xk,2
y3 x1,3 x2,3 … xk,3
… … … … …
ym x1,m x2,m … xk,m

Tab. 1. Variable selection: initial dataset

This data is augmented with random inputs as 
shown in Tab 2:

New input
Initial input Random variable

Y x1 x2 … xk xk+1 … xk+n
y1 x1,1 x2,1 … xk,1 xk+1,1 xk+n,1
y2 x1,2 x2,2 … xk,2 xk+1,2 xk+n,2
y3 x1,3 x2,3 … xk,3 xk+1,3 xk+n,3
… … … … …
ym x1,m x2,m … xk,m xk+1,m xk+n,m

Tab. 2. Variable selection: augmented dataset

The variable importance estimation is 
performed and variables are ranked according to 
their importance:

Variable Variable 
importance

xm 15.4 %
x2 10.5%
… …
x4 1.1%
xk+2 0.9%
x1 0.45 %
xk+3 0.3 %
… …
xm 0.01%

Tab. 3. Variable selection: variable ranking 
according to importance

In this example the best-ranked artificial value 
is  xk+2, all variables with lower rank are not 
kept (Tab 4)

Variable Variable 
importance

xm 15.4 %
x2 10.5%
… …
x4 1.1%
xk+2 0.9%
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x1 0.45 %
xk+3 0.3 %
… …
xm 0.01%

Tab. 4. Variable selection: variable 
elimination

3.4 Choice of Random Forests in EHM:
Several other mathematical objects such as 
neural networks and Support Vector Machines 
can perform the same kind of functionalities as 
Random Forests. The use of Random Forest has 
been motivated by the following properties that 
make Random Forests suitable for engineers 
use:

• Ease to understand for non experts:
• Ability to treat both discrete and 

continuous outputs
• Ease to tune:
• Toolbox aspect:

o Regression
o Classification
o Embedded indication of 

variable importance

4 Model quality
One of the main difficulties in diagnostic system 
is to ensure a low false alarm rate, while 
improving fault detection. It is thus important to 
evaluate the quality of a model but also, when 
the model products a result, to be able to 
evaluate the quality of the result. The notions of 
MQV and PQV described in this paragraph are 
more extensively described in [2].

4.1 Mean Quality Value:

4.1.1 Philosophy:
The Mean Quality Value (MQV) is an indicator 
of a model intrinsic quality. It is a R2 
coefficient based on out-of-the-bag error. The 
way to compute the estimate depends on the 
discrete or continuous case.

4.1.2 Continuous case:
For the continuous case, the error corresponds 
to an average estimation error. The data used for 
learning are run through trees for which they are 

in the out-of-the-bag set. A majority vote gives 
the result of the sub-Forest. This result is 
compared to the expected results; the error is 
thus, for N cases defined as eq (5) where σ is the 
standard deviation:

2

)(
)ˆ(1 
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σ
σ (5)

4.1.3 Discrete case:
For the discrete case, the error corresponds to a 
misclassification count. The data used for 
learning are run through trees for which they are 
in the out-of-the-bag set. A majority vote gives 
the result of the sub-Forest. This result is 
compared to the expected results and the error is 
thus, for N cases:

{ } ))(ˆ)((1*1
1

0∑
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N
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(6)

An extension of the MQV is to compute 
a specific MQV for each target class.

4.2 PQV

4.2.1 Philosophy:
The Predictive Quality Value (PQV) is an 
estimate of the quality of the prediction when 
the model produces a result. It is an indicator 
going from 0 to 1, 0 corresponding to a poor 
quality of prediction.

4.2.2 Continuous case:
In the regression case, the error can be seen as a 
sum of errors for each tree of the Forest. The 
PQV is thus close to a gamma distribution. The 
PQV construction process is the following: 

• the Random Forests error is 
estimated based on the inputs value; 
this is performed by another 
Random Forest. The new Random 
Forest, called PQV Random 
Forests, thus estimate the 
estimation error based on the inputs

• The error modeled by the PQV 
Random Forests as a marginal 
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distribution on which a gamma law 
is fitted, which gives parameters a
and b.

When a result is computed, the PQV 
Random Forests is run on the input data to 
estimate the a priori error ê, used in the PQV 
estimation

∫Γ=>=
1

ˆ

),,()ˆ(
e

dxbaxeePPQV
(7)

This definition implies that a high PQV is 
equivalent to a large possible area for the error.

4.2.3 Discrete case:
In the classification case, the mislabeling error 
is estimated thanks to an error Random Forest 
whose trees will estimate if the result is wrong 
or correct {true for a wrong result, false 
otherwise}. 

treesofnumber
trueofnumberPQV −= 1

(8)

4.2.4 An example:
The following figure (Fig 3) shows a prediction 
(based on a Random Forest model) made for 
engine start sequence monitoring. The output is 
an engine transient time estimation based on 
other engine parameters such as feeding 
pressure, oil temperatures… This example will 
be shown more extensively in part 5.

Fig. 2. Up: one of the external conditions, 
middle: prediction vs. target, down: 
predicted accuracy.

A correlation of – 0.816 is found between 
the norm of the error and the PQV. The negative 
sign means that the error and PQV evolve in 
opposite ways (a low error gives a high PQV) 
and the norm tells that those parameters are 
highly correlated.

5 Application 1: Start sequence monitoring 
CRN

5.1 Problem:
In order to monitor the engine during its start 
sequence, it is necessary to take into account 
external conditions such as feeding pressure, oil 
temperatures in order to detect abnormal 
conditions. The effect of these external 
conditions on start sequences indicators shall be 
removed. [5,6].

Figure 3: High Pressure compressor (CorHP) 
speed and exhaust gas temperature (EGT) 
during engine start

The graph below (Fig 4) shows the oil 
temperature just before an engine start. One 
immediately sees two kinds of temperatures that 
represent cold starts and hot starts. This is 
typically a case were an internal information 
(the oil temperature) must be considered as a 
context data. It clearly differentiates two classes 
of start procedures that the analysis algorithm 
must deal with.
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Figure 4: The oil temperature before start 
process. Each “cycle” corresponds to a new 
start sequence.

The false alarm rate has to be low in 
order to avoid useless repairs. Then the 
intersection between the distributions of the 
healthy and unhealthy starts has to be as small 
as possible so that the no detection rate is small. 
The variability introduced by the external 
conditions tends to increase this intersection.

5.2 Procedure:
Bench data from Snecma Villaroche industrial 
site on civil engines allowed establishing a 
predictive model for the different indicators.

These data are only healthy data, in other 
words, they are extracted from an engine 
without failure. Thus only the healthy 
distribution of the indicator could be learnt.

A set of 305 start sequences parameters 
with different contextual conditions has been 
recorded in a test cell. The 200 first data were 
used for training and the last ones for test.

5.3 Results of Random Forest :
The CRN information is provided through an 
IHM giving information about the estimate and 
the corresponding PQV. The context influences 
evaluated as previously described, are also 
shown. The following case shows the maximum 
Exhaust Gas Temperature (EGT) during the 
start sequence before and after normalization for 
a normal case:

Fig. 5. up: data before normalization, middle: 
data after normalization, down: PQV.
The first graph represents the data before 
normalization and the data below after 
normalization. The normalization reduces the 
variability due to the external conditions.

5.4 Results exploration for experts:
When experts want to have a closer insight in 
the Random Forests response, the black-box
aspect of the Random Forests can make the 
results interpretation difficult. It is then 
important to have tools to be able to better 
understand the model.

5.4.1 Variable importance:
The main tool is the variable importance 
computation that enables to link the variables. 
This is particularly valuable for experts who 
thus can check if the Random Forests have 
caught the physics of the phenomenon.

5.4.2 Visualization:
A second tool has been designed in order to 
navigate. The goal of this tool is to be able to 
navigate in the Random Forests outputs from 
the space of inputs.

The idea is to give the output mapping on a 
projection plan:
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Fig. 6. up: Output projection

On the next figures, the labels represent:

1. Output value and PQV/Estimate selector:
• enables to choose the output data to 

display
• enables to choose between PQV and 

output estimate

2. Input variable influence display:
• displays the variable influences

3. Value color bar:
• sets the color code for the mapping

4. Output map:
• maps the projection of the multi-

dimensional outputs to a 2-dimensional 
space. The color describes the value

5. Projection value selector:
• enables to change the projection 

direction with a scrollbar or by typing 
directly the desired value

6. Projection value display and plan variable 
selector:

• enables to see the projection direction
• enables to select X and Y plan axes.

Fig. 7. Random Forest output navigator in 
estimate mode

The example illustrated by Fig 7 shows 
the estimation of the core speed versus feeding 
pressure and oil temperature with fixed values 
for other parameters (projection vector). 
Different levels of value are shown on the 
space. The variable importance estimation gives 
high importance for feeding pressure and oil 
temperature. The mapping shown in Fig 7 
enables to see that the result depends on the 
values of those two parameters; otherwise, the 
output will be close to a single color plan.

By clicking on the point in the map, the 
user can have a precise value.

Fig. 8. up: Particular value descriptor

6 Application 2: Engine Gas Path CRN & 
Engine fault classification

6.1 Problem:

2

1

34

56

XY

Projection 
vector

Projection 
space



J.RICORDEAU, J.LACAILLE

8

6.1.1 Description:
During flight operations, Aircraft records engine 
performance parameters during cruise in order 
to monitor the engine and detect any 
performance issue and localize them in the 
engine. We can consider that the engine is a set 
of five pieces a fan, booster, HP compressor, HP 
turbine, and LP turbine. Several techniques exist 
in order to evaluate faults, using for instance an 
estimation of the efficiencies and permeability 
of the different modules or directly classify the 
engine faults or absence of faults based on the 
recorded parameters [7].

The set of parameters taken for the study 
is the following:

Name Description Context
XM Inlet Mach number X
T12 Inlet Temperature X
ALT Altitude X
PCN12 LP spool speed X
PCN25 HP spool speed
WF36 Fuel flow rate
P25 Compressor inlet pressure
PS3 Compressor Exit pressure
PS13 Fan tip exit pressure
T25 Compressor inlet temperature
T3 Compressor exit temperature
T495CC HP turbine exit temperature
T5 LP turbine exit temperature

Fig. 9. Data available for performance 
analysis

We show here an example of CRN and 
an engine fault classifier.

6.1.2 CRN:
The idea here is still to remove context effect 
from the parameters we would like to study. In 
the case of our study, we use altitude, inlet 
temperature, Mach number and engine LP spool 
speed. The PLA could also be used instead of 
the LP spool speed since there is usually an 
immediate relationship between those two 
parameters.

6.1.3 Engine fault classifier:
Contrary to the FDI presented in [1], we will 
directly use the residuals coming from the CRN 
in order to classify the engine into six classes: 

health, fan issue, booster issue, HP compressor 
issue, HP turbine issue, LP turbine issue. There 
is no detection of abnormality

6.1.3 Algorithm description:

The proposed algorithm is composed of a CRN 
task and an engine fault classifier as described 
in Fig 10:

Fig. 10. Algorithm description

6.2 Procedure:
Data have been simulated through an engine 
model on which external conditions can vary 
and on which faults can be seeded.

A first set of 300 data with different 
conditions is used in order to train and test the 
CRN. The 200 firsts points are used for training 
and the 100 last for test.

A second test of 60 cases is simulated, 
corresponding to 10 examples of each class. 7 of 
each class are taken for training and 3 for test.

The set corresponds to all the available 
data including the context data. The learning 
phase is done with the variable selection 
procedure described previously.

6.3 Results of Random Forest:

6.3.1. CRN results:

On the next figure, the two first graphs show the 
input data (raw and renormalized) but with the 
same y-scale.
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Fig. 11. up: data before normalization, 
middle: data after normalization, down: 
PQV.
The CRN enables to reduce drastically the 
dependence of engine sensors output from the 
context.
The Random Forest used for CRN shows MQVs 
higher than 0.96 for all the outputs.

6.3.2. Fault classification results:
The Random Forest Classifier shows good 
results since on this simplified case, all the good 
engine are well classified even though the MQV 
is not so high: 0.310 and the PQV does not give 
good results (Note: the error being zero, the 
correlation with the PQV is not well defined). 
This is due to the lack of training cases. The 
Random Forests used for PQV estimation has 
difficulties to estimate correctly the error.

Fig. 12. Fault classification results with input 
variable selection. Up: input data, middle: 
classification result, down: PQV.

It is interesting to see that, during the 
learning procedure and the variable selection 
process, all the contextual variables have been 
discarded, which shows that main of the 
contextual effect has been removed through 
CRN. If we train the Random Forest with no 
input variable selection, we get very low 
influence for the context data:

Fig. 13. Fault classification results without 
input variable selection, showing low 
influence of context data

A second interesting point is the variable 
importance for the classification. This influence 
is computed on all the faults, which does not 
mean that it is correct to discriminate each fault 
from the healthy condition. The three main 
parameters are HP turbine exit temperature, 
Fuel Flow and core speed, which are usually 
used by experts to monitor the engine.

In order to have a better insight of the 
result, it is possible to use the same visualization 
tool than in the start sequence case. Fig 14 
shows the results on the core speed vs. HP 
turbine exit temperature. In this plot, several 
classes appear, showing the importance of those 
values for engine fault classification. 
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Fig. 14. Fault classification output navigator 
The tool enables to show the effect of 

increasing in Fuel Flow; doing so, one gets 
more HP fault: Fig 15.

Fig. 15. Fault classification output navigator 
for higher Fuel Flow

Conclusion:
This paper shows how Random Forests can be 
used in Engine Health Monitoring. The power 
of Random Forests and the different toolboxes 
aspects of Random Forests make it particularly 
interesting for monitoring tasks. Some results
have been shown on start sequence monitoring 
and engine performance faults monitoring. 

These results are defined on easy cases 
(specially true for performance) but enable to 
show possible uses of Random Forests. 
Proposals for MQV and PQV have been made 
and some paths on the way for an expert to 
interact with the Random Forests models have 
been shown.
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