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Abstract  

Numerical studies were carried out to 

investigate the effects of turbulent boundary 

layers on panel flutter at supersonic speeds. In 

this study, RANS equations are solved to take 

into account the turbulent boundary layer and 

its viscous effects. The computed flutter 

boundaries agree well with experimental data. 

Moreover, the results showed that the viscous 

effects were important and should be taken into 

account for flutter computation. Then, the 

boundary layer effects were investigated in the 

Mach number range of 1.0-2.4. We found that 

the boundary layer not only has a stabilizing 

effect but also a destabilizing effect, depending 

on the Mach number.  

1  Introduction  

Panel flutter is well known as flutter of skin 

panel of rockets, supersonic transports, and 

fighters. This phenomenon is a self-excited 

oscillation of thin panels due to aeroelastic 

instability at supersonic speed. Much research 

on panel flutter has been conducted in the past, 

theoretically and experimentally, and some 

results are reviewed in Refs. [1] and [2]. Despite 

the simple geometry of a panel (e.g. a 

rectangular panel or shell), it is generally hard to 

obtain quantitative agreement of flutter 

boundaries between computation and 

experiment[3] since there are many factors 

affecting the boundaries, such as the effects of a 

turbulent boundary layer above the panel, 

structural damping, static-pressure differential 

across the panel, cavity resonance, and 

manufacturing imperfection. Therefore, efforts 

have been made to reduce these confounding 

effects and to measure flutter boundaries under 

ideal conditions. Nevertheless, those effects 

were not fully eliminated and it is hard to obtain 

quantitative agreement, especially in low 

supersonic regions (M=1.0-1.4). It is therefore 

necessary to understand these effects. 

Fung[4] indicated that, among those 

effects, the turbulent boundary layer is the main 

reason why the computation can not predict 

flutter boundaries. Next, Muhlstein et. al[5] and 

Gaspers et. al[6] investigated the effects of the 

turbulent boundary layer in low-supersonic 

regions, using a test fixture that can control the 

thickness of the boundary layer above a panel. 

These experiments were performed so as to 

reduce the confounding effects mentioned above. 

They concluded that the turbulent boundary 

layer has a large stabilizing effect on flutter at 

low supersonic speeds and that the effect is the 

largest near M=1.2 and decreases rapidly with 

increasing Mach number up to M=1.4. 

Therefore, the effect was believed to appear 

near M=1.2 (low supersonic region). 

 Next, Dowell[7][8] computed the flutter 

boundaries under the experimental conditions[5], 

taking into account the mean flow variation at 

the boundary layer. He solved linear 

perturbation equations to obtain pressure on the 

panel. In addition, he neglected viscosity and 

employed a one-seventh power low as the mean 

velocity profile. Although his computation 

results are better than previous ones, agreement 

with the experimental data was not sufficient 

qualitatively.  

  Recently, computational fluid dynamics 

(CFD) has often been employed for fluid-

structure coupled analysis. For panel flutter 

problems, Davis et. al[9] first analyzed 

transonic panel flutter and investigated shock-
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wave motion on panels using CFD.  Then, 

Selvam et al.[10] and Gordnier et al.[11] 

investigated limit cycle oscillation (LCO) above 

a flutter boundary and the viscous effects on its 

amplitude and frequency. However, no 

comparison with experimental data was made in 

their research. Moreover, viscous effects on 

flutter boundaries were not investigated.  

 In this study, we investigated the effects 

of a turbulent boundary layer on flutter 

boundaries by solving Reynolds averaged 

Navier-Stokes (RANS) equations. First, 

computed flutter boundaries were compared 

with the experimental data measured by 

Muhlstein et. al[5] at M=1.1-1.4 to validate our 

fluid-structure coupled analysis code, taking 

into account the viscous effects. Next, flutter 

boundaries at higher Mach numbers (M=1.1-

2.4) were computed using the code, and were 

compared to those computed by inviscid flow to 

clarify the effects of the turbulent boundary 

layer.  

2  Computational  Method 

2.1 Aerodynamic Solver 

The governing aerodynamic equations are Euler 

or Reynolds-averaged Navier-Stokes (RANS) 

equations written in generalized coordinates. 

These equations are solved using the perfect gas 

relationship. In addition, the molecular viscous 

coefficient is computed by Sutherland’s law and 

the Prandtl number is assumed to be constant. 

 In most panel flutter problems, the non-

dimensional flutter frequency (Stf=ff a/Uf) is 

much less than 1; they are 0.04-0.08 for M=1.1-

1.4 in this problem. In addition, a very thin grid 

must be used to resolve the viscous sublayer. 

Therefore, an implicit time integration method 

should be employed to obtain a solution in 

practical time. In this study, LU-SGS involving 

the dual-time stepping method was employed 

for time integration. The numerical algorithm is 

written in delta form as; 
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where n is a physical time step number and m is 

a subiteration number. When a sufficient 

subiteration number is used, second-order time 

accuracy is achieved in this formulation. The 

last term at the right-hand side computes a 

jacobian time derivative using the geometric 

conservation law (GCL).  

Inviscid fluxes on the right hand side are 

computed by Roe’s approximate Riemann 

solver with third-order MUSCL interpolation, 

whereas viscous fluxes are computed by a 

second-order central difference. Regarding the 

turbulence model, we employed mainly the 

Baldwin-Lomax model[12] (BL) since the 

nondimensional flutter frequency, Stf, is 

relatively low. We also employed the Spalart-

Allmaras model[13]
 
(SA) to see the effects of 

turbulence models. The BL model is a simple 

zero-equation model, whereas the SA model is a 

one-equation model including a convection term. 

2.2 Structure Solver 

The turbulent boundary layer forms a moderate 

pressure gradient in the streamwise direction 

above the panel, while the cavity pressure—the 

pressure under the panel—is assumed to be 

constant in this study.  Therefore, the panel may 

deflect due to the static pressure differential 

across the panel, and its deflection can become 

large and nonlinear depending on the pressure 

differential. To avoid an unphysical large 

deflection, we employed the von Karman plate 

equations[14] that are nonlinear, large 

deformation plate equations considering in-

plane stresses. We solved the equations by a 

finite difference method (FDM)[14]. A second-

order central difference was employed for space 

derivatives, whereas Newmark’s  method was 

employed for time integration. 
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2.3 Fluid-Structure Coupling method 

To solve aerodynamics and structure dynamics 

simultaneously, a strong coupling method was 

used in which data is exchanged between the 

aerodynamic solver and structure solver in 

every step of the subiteration. This method can 

reduce the time lag between the two solvers 

(Ref. [10]).  

Non-slip boundary conditions are 

implemented by setting the flow velocity on the 

panel surface equal to that of the panel surface. 

The deformation velocity and acceleration of 

the panel are transferred from the structure 

solver to the aerodynamic solver as boundary 

conditions, where acceleration is considered by 

setting the pressure gradient on the surface 

using the following equation:  

na
n

p 





  

(2) 

where p is pressure,  is density, a


is the 

acceleration vector, and n


is unit vector normal 

to the surface. Additionally, we neglect the 

normal viscous stress in the equation because 

the Reynolds number is high. In this study, we 

employ the same size grid on the panel both for 

aerodynamic and structural computations to 

transfer the data easily between the two solvers. 

The grid moves with the panel deflection. 

It is redistributed smoothly normal to the panel 

surface using algebraic equations[15], while the 

grid on the far field boundary is kept fixed to 

simplify the treatment of far field boundary 

conditions. 

3  Computational Conditions 

In this study, we employ the panel configuration 

and flow conditions of Muhlstein’s 

experiment[5]. The panel configuration is 

shown in Fig. 1. The panel length-width ratio, 

a/b, is 0.5 and all sides are clamped. In addition, 

the boundary layer thickness above the panel, , 

is defined as the 98% thickness at the middle of 

the panel as shown in Fig. 1. We mainly use 

10% panel length thickness, /a=0.1. 

The computational domain employed in 

this study is shown in Fig. 2, which also shows 

the domain size. The upper boundary is high 

enough to avoid reflection of the shock wave 

from the leading edge of the wall. The adiabatic 

wall conditions are used for the lower boundary 

and the first-order extrapolation is used for the 

outflow boundary. Additionally, the free stream 

conditions are imposed for the other boundaries. 

Moreover, the distance between the inflow 

boundary and the panel front edge, Lx, is 

adjusted to realize the desired boundary layer 

thickness. In addition, the cavity pressure is 

assumed to be constant. In this study, we took 

the average pressure on the upper surface of the 

panel as the cavity pressure. In fact, the cavity 

pressure in the experiment was also controlled 

to minimize the differential pressure across the 

panel[5]. 

As for the grid numbers, 90, 59, and 95 

points are used in the streamwise, spanwise, and 

normal directions, respectively, of which 20 

points in the streamwise direction and 40 points 

in the spanwise direction are distributed on the 

panel. 

An initial velocity is imposed on the 

panel at the beginning of the coupled simulation 

using the following distribution function:  

)/(sin)/(sin),( 22 byaxvyxv ini   (3) 

where x is 0  x  a and y is 0  y  b. The 

coefficient, vini, is 0.01c (c = sonic speed). For 

the viscous cases, the flow field is computed to 

obtain the converged solution of the turbulent 

boundary layer in advance. Then, the solution is 

used as the initial condition of the coupled 

simulation, and the flutter boundaries are 

determined by computing several cases with 

changing Young modulus at a constant Mach 

number and mass ratio. The computed flutter 

boundaries are compared with experimental data 

using the nondimensional dynamic pressure, . 

Additionally, since the initial response is 

affected by the initial velocity and its 

distribution, the simulation is continued until the 

oscillation mode is converged. 
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4  Results 

4.1 Dependency on grid and time step 

In the previous study[16], we analyzed panel 

flutter in a laminar and turbulent boundary layer 

on the panel. The results show that the flutter 

boundaries are largely affected by the boundary 

layer, and there is a large difference in the 

flutter boundaries between the laminar and 

turbulent boundary layers. The laminar 

boundary layer has a larger stabilizing effect 

than the turbulent boundary layer at the same 

Reynolds number, Re=10
5
, though the laminar 

boundary layer is thinner than the turbulent 

boundary layer. Thus, not only the boundary 

layer thickness but also the velocity profile is 

important to determine the flutter boundaries. 

Therefore, the velocity profile of the boundary 

layer must be computed accurately. Moreover, 

the time step is also important for fluid-structure 

coupled problems as mentioned in Ref. [10]. To 

compute accurate flutter boundaries of the panel 

in the turbulent boundary layer, dependency on 

grid resolution and time step is examined.  

We examine here the dependency for the 

cases where the minimum grid sizes in the 

normal direction to the panel, z, are 510
-5

, 

210
-5

, 110
-5

, and 510
-6

 and the time steps, t, 

are 1.2510
-3

, 2.510
-3

, 5.010
-3

, and 1.010
-2

, 

where z and t are nondimensionalized by a and 

ac, respectively. Here, a is panel length in the 

streamwise direction and c is sonic speed. All 

cases are computed under the conditions of 

M=1.2 and /a=0.1. The boundary layer 

thickness  is 98% thickness. In addition, the 

subiteration is used three times for each physical 

time step in all cases. The computed flutter 

boundaries are shown in Figs. 3 and 4. The 

flutter boundary is largely affected by the grid 

resolution and time step. As the time step 

decreases, the flutter dynamic pressure 

decreases. Conversely, as the grid size decreases, 

the flutter dynamic pressure increases. The 

limiting values are estimated by Richardson 

extrapolation[17]. Although the smallest time 

step and grid size are favorable, we selected 

2.010
-5

 and 2.510
-3

 for z and t, respectively, 

to keep the computational time needed within 

reason. The estimated errors are 6-9% in 

nondimensional dynamic pressure (Figs. 3 and 

4) which is smaller than the variation due to the 

boundary layer, as described later. In addition, 

when the grid size is evaluated by y
+
 (wall 

distance measured in viscous length scale), y
+
 is 

0.92 at the middle of the panel for z of   

2.010
-5

 and is sufficiently small. When the 

time step is used, approximately 5,300 steps are 

included in a period of oscillation at M=1.2 and 

/a=0.1. These selected grid size and time step 

are used for the following computation.  

4.2 Structure model 

Table 1 shows the natural frequencies of the 

first to fifth modes of the panel computed by the 

FDM, where the experimental data[6] is also 

shown for comparison. The corresponding mode 

shapes are illustrated in Fig. 5. Although errors 

of approximately 10% were observed in the 

third and fourth modes, the natural frequencies 

show reasonable agreement as a whole. The 

errors of the higher mode frequencies seem to 

be due to the different boundary conditions 

between computation and experiment. In fact, 

the edge condition of the panel in the 

experiment is not the ideal clamp condition, as 

mentioned in Ref. [6]. However, in this problem, 

the panel oscillates mainly with the first mode 

for the lower Mach numbers (1<M1.4) and 

with the first and fifth modes for higher Mach 

numbers (M>1.4). Therefore, the effect caused 

by the errors is thought to be small. 

4.3 Euler computation 

Euler computation was carried out for Mach 

1.1-1.4. The flutter boundaries determined by 

Euler computation are compared with Dowell’s 

computation[7] and the experimental data[5] 

(Fig. 6). Dowell computed them using an 

inviscid small perturbation theory, whereas the 

experimental data are extrapolated values from 

the flutter boundaries measured at different 

boundary layer thicknesses. The flutter dynamic 

pressure obtained by the present method is 

lower for Mach 1.1-1.2 and rapidly increases 

with the Mach number. This computational 

result agrees well with Dowell’s computation, 
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and agreement with experimental data is good 

except for M=1.4. The difference at M=1.4 

seems to be due to the different panel boundary 

conditions mentioned in the previous section, 

since the component of the third natural mode is 

larger only at M=1.4 than at the other Mach 

numbers.  

4.4 RANS computation 

Next, RANS computation was carried out at 

M=1.2 considering the turbulent boundary layer. 

Here, we employed BL model for the turbulence 

model. Flutter dynamic pressures are computed 

for the boundary layer thicknesses in the range 

of /a=0.03-0.11. Figure 7 compares the 

computation and experiment[5] flutter 

boundaries. As the thickness of boundary layer 

increases, the flutter dynamic pressure increases. 

The obtained results quantitatively agree well 

with the experimental data; the boundary layer 

has a stabilizing effect (i.e. increased flutter 

dynamic pressure) on flutter at M=1.2. In 

addition, the flutter boundary obtained by 

inviscid (Euler) computation is also shown at 

/a=0 in Fig. 7. The inviscid flutter boundary is 

near the asymptotic value at /a=0 of the flutter 

boundaries for /a=0.03-0.11. 

 Figure 8 shows a snapshot of a fluttering 

panel, illustrating the deflected panel and 

pressure on the panel surface. The deflection is 

amplified in the visualization process so that the 

oscillation mode can be identified. The 

computational conditions are M=1.2, /a=0.1, 

and =280. As shown in Fig. 8, the panel 

oscillates at almost the first mode at this Mach 

number. In addition, the pressure on the panel 

changes according to the defection. For example, 

at the moment shown in the figure, the surface 

pressure is high on the front side due to the 

compression waves and low in the back side due 

to the expansion waves. 

 Then, RANS computation was carried 

out at Mach 1.1-1.4 using BL and SA models. 

The results are shown in Fig. 9, where the 

computed boundaries are compared with 

Dowell’s computation[7] and the experimental 

data[5]. Dowell computed them using an 

inviscid small perturbation theory based on a 

mean flow of turbulent boundary layer but he 

did not include the viscous effect. As shown in 

Fig. 9, the two computational results using BL 

and SA models agree well with the experimental 

data and it shows better agreement than 

Dowell’s computation at Mach 1.4. This 

difference comes from the viscous effect that is 

neglected in Dowell’s computation. In fact, 

Dowell’s computation shows a similar feature to 

the inviscid computation, where the flutter 

dynamic pressure increases rapidly with the 

Mach number (Fig. 6). In the present 

computation, however, the flutter dynamic 

pressure increases slowly. As mentioned above, 

the present computational code accurately 

predicts the flutter boundaries. Moreover, the 

viscous effect is significantly important and 

should be taken into account in the analysis, 

otherwise the flutter boundaries can not be 

predicted accurately. In addition, the panel 

flutter problem employed in this study is 

recommended as a benchmark problem to 

validate a fluid-structure coupled code treating a 

turbulent flow, since the turbulent boundary 

layer effect on flutter can be examined directly 

and clearly. 

 The two models, BL and SA models, 

predict the flutter boundaries well and the 

difference between the two models is small as 

shown in Fig. 9, though the flutter boundaries of 

SA model show slightly higher than those of BL 

model. The BL model is a quasi-steady 

approximation of the turbulent boundary layer. 

The results show that the modeling is 

appropriate in this problem, probably because 

the nondimensional flutter frequency, Stf, is low. 

Therefore, we use the simple BL model 

hereafter. 

4.5 Effect of turbulent boundary layer 

Since the fluid-structure coupled code is well 

validated, the effects of the boundary layer were 

investigated further over a wide range of Mach 

numbers. We conducted the RANS computation 

using BL model at /a=0.1 and M=1.1-2.4. 

Since there is no available experimental data for 

M1.5, the mass ratio for the mach number 1.4 

was used for M1.5 as well. We also conducted 

inviscid computations for purposes of 

comparison. The computed flutter boundaries 
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are shown in Fig. 10. In the low-supersonic 

region, M=1.1-1.3, the flutter dynamic pressures 

at /a=0.1 are much higher than those of 

inviscid case. Thus, flutter is stabilized by the 

boundary layer in this region. Then, the flutter 

dynamic pressure of the inviscid case increases 

rapidly near M=1.4, a feature similar to 

Dowell’s computation[1]. On the other hand, 

the flutter dynamic pressure at /a=0.1 increases 

more slowly than that of the inviscid case. This 

slow increase causes inversion of the flutter 

boundary in the region M=1.4-1.8, where flutter 

is destabilized by the boundary layer. Further, 

the flutter dynamic pressure at /a=0.1 becomes 

higher than that of the inviscid case for M2.0.  

 Figure 11 shows the difference in flutter 

boundaries between the viscous (RANS) and 

inviscid (Euler) computations, and this 

difference is evaluated in the following equation. 

(%)100



invis

invisvisDIFF




 
(4) 

From the figure, the difference appears mainly 

in the low supersonic region. At M=1.4-1.6, the 

difference is approximately 30%. Even recently, 

quasi-steady aerodynamic theory is commonly 

used especially for higher Mach numbers (e.g. 

M>1.5). Since the flutter boundaries computed 

by Euler equations are almost the same as those 

computed by the quasi-steady aerodynamic 

theory for M>1.5 (Ref. 9), this difference is 

thought to be the difference between the viscous 

computation and the quasi-steady aerodynamic 

theories. 

 The effects of a turbulent boundary layer 

on panel flutter were discussed by Muhlstein et 

al[5], Gaspers et al[6], and Dowell[7][8]. 
 
Their 

discussions are limited to the stabilizing effect 

of flutter in the low-supersonic region 

(1.1M1.3), since at that time the effect was 

thought to be the largest in this region. In fact, 

the effect is large in this region as shown in 

Fig. 11. However, it is necessary to consider a 

wide range of Mach numbers in order to 

understand the effects of the boundary layer. As 

shown in Fig. 10, the boundary layer has not 

only a stabilizing effect but also a destabilizing 

effect. The most important finding here is that 

the flutter dynamic pressure slowly increases 

due to the boundary layer at M=1.4-1.6. One 

possible reason for this slow increase could be 

an effect secondary to the local Mach number 

reduction. Because the flow near the panel 

becomes slow due to the boundary layer, the 

characteristics at the lower Mach numbers 

(1<M1.4) continue even at higher Mach 

numbers (M1.5).  

5  Conclusions  

We numerically investigated the effects of 

turbulent boundary layers on panel flutter. In 

this study, Reynolds-averaged Navier-Stokes 

(RANS) equations were solved using 

computational fluid dynamics (CFD) to take the 

turbulent boundary layer into account and von 

Karman plate equations were solved for the 

panel. First, the fluid-structure coupling code 

was validated.  The grid resolution and time step 

were carefully selected before the computation. 

As a result, the flutter boundaries computed by 

RANS equations quantitatively agree well with 

the experimental data. Moreover, the 

comparison between the present and Dowell’s 

computations showed that the viscous effect is 

significantly important and should be taken into 

account. In this study, the flutter boundaries 

with Baldwin-Lomax and Spalart-Allmaras 

models are compared and the difference 

between them is found to be small. In addition, 

the panel flutter problem used in this study is 

recommended as a benchmark problem to 

validate a fluid-structure coupled code treating a 

turbulent flow, since the turbulent boundary 

layer effect on flutter can be examined directly 

and clearly.   

Then, the flutter boundaries in the range 

M=1.1-2.4 were computed using the code, and 

compared with those computed by inviscid flow 

in order to clarify the effects of a turbulent 

boundary layer. It was found that the boundary 

layer has not only a stabilizing effect but also a 

destabilizing effect, depending on the Mach 

number. The most important finding is that the 

flutter dynamic pressure increases slowly due to 

the boundary layer as the Mach number 

increases in the range M=1.2-1.5. 
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Fig. 1 Schematics of panel flutter problem. 

 

 
 

Fig. 2 Computational domain 

 

 
 

Fig. 3 Effect of time step t on flutter boundary. 
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Fig. 4 Effect of grid size z on flutter boundary. 
 

 

 

 
 

Fig. 5 Node line of natural mode. 
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Fig. 6 Flutter boundary (inviscid case). 

 

 
Fig. 7 Flutter boundaries vs. boundary layer thickness 

(M=1.2). 

 

 
 

Fig. 8 Fluttering panel and surface pressure. 
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Fig. 9 Flutter boundary (viscous case). 

 

Table 1 Structure oscillation frequency 

Mode 1 2 3 4 5 

FDM (Hz) 108.1 138.2 191.7 267.9 278.4 

Exp (Hz) 110.0 143.0 212.0 298.0 287.0 

Error (%) 1.7 3.4 9.6 10.1 3.0 
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PANEL FLUTTER SIMULATION CONSIDERING TURBULENT BOUNDARY LAYER  
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Fig. 10 Effect of turbulent boundary layer on flutter 
boundary. 
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Fig. 11 Difference between inviscid and viscous 

computations. 
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