
26th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

SMALL DISTURBANCE NAVIER-STOKES COMPUTATIONS
FOR LOW ASPECT RATIO WING PITCHING OSCILLATIONS

Alexander Pechloff ∗ , Boris Laschka†

Technische Universität München, Boltzmannstr. 15, D-85748 Garching, Germany

Keywords: small disturbance Navier-Stokes equations, computational fluid dynamics, aeroelasticity

Abstract

For dynamic production aeroelastic analysis in
the transonic speed range a computational fluid
dynamics (CFD) method based on the small
disturbance Navier-Stokes equations can serve
as a reasonable alternative to one realizing the
Reynolds-averaged Navier-Stokes (RANS) equa-
tions’ time domain solution: Its dynamically
linear approach promises significantly decreased
computation cost in the prediction of unsteady
aerodynamic loading while retaining the lat-
ter’s fidelity to a high degree. In this regard,
research conducted at the Technische Univer-
sität München has resulted in the CFD method
FLM-SD.NS. Further substantiating its applica-
tion readiness, computations for harmonic pitch-
ing oscillations of the NASA clipped delta wing
are presented. Test cases are characterized by
shocks of varying strength and range of mo-
tion, as well as leading edge vortex (LEV) for-
mation. Overall, results are in good agreement
with dynamically fully nonlinear solutions pro-
vided by the comparative RANS solver FLM-
NS, as well as available experimental data. Re-
ductions in computation time up to an order of
magnitude in relation to FLM-NS are observed.
Limitations of the small disturbance approach,
however, become apparent for the LEV case,
where higher-order harmonics are far less neg-
ligible in the flow’s response to the excitation.

∗ Dipl.-Ing. Univ., Research Engineer
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Nomenclature

A = semi-span planform area,
R s

0 cdy
c = local chord length, c(y/s)
cL = lift coefficient, dimensional lift

normalized with ρ̌∞|v̌∞|2Ǎ/2
cM = moment coefficient, dimensional

moment respective the pitch axis
normalized with ρ̌∞|v̌∞|2Ǎčµ/2
(> 0: tail-heavy moment)

cav = average chord length, A/s
cp = pressure coefficient
cp,crit = critical pressure coefficient,

cp(Ma∞) at Ma = 1.0
cr = root chord length, c(0)
ct = tip chord length, c(1)
cµ = reference chord length,

R s
0 c2 dy/A

d+ = sublayer-scaled distance of the
first off-body grid plane

f = oscillation frequency
Im = imaginary part, normalized with

ˇ̂απ/180 deg
kred = reduced oscillation frequency,

2π f̌ Ľ
√

ρ̌∞/(Ma∞
√

γp̌∞)
L = reference length of the geometric

nondimensionalization
Ma = local Mach number
Ma∞ = freestream Mach number,

|v̌∞|
√

ρ̌∞/
√

γp̌∞
Pr = Prandtl number
Prt = turbulent Prandtl number
p∞ = freestream static pressure
Re = real part, normalized with

ˇ̂απ/180 deg
Re∞ = freestream Reynolds number,

631.1



ALEXANDER PECHLOFF , BORIS LASCHKA

ρ̌∞|v̌∞|čav/µ̌∞
s = semi-span length
T∞ = freestream static temperature
t = time
tmethod
CPU = FLM method’s computation time
|v∞| = magnitude of the freestream

velocity vector
x,y,z = global Cartesian coordinates
x = span-station-local chordwise

coordinate, x(y/s) (= 0: leading
edge, = c: trailing edge)

xd = x of a wing section’s
maximum thickness

xp,zp = global pitch axis coordinates
y = semi-span coordinate

(= 0: root, = s: tip)
α = incidence angle
γ = ratio of specific heats
∆ = difference between lower- and

upper-surface value
λ = taper ratio, ct/cr
µ = molecular viscosity,

governed by Sutherland’s law
µ∞ = freestream molecular

viscosity, µ(T∞)
ρ∞ = freestream density
τs = characteristic time,

ť Ma∞
√

γp̌∞/(Ľ
√

ρ̌∞)
ζCPU = ratio of computation times,

ťSD.NS
CPU / ťNS

CPU�
= semi-span aspect ratio, s2/A

Superscripts

0 = zeroth harmonic
1 = first harmonic
2,3 = second, third harmonic
¯ = time-invariant mean
ˆ = perturbation amplitude
ˇ = dimensional

1 Introduction

To date production analysis of an aircraft’s dy-
namic aeroelastic behavior relies on low-order
computational fluid dynamics (CFD) methods to
supply the unsteady aerodynamic structural load-
ing. This approach has proven to be highly

efficient and of excellent fidelity in the sub-
and supersonic speed range. In the transonic
speed range, however, which is the flight en-
velope’s most critical respective stability, these
methods fail to produce adequate predictions as
convective nonlinearities and viscous effects gen-
erally remain unaccounted for. A CFD method
realizing the Reynolds-averaged Navier-Stokes
(RANS) equations’ time domain solution, on the
other hand, would be well suited to render the
unsteady aerodynamic loading most accurately,
as such flow properties are naturally inherent
to the formulation. Unfortunately, this type of
high-order CFD method becomes computation-
ally prohibitive when confronted with the mul-
titude of parameter variations (Ma∞, Re∞, ˇ̄α, ˇ̂α,
kred , eigenmode) required by the analysis [10].

Dual time-stepping schemes typically em-
ployed in the RANS equations’ time domain so-
lution must sequentially realize a pseudo-steady
solution at each incremental deflection of the
considered body’s oscillatory motion. In this
manner the flow’s response to an imposed ex-
citation is rendered as a series of time-accurate
snap-shots. For an individual cycle the num-
ber of pseudo-steady solutions equals the num-
ber of physical time-intervals utilized in its dis-
cretization, as dictated by a sufficient temporal
resolution of the unsteady flowfield. Obtain-
ing the desired periodicity, however, always in-
volves the computation of a number of cycles,
a circumstance which becomes especially time-
consuming at low frequencies. The aggregate
number of pseudo-steady solutions then repre-
sents the primary cost of the dual time-stepping
approach.

A secondary one rests in the accompanied
incremental deformation of the body-embedding
computational grid. For each physical time-step
the computational grid must be updated to the
body’s new position, a task which contributes all
the more to the total computational cost as the ge-
ometric complexity of the body increases. Lastly,
the effort associated with the acquired data’s post
processing has to be taken into account. Since
the unsteady loading is gained as a series in time,
subsequent Fourier analysis becomes necessary
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to extract the harmonics of interest. In doing so,
turnaround time and thus throughput of the over-
all process is further diminished. Whereas the
computational cost of this approach may be tol-
erable for an individual case, it becomes too high
in the cumulation of production investigations.

Promising significantly decreased cost while
yet retaining the fidelity of the RANS equa-
tions’ time domain solution to a high degree,
a CFD method based on the small disturbance
Navier-Stokes equations can serve as a reason-
able alternative: For problems of dynamic sta-
bility the considered body’s neutral motion can
be regarded as being limited to minor harmonic
deflections about a reference position. Conse-
quently, the organized unsteadiness inherent to
the flowfield’s instantaneous response can be pre-
sumed to be a predominantly dynamically linear
perturbation about a time-invariant mean state.
This would entail that higher-order harmonics
present within the response become negligible
to the point where a generally phase-shifted first
harmonic prevails. Under the preceding assump-
tion, a system of statistically treated linear par-
tial differential equations exclusively governing
the organized unsteadiness can be extracted from
the instantaneous Navier-Stokes equations. In-
sertion of a simple harmonic time law then allows
the novel equation system to be brought into a
frequency domain formulation, eliminating time-
dependency altogether. Thus, time-accuracy and
the accompanied incremental grid deformation
are no longer an issue to the solution process, the
necessary computational effort becoming compa-
rable to the one involved with the steady-state so-
lution of the RANS equations.

Rendered in terms of complex amplitude field
variables, the frequency domain solution embod-
ies magnitude and phase-shift of the organized
unsteadiness. It develops contingent on the a pri-
ori known oscillation frequency and amplitude
deflection of the considered body’s harmonic
motion, as well as the reference (time-invariant
mean) flowfield about which the organized un-
steadiness is consider to occur. The frequency
and amplitude deflection may yield from struc-
tural modal analysis, with the latter numerically

supplied to the method by way of two computa-
tional grids, respectively, embedding the body at
its reference and deflected extremum position. A
steady-state RANS solution realized in the ref-
erence grid for the defined freestream conditions
then serves as the time-invariant mean flowfield.
Dynamically nonlinear phenomena that would
emerge in the flowfield’s instantaneous response
are approximately handled as dynamically linear
perturbations about a statically nonlinear state, as
contained in the time-invariant flowfield. Con-
trary to the time domain (dynamically fully non-
linear) approach, the first harmonic of the un-
steady loading is gained directly, being consid-
ered equal to the obtained complex amplitude
load under the small disturbance premise. Sim-
ilarly, the zeroth harmonic is seen as equal to the
afore computed time-invariant mean loading.

Over the past decade, research conducted at
the former Aerodynamics Division of the In-
stitute for Fluid Mechanics (FLM)‡, Technis-
che Universität München, has ultimately re-
sulted in the small disturbance Navier-Stokes
method FLM-SD.NS. Its two-dimensional incar-
nation for high-Reynolds-number flow was orig-
inally presented in [8], where a detailed deriva-
tion of the underlying governing equations, as
well as a synopsis of the general properties and
computation process is given. Airfoil test cases
demonstrated the approach’s validity in the tran-
sonic regime. The introduction of the third spa-
tial coordinate is straightforward and has been
completed since then. FLM-SD.NS itself had
been realized as the viscous extension of the al-
ready well established small disturbance Euler
method FLM-SDEu [6]. An effort had been
made to retain numerical equivalence to the in-
house RANS method FLM-NS [1], which is uti-
lized, on the one hand, to supply the necessary
time-invariant mean flowfield to FLM-SD.NS,
while on the other hand, to render a dynamically
fully nonlinear solution of the particular unsteady
case for comparative purposes. Consequently,
the cell-centered structured finite volume method
FLM-SD.NS (multiblock capable) features small

‡reconstituted as the Institute of Aerodynamics in 12/04
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disturbance instances of Roe’s convective flux-
difference splitting [9] and of Chakravarthy’s vis-
cous flux evaluation [4]. Second-order spatial ac-
curacy is given for smoothly stretched grids and
regions of continuous flow, with the total varia-
tion diminishing condition yet satisfied at loca-
tions of discontinuity. A compliant derivation
of the Spalart-Allmaras (S/A) turbulence model
provides eddy viscosity closure, while a multi-
grid embedded lower-upper symmetric succes-
sive overrelaxation (LU-SSOR) scheme adapted
from Blazek [3] integrates the discretized govern-
ing equations in pseudo-time.

Initial three-dimensional FLM-SD.NS com-
putations were conducted for harmonic flap os-
cillations of both the NASA clipped delta wing
(NCDW) [2] and a fighter type delta wing
(FTDW) in actual service [11] under high-
Reynolds-number transonic flow conditions. Se-
lect results thereof were presented in [5], es-
tablishing the method’s accuracy and efficiency.
Reductions in computation time up to an or-
der of magnitude in relation to FLM-NS were
ascertained. Further substantiating the appli-
cation readiness of FLM-SD.NS, computations
for NCDW harmonic pitching oscillations under
equivalent flow conditions are realized. The im-
posed motion is governed by

α̌(τs) = ˇ̄α + ˇ̂α · sin(kred · τs) (1)

about the given pitch axis, with ˇ̄α, ˇ̂α, and kred
set through the individual test case. The local
unsteady load distribution normal to the wing’s
surface, embodied by c0

p, c1
p, as well as the re-

sultant global loading, expressed by c0
L, c1

L and
c0

M, c1
M , are investigated. The latter directly result

from the integration of the c0
p, c1

p and correspon-
dent skin-friction distributions over the wing’s
reference position surface. Prediction quality of
FLM-SD.NS is primarily assessed by comparing
its directly gained results to those yielding from
Fourier-analyzed FLM-NS time series: The dis-
crete evolution of cL and cM result from the in-
tegration of the cp and skin-friction distributions
over the deflected wing’s surface after each con-
verged physical time step. Additionally, inviscid

results computed with FLM-SDEu and the under-
lying dynamically fully nonlinear Euler method
FLM-Eu [6] are drawn upon to emphasize the
impact of viscosity. Both FLM-NS and FLM-
Eu render the unsteady aerodynamic loading with
second-order accuracy in time. Experimental sur-
face pressure data are also taken into account.

The globally utilized Cartesian coordinate
system is set to originate (at reference position)
from the wing’s root leading edge (LE), with
the x (chordwise) direction running positively to-
wards the trailing edge (TE) and the y (span-
wise) direction running positively towards the
starboard tip. The imposed motion is strictly lon-
gitudinal, that is, occurring about an axis parallel
to the spanwise direction. Consequently, a semi-
span numerical treatment of the NCDW suffices,
the starboard half being considered here.

2 NASA Clipped Delta Wing

Derived from the wing of a tentative supersonic
transport, the NCDW is characterized by a 50.4
deg swept LE, an unswept TE, and a symmet-
rical circular arc section of constant 6% rela-
tive thickness across the span (xd/c = 0.5, sharp
LE / TE), sans twist. In its semi-span instance
(Ľ := š = 1.145 m) the planform is trapezoidal,
with s := š/Ľ = 1.0 and cr := čr/Ľ = 1.410
supplementing the sweep angles in the defini-
tion. The secondary geometric properties result
to λ = 0.142, A = 0.805,

�
= 1.242, cav = 0.805,

and cµ = 0.956, while the pitch axis resides at
xp/cr = 0.65 and zp = 0.00. Surface pressure
distributions are evaluated at six distinct span sta-
tions, of which all but the innermost correspond
to those instrumented on the test model. Data
for merely one inner and one outer span station,
ys2 := y/s = 0.33 and ys5 = 0.69, respectively,
will be discussed.

The upper and lower surface of the NCDW’s
numerical embodiment are each discretized with
72 cells (hyperbolically distributed) in chordwise
and 32 cells (Poisson-distributed) in spanwise di-
rection for a total of 2304 cells per surface (Fig.
1). It is embedded (at reference position) in
an elliptically smoothed two block C-H-topology
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Fig. 1 NCDW semi-span surface grid with super-
imposed pitch axis and investigated span stations

structured volume grid by way of a curvilinear
boundary-fitted coordinate system. The far-field
distances are set to 11× s in positive chordwise
direction from the root LE, to 11× s in both pos-
itive and negative vertical (z) direction from the
root TE, as well as to 5× s in spanwise direc-
tion respective the wing’s lateral (xz) plane of
symmetry. Each block discretizes one half of
the numerically treated physical domain as di-
vided by the wing’s vertical (xy) plane of sym-
metry. Thus, the individual block is associated
with strictly one of the wing’s surfaces, either
the upper or lower. It discretizes the delimited
volume with 96 cells in positive chordwise, 48
cells in spanwise, and 40 cells in wing surface
normal direction, translating into 184320 cells
per block or 368640 cells for the entire grid.
Cells in wing surface normal direction are hy-
perbolically distributed, the distance of the first
off-body grid plane being set to 1× 10−5 × s.
For the considered high-Reynolds-number tran-
sonic flow this renders d+ < 5 as required by the
Spalart-Allmaras turbulence model. The chosen
two block topology allows orthogonality of grid
lines emanating from the upper and lower surface
in proximity to the leading edge. Regeneration of
the volume grid for the amplitude-deflected sur-
face grid and subsequent smoothing ultimately

yields the desired extremum grid. Hence, its
global properties are equivalent to those of the
reference grid. Further details on grid construc-
tion and smoothing are given in [7].

From the multitude of computed dynamic test
cases, results for a weak shock case (90D5),
the medium strength shock / leading edge vor-
tex (LEV) case (90D29), and a strong shock case
(94D5) are presented. Table 1 provides the com-
putation parameters, while Tab. 2 specifies the
values of the dimensional thermodynamic refer-
ence quantities complementing Ľ. All cases have
Re∞ ≈ 10.0×106, γ = 1.132, Pr = 0.775 (heavy
gas), and Prt = 0.90 in common. Test case 90D5
will serve as baseline.

Case Ma∞ ˇ̄α, deg ˇ̂α, deg kred f̌ , Hz
90D5 0.90 0.00 0.50 0.237 8.0
90D29 0.90 3.97 0.50 0.240 8.0
94D5 0.94 0.00 0.50 0.230 8.0

Table 1 Computation parameters of the NCDW cases

Case p̌∞, kPa ρ̌∞, kg/m3 Ť∞, K
90D5 20.7 0.326 298.4
90D29 20.5 0.329 298.9
94D5 19.3 0.313 295.5

Table 2 Values of the NCDW cases’ dimensional
thermodynamic reference quantities

FLM-SD.NS computations employ a three-
level V-symmetric multigrid cycle for accelera-
tion. Per multigrid cycle dual pseudo-time steps
on the finest and coarsest grid level in combi-
nation with a single pseudo-time step on the in-
termediary level (2/1/2) are conducted. A con-
verged solution of the governing equations is as-
certained if the L2-norm amplitude density resid-
ual, as normalized with its value after the first
multigrid cycle, has dropped below 5.5× 10−4

(5.0× 10−4 for 90D29), terminating the compu-
tation. Instability of the solution process was
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initially experienced for 94D5, where a con-
fined region of post-shock separation occurs to-
wards the wing tip in the supplied time-invariant
mean flowfield. The localized limitation of the
amplitude S/A working variable, however, al-
lowed for a simple remedy. Comparative FLM-
NS computations consider three oscillation cy-
cles to eliminate transient phenomena, each dis-
cretized with 100 physical time intervals. Incre-
mental grid deformation is carried out through
time-law-accordant interpolation between the ex-
tremum and reference grid. Multigrid parame-
ters and abort criterion are set equal to those of
the FLM-SD.NS computations. In postprocess-
ing, Fourier analysis of the cp-, cL-, and cM-time-
series, ascertained to be periodic for the third cy-
cle, yields the respectively inherent zeroth and
first harmonic. FLM-SD.NS / FLM-NS compu-
tation of 90D5, and 90D29, were conducted on
a single 1.3 GHz Intel R©Itanium R©2 processor of
the Leibniz Rechenzentrum (LRZ) Linux cluster,
with 94D5 subsequently realized on a 1.6 GHz
successor model.

Generally, the supplemental FLM-SDEu /
FLM-Eu computations employ the same refer-
ence and extremum grid as the FLM-SD.NS /
FLM-NS ones in order to retain spatial compa-
rability. For 90D29, however, the high resolu-
tion of the wing-near field destabilized the invis-
cid solution process, necessitating the consider-
ation of more Euler-typical grids. These are in-
ternally generated from the Navier-Stokes grids
through elimination of every other cell edge, ren-
dering coarser grids of merely 46080 cells. Nev-
ertheless, the wing surface and near-field remains
sufficiently resolved, as the distance of the first
off-body grid plane only increases to 3×10−5×s
and the first five of 20 cells in wing surface nor-
mal direction reside within 1×10−3× s.

It should be noted, that the experimental sur-
face pressure data of the dynamic test cases are
limited to the first harmonic. Thus, for zeroth har-
monic comparison the experimental surface pres-
sure data of the underlying static test case are
drawn upon. Each represents the NCDW inves-
tigated under congruous ambient conditions yet
fixed at its time-invariant mean incidence angle.

For 90D5, 90D29, and 94D5, these are 90S1,
90S38, and 94S1, respectively.

3 Results and Discussion

3.1 Weak Shock Case

For Ma∞ = 0.90, Re∞ = 10.13×106, and ˇ̄α = 0.0
deg the FLM-NS supplied time-invariant mean
flowfield exhibits a localized, equally developed
supersonic region in proximity to the upper and
lower wing surface. It extends, respectively, from
the root to the tip, terminating with a weak shock
significantly upstream of the TE (Fig. 2). FLM-

z
y

x

Fig. 2 Sonic isosurface of the time-invariant
mean flowfield employed by FLM-SD.NS in the
NCDW case 90D5

SD.NS-computed surface pressure distributions
for 90D5 are composited with their FLM-NS,
FLM-SDEu / FLM-Eu, and experimental coun-
terparts in Fig. 3. The FLM-SD.NS result is
described in the following: Upper- and lower-
surface c0

p, of course, exhibit symmetry, falling
below c̄p,crit = −0.2 at x/c = 0.43 and x/c =
0.29, respectively, for the inner and outer span
station. From root to tip the onset of super-
sonic flow moves significantly closer to the LE.
Correspondingly, its termination is observed at
x/c = 0.77 and x/c = 0.72 where c0

p again ex-
ceeds c̄p,crit in the recompression towards the
TE. Indicative of the shock base, its location
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Fig. 3 Comparison of the pressure coefficient distributions for the NCDW case 90D5 (Ma∞ = 0.90,
Re∞ = 10.13×106, ˇ̄α = 0.0 deg, ˇ̂α = 0.5 deg, kred = 0.237, xp/cr = 0.65)
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varies far less from root to tip than that of the
onset: Observed to move slightly forward rela-
tive to the local chord length, c̄p,crit is actually
reached 6% closer to the TE at the outer span sta-
tion. Between the onset and termination of su-
personic flow c0

p drops to a minimum −0.3 for
both. The discontinuous recompression initiates
shortly thereafter, with the weak shock merely
imposing a shallow slope onto the c0

p progression,
which decreases for the outer span station. Obvi-
ously, symmetry of the upper- and lower-surface
c0

p yields numerically nil c0
L and c0

M values.
Complementary to c0

p, upper- and lower-
surface Rec1

p, as well as Imc1
p, exhibit antisym-

metry: Merely considering the upper surface dis-
tribution, the sharp LE renders an initial primary
peak for both Rec1

p and Imc1
p, respectively, be-

ing of negative and positive value. Immediately
downstream, Rec1

p acutely increases before lev-
eling off at a value of −2.0 for the inner span
station, and −3.0 for the outer one. In case of
the former, a mild secondary Rec1

p peak emerges
at the location of minimum c0

p. It leads into a
strong increase across the shock region, culmi-
nating in a reversal of sign for Rec1

p at the loca-
tion of the terminating c̄p,crit . Subsequently, the
Rec1

p progression follows through to post-shock
positivity. It reaches a maximum value of +0.3
before decreasing towards the TE, where equal-
ization with the lower-surface Rec1

p occurs at nil
value. For the outer span station, the further Rec1

p
progression towards the TE qualitatively corre-
sponds to that of the inner one, however, lacks the
mild secondary peak. A higher post-shock max-
imum value of +0.5 is noted. Evidently, ∆Rec1

p
forward of the zero-crossing supplies the bulk of
Rec1

L. Its positive contribution is only marginally
compensated by the aft difference’s negative one.
Evaluation of Rec1

M proves to be more difficult,
as leverage must also be taken into account: With
the pitch (moment reference) axis intersecting
the inner and outer span station, respectively, at
x/c = 0.52 and x/c = 0.13, ∆Rec1

p forward of the
zero-crossing can contribute in equal magnitude
both positively and negatively to Rec1

M. The aft
difference, on the other hand, makes an unam-

biguous positive contribution through its lever-
age.

For the inner span station, Imc1
p acutely de-

creases from its LE peak, leading into a nearly
linear progression that ends slightly upstream of
the shock region. Prior to ending, a reversal of
sign is experienced. This places the subsequent
shock- and post-shock progression into negative
territory. With a minimum value of −0.9, a sec-
ondary peak is exhibited at the location of the ter-
minating c̄p,crit , Imc1

p increasing from there to-
wards the TE, where equalization with its lower-
surface counterpart takes place at nil value. The
Imc1

p progression of the outer span station qual-
itatively corresponds to that of the inner one.
Imc1

p > 0 or Imc1
p < 0 is indicative of a time-

dependent cp that, respectively, leads or lags the
excitation. Forward of the zero-crossing, ∆Imc1

p
contributes negatively to Imc1

L, while its aft coun-
terpart does so positively. Both are approxi-
mately equal in magnitude, largely compensating
themselves in Imc1

L. For the inner span station,
the pitch axis intersects closely to the exhibited
zero-crossing. Thus, both forward and aft ∆Imc1

p
can be said to render a negative Imc1

M contribu-
tion. As the intersection of the pitch axis moves
closer to the LE for the outer span station, merely
the aft ∆Imc1

p can be ascertained to have an un-
ambiguously negative contribution to Imc1

L.
For the investigated span stations, FLM-

SD.NS-computed c0
p, Rec1

p, and Imc1
p agree ex-

cellently with those obtained from FLM-NS.
Mild discrepancies are observed in the shock-
and post-shock region. Evidently, the small dis-
turbance premise holds up under the dynamic
nonlinearity of the weak shock. The FLM-
SD.NS / FLM-NS conformity can be seen equal
to that of FLM-SDEu / FLM-Eu. Viscous and
inviscid c0

p, however, differ only marginally in
the shock region, with greater variation becoming
noticeable for their Rec1

p and Imc1
p counterparts.

Disregarding outliers, experimental surface pres-
sure is reproduced well. Surprisingly, the data
points rendering the Rec1

p and Imc1
p secondary

peak are best met by the FLM-Eu computation.
Focusing on the computed global load co-

631.8



SMALL DISTURBANCE NAVIER-STOKES COMPUTATIONS FOR LOW ASPECT RATIO WING
PITCHING OSCILLATIONS

efficients (Tab. 3) Rec1
L gained from FLM-

SD.NS agrees excellently to its FLM-NS coun-
terpart. Imc1

L, on the other hand, is predicted
10% higher in absolute value. This deviation,

Method c0
L Rec1

L Imc1
L

FLM-SD.NS 0.000 3.748 -0.013
FLM-NS 0.000 3.762 -0.012
FLM-SDEu 0.000 3.956 -0.013
FLM-Eu 0.000 3.962 0.007

Method c0
M Rec1

M Imc1
M

FLM-SD.NS 0.000 0.322 -0.178
FLM-NS 0.000 0.333 -0.196
FLM-SDEu 0.000 0.271 -0.196
FLM-Eu 0.000 0.285 -0.222

Table 3 Comparison of the global load coeffi-
cients for NCDW case 90D5

however, becomes acceptable when taking the
two orders of magnitude into account that sepa-
rate Rec1

L from Imc1
L. The minute Imc1

L indicates
a time-dependent cL almost entirely in phase with
the excitation, that is, lagging (Imc1

L < 0) only
marginally in its evolution. Both FLM-SDEu-
and FLM-Eu-computed Rec1

L are 5% higher than
their viscous counterparts, attributable to the dif-
fering prediction of Rec1

p in the shock region.
Their mutual deviation is similarly negligible.
With FLM-SDEu Imc1

L is gained equal to its
FLM-SD.NS-predicted instance, discounted vis-
cosity apparently having no impact. Surprisingly,
Imc1

L obtained from FLM-Eu exhibits a positive
sign, while remaining within the same order of
magnitude as its FLM-SDEu counterpart: In the
shock region ∆Imc1

p yields a positive Imc1
L con-

tribution, which in case of FLM-Eu exceeds the
negative Imc1

L contribution experienced from the
LE to the shock-upstream zero-crossing.

FLM-SD.NS-computed Rec1
M and Imc1

M are,
respectively, 3% and 9% lower in absolute value
than their FLM-NS counterparts. Evidently, the
deviation exhibited in Imc1

L has followed through
to Imc1

M. Rec1
M and Imc1

M are now in the same

order of magnitude. With Imc1
M < 0 the time-

dependent cM clearly lags the excitation, which
in case of a free pitching oscillation would have
a damping effect. FLM-SDEu- and FLM-Eu-
computed Rec1

M are, respectively, 16% and 14%
lower than their viscous counterparts. The par-
ticular Imc1

M instances, on the other hand, are
10% and 13% higher in absolute value: Dis-
counted viscosity has a more noticeable impact
on c1

M than on c1
L, with the inviscid Imc1

M indicat-
ing greater dynamic stability. Deviation between
FLM-SDEu- and FLM-Eu-computed instances is
similar to the one shown by the corresponding
viscous methods.

Overall, FLM-SD.NS renders the unsteady
loading of the weak shock case in very good
agreement to FLM-NS. For either method, how-
ever, the viscous consideration yields only
marginal improvement over the respective invis-
cid approach.

3.2 Medium Strength Shock / Leading Edge
Vortex Case

For Ma∞ = 0.90, Re∞ = 10.04× 106, and ˇ̄α =
3.97 deg the FLM-NS supplied time-invariant
mean flowfield exhibits an expanded supersonic
region in proximity to the upper wing surface. It
extends from the root to the tip, terminating with
a medium strength shock significantly upstream
of the TE (Fig. 4). At the root, the sharp LE
additionally initiates a vortex that progresses to-
wards the tip (Fig. 5). The LE itself approxi-
mately renders the line of separation, while the
line of reattachment is observed at a sweep an-
gle of 56 deg. Designated the LEV, it induces
a localized suction plateau on the upper surface
which increases in both intensity and expansion
over the course of the progression, c̄p reaching
its minimum at the tip-proximate LE. Towards
the tip the LEV eventually intersects the shock,
the interaction between the two rendering a quite
intricate flow topology. FLM-SD.NS-computed
surface pressure distributions for 90D29 are com-
posited with their FLM-NS, FLM-SDEu / FLM-
Eu, and experimental counterparts in Fig. 6. A
description of the FLM-SD.NS result is foregone.
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z
y

x

Fig. 4 Sonic isosurface of the time-invariant
mean flowfield employed by FLM-SD.NS in the
NCDW case 90D29

For the investigated span stations, FLM-
SD.NS-computed upper- and lower-surface c0

p
agrees excellently with those obtained from
FLM-NS. Respective Rec1

p, mild discrepancies
are observed for the predicted LEV- and shock-
induced peaks of the inner span station, how-
ever, growing larger for the outer one. Post-shock
deviations are also witnessed here for both the
upper- and lower-surface Rec1

p progression to-
wards the TE. Otherwise, the lower-surface Rec1

p
agrees excellently, as linear flow physics are
dominant. The same can be said for the lower-
surface Imc1

p. In regard to upper-surface Imc1
p,

mild discrepancies are observed for the predicted
LEV- and shock-induced peaks of the inner span
station, which yet again increase for the outer
one. Here the deviation between the FLM-
SD.NS and FLM-NS predicted shock-induced
peak becomes very substantial, indicating that
the premise of the dynamically linear approach
may no longer be valid further outboard. Inves-
tigating this matter, the FLM-SD.NS-computed
upper-surface c0

p, and c1
p planform distributions

are compared to the upper-surface c0
P, c1

p, c2
p,

as well as c3
p planform distributions gained from

FLM-NS (Fig. 7 and Fig. 8). Apparently, even
for a small amplitude of ˇ̂α = 0.5 deg the imposed

x
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Fig. 5 Near-surface streamlines and surface iso-
bars of the time-invariant mean flowfield em-
ployed by FLM-SD.NS in the NCDW case
90D29

motion on the LEV and its dynamic interaction
with the shock are sufficient to induce higher-
order harmonics within the time-dependent evo-
lution of the upper-surface cp. It can be observed,
that both c2

p and c3
p locally exceed the given 10%

c1
p range, in parts significantly. For regions where

c0
p » c1

p » c2
p » c3

p no longer holds true, the small
disturbance method cannot render an accurate c1

p
prediction: As higher-order harmonics become
dominant in the flowfield they exert influence
on those of lower order. Consequently, the ac-
tual zeroth-harmonic flowfield will depart from
the time-invariant mean one employed by the dy-
namically linear approach.

FLM-SD.NS / FLM-NS conformity can
again be seen equal to that of FLM-SDEu / FLM-
Eu, with exception of the LE region, where the
former deviate less. Characteristically, the in-
viscid methods compute an LEV-induced upper-
surface c0

p-peak instead of the viscous observed
suction plateau. This results from a separation
mechanism driven by numerical instead of phys-
ical viscosity. Furthermore, the discontinuous
c0

p compression is predicted farther downstream.
Both the LEV-induced Rec1

p- and Imc1
p-peak are

predicted closer to the LE, as well as more pro-
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Fig. 6 Comparison of the pressure coefficient distributions for the NCDW case 90D29 (Ma∞ = 0.90,
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Fig. 7 Comparison of the FLM-SD.NS and FLM-NS computed planform upper-surface c0
p, c1

p dis-
tributions for the NCDW case 90D29 (Ma∞ = 0.90, Re∞ = 10.04× 106, ˇ̄α = 3.97 deg, ˇ̂α = 0.5 deg,
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Fig. 8 Comparison of the FLM-NS computed planform upper-surface c0
p, c2

p, c3
p distributions for the

NCDW case 90D29 (Ma∞ = 0.90, Re∞ = 10.04×106, ˇ̄α = 3.97 deg, ˇ̂α = 0.5 deg, kred = 0.240, xp/cr =
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nounced. In this regard, the experimental data is
better reproduced by the inviscid methods, which
is surprising. Neither FLM-SD.NS / FLM-NS
nor FLM-SDEu / FLM-Eu, however, are able to
render the measured Imc1

p-peak at the shock lo-
cation of the outer span station.

Considering the computed global load coeffi-
cients (Tab. 4), FLM-SD.NS-predicted c0

L equals
its FLM-NS counterpart, while Rec1

L is merely
3% higher. Imc1

L, on the other hand, deviates

Method c0
L Rec1

L Imc1
L

FLM-SD.NS 0.263 4.065 -0.180
FLM-NS 0.263 3.958 -0.051
FLM-SDEu 0.274 4.066 -0.097
FLM-Eu 0.273 4.062 -0.064

Method c0
M Rec1

M Imc1
M

FLM-SD.NS 0.030 0.335 -0.178
FLM-NS 0.030 0.377 -0.229
FLM-SDEu 0.025 0.294 -0.192
FLM-Eu 0.026 0.290 -0.221

Table 4 Comparison of the global load coeffi-
cients for NCDW case 90D29

by half an order of magnitude. The minuteness
of either Imc1

L in comparison to the correspon-
dent Rec1

L, however, makes this circumstance
again tolerable: Both computations still indicate
a time-dependent cL that minimally lags the ex-
citation. Whereas the artificial recomposition of
the FLM-SD.NS-obtained Rec1

M and Imc1
M for

the time domain would render a distinct ellipti-
cal evolution when plotted over the incidence an-
gle, the FLM-NS counterpart would be compara-
bly observed as collapsing to a line, however, not
as distinct as for 90D5. The deviation itself can
be made attributable to the differing Imc1

p predic-
tions in the outboard shock region, FLM-SD.NS
rendering a less positive or even negative ∆Imc1

p
contribution compared with FLM-NS. Discount-
ing viscosity yields a 4% higher c0

L, while having
only marginal impact on Rec1

L. The FLM-SD.Eu-
and FLM-Eu-computed instances can be consid-

ered identical. Both Imc1
L now fall within the

range set up by the FLM-SD.NS and FLM-NS
computed value, their mutual deviation reducing
significantly.

FLM-SD.NS-predicted c0
M equals its FLM-

NS counterpart, while both Rec1
M and Imc1

M are
gained lower in absolute value, respectively, by
11% and 22%. Comparable to 90D5, Rec1

M
and Imc1

M are in the same order of magni-
tude. The time-dependent cM clearly lags the
excitation, again indicating a damping effect
on the free pitching oscillation. The devia-
tion between the FLM-SD.NS-computed c1

M and
its FLM-NS counterpart are attributable to the
higher-order harmonics identified in the FLM-
NS-computed upper-surface cp. Their influence
follows through to the time-dependent cM evo-
lution from which c1

M is extracted. FLM-SDEu-
and FLM-Eu-computed c0

M (Rec1
M) are, respec-

tively, 17% (12%) and 13% (23%) lower than
their viscous counterparts. For c0

M the devia-
tion experienced between the inviscid methods
is equal to that of c0

L, while the Rec1
M instances

can be considered identical. Discounted viscos-
ity has only limited impact on Imc1

M, and thus on
the degree of dynamic stability, both values again
falling within the range of the FLM-SD.NS and
FLM-NS computation. Their mutual deviation,
however, reduces to 13%.

Overall, FLM-SD.NS renders the unsteady
loading of the medium strength shock / LEV case
in satisfactory agreement to FLM-NS. For ei-
ther method the viscous consideration mainly im-
proves on the global load coefficients’ zeroth and
real-part first harmonic, with the imaginary part
being only marginally influenced.

3.3 Strong Shock Case

For Ma∞ = 0.94, Re∞ = 10.06×106, and ˇ̄α = 0.0
deg the FLM-NS supplied time-invariant mean
flowfield exhibits a sizeable, equally developed
supersonic region in proximity to the upper and
lower wing surface. It extends, respectively, from
the root to considerably beyond the tip, terminat-
ing with a strong shock slightly upstream of the
TE (Fig. 9). The discontinuous recompression is
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substantial enough to induce post-shock flow sep-
aration from y/s = 0.8 to the tip. FLM-SD.NS-

z

xy

Fig. 9 Sonic isosurface of the time-invariant
mean flowfield employed by FLM-SD.NS in the
NCDW case 94D5

computed surface pressure distributions for 94D5
are composited with their FLM-NS, FLM-SDEu
/ FLM-Eu, and experimental counterparts in Fig.
10. The FLM-SD.NS result is described in the
following, however, being qualitatively similar to
90D5, in not as much detail: Upper- and lower-
surface c0

p, of course, exhibit symmetry, falling
below c̄p,crit = −0.1 at x/c = 0.31 and x/c =
0.17, respectively, for the inner and outer span
station. The onset of supersonic flow flow occurs
significantly upstream of the obtained 90D5 lo-
cations. Correspondingly, its termination moves
farther downstream, c0

p again exceeding c̄p,crit at
x/c = 0.89 and x/c = 0.87. Between the onset
and termination of supersonic flow c0

p drops lin-
early to a minimum−0.4 and −0.5, respectively,
for the inner and outer span station. The dis-
continuous recompression initiates immediately
thereafter, with the strong shock imposing a steep

slope onto the c0
p progression, Its degree is ob-

served to be nearly equal at both span stations.
Evidently, symmetry of the upper- and lower-
surface c0

p again yields numerically nil c0
L and c0

M
values.

Complementary to c0
p, upper- and lower-

surface Rec1
p, as well as Imc1

p, exhibit antisym-
metry: Merely considering the upper surface dis-
tribution, the sharp LE renders an initial pri-
mary peak for both Rec1

p and Imc1
p, respectively,

being of negative and positive value. Immedi-
ately downstream, Rec1

p acutely increases before
merging into a positively-sloped linear progres-
sion that abruptly culminates in a shock-region
reversal of sign. The initiation of the slope occurs
at a lower Rec1

p for the outer span station than for
the inner one, while being of steeper degree. For
the inner span station, the zero-crossing occurs
near the location of the terminating c̄p,crit , while
for the outer one, at the location of minimum c0

p.
Whereas the subsequent Rec1

p progression con-
forms to the one of 90D5 for the inner span sta-
tion, a secondary peak of +4.0 value emerges for
the outer one. The associated ∆Rec1

p provides for
a more negative shock- / post-shock-region con-
tribution to Rec1

L and thus a more positive one
to Rec1

M than seen for 90D5. Characteristics of
the 90D5 Imcp1 progression are equally retained,
however, with strongly subdued secondary peaks
rendered in the shock region. For the inner span
station, an additional zero-crossing is observed
prior to the shock region, reversing the secondary
peak’s contribution to Imc1

L from positive to neg-
ative, and thus the contribution to Imc1

M vice
versa.

For the investigated span stations, FLM-
SD.NS-computed c0

p, Rec1
p, and Imc1

p agree ex-
cellently with those obtained from FLM-NS. This
is especially true outside of the shock- and post-
shock region where linear flow physics domi-
nate. Discrepancies are merely seen with the
farther upstream prediction of the Rec1

p-zero-
crossing at the inner span station, as well as the
value of the Rec1

p-secondary-peak at the outer
one. For both span stations discrepancies in the
Imc1

p-secondary-peak are also noticeable. FLM-
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Fig. 10 Comparison of the pressure coefficient distributions for the NCDW case 94D5 (Ma∞ = 0.94,
Re∞ = 10.06×106, ˇ̄α = 0.0 deg, ˇ̂α = 0.5 deg, kred = 0.230, xp/cr = 0.65)
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SD.NS / FLM-NS conformity can again be seen
equal to that of FLM-SDEu / FLM-Eu. The in-
viscid methods compute a profoundly differing
behavior in the shock- and post-shock region.
Not only is the discontinuous c0

p recompression
predicted farther downstream, strong Rec1

p- and
Imc1

p-peaks are rendered at its location, respec-
tively, making substantial Rec1

L, Rec1
M and Imc1

L,
Imc1

M contributions. Experimental surface pres-
sure is best reproduced by FLM-SD.NS / FLM-
NS, confirming the higher fidelity of the viscous
approach.

Regarding the computed global load coef-
ficients (Tab. 5), Rec1

L obtained from FLM-
SD.NS can be considered identical to its FLM-
NS counterpart. Imc1

L, on the other hand, is pre-

Method c0
L Rec1

L Imc1
L

FLM-SD.NS 0.000 3.301 -0.181
FLM-NS 0.000 3.302 -0.218
FLM-SDEu 0.000 4.087 -0.808
FLM-Eu 0.000 4.034 -0.947

Method c0
M Rec1

M Imc1
M

FLM-SD.NS 0.000 0.311 -0.077
FLM-NS 0.000 0.284 -0.072
FLM-SDEu 0.000 -0.016 0.197
FLM-Eu 0.000 -0.019 0.254

Table 5 Comparison of the global load coeffi-
cients for NCDW case 94D5

dicted 17% lower in absolute value, attributable
to differingly computed Imc1

p in the shock re-
gion. Similar to 90D29, an order of magnitude
separates Rec1

L and Imc1
L. The latter’s minute-

ness indicates a time-dependent cL that lags the
excitation by only a small margin, yet in com-
parison to 90D5 again exhibits a distinct ellipti-
cal evolution when plotted over the incidence an-
gle. Both FLM-SDEu- and FLM-Eu-computed
Rec1

L are significantly higher than their viscous
counterparts: The strong Rec1

p-peaks rendered
in the shock region yield a large yet chordwise-
localized difference between upper- and lower-

surface distribution. Contributing positively, its
summation over the semi-span, however, is sub-
stantial enough to increase Rec1

L by 23% on aver-
age. This circumstance emerges even more pro-
nounced in Imc1

L: Outside of the shock region
∆Imc1

p would merely result in a minutely nega-
tive Imc1

L similar to that of the viscous compu-
tations. Comparatively, the Rec1

p-corresponding
Imc1

p-peaks contribute strongly negative to Imc1
L.

Supplying the bulk of its value, a fourfold am-
plification of the viscously obtained Imc1

L is ex-
perienced. The deviation between FLM-SDEu-
and FLM-Eu-computed Rec1

L, as well as Imc1
L,

becomes similar to that of the respective FLM-
SD.NS and FLM-NS counterparts.

FLM-SD.NS predicts both Rec1
M and Imc1

M
within 10% of the FLM-NS-gained value, the
two being separated by merely half an order of
magnitude. Even though Rec1

L has been estab-
lished as identical between the two methods, the
same cannot be said for Rec1

M. Inversely, the de-
viation exhibited by Imc1

L does not entirely fol-
low through to Imc1

M. Considering skin friction’s
contribution to be negligible, deviations in Rec1

p
are apparently amplified towards Rec1

M, while de-
viations in Imc1

p are compensated towards Imc1
M,

for the given reference axis. However, the fun-
damental difference in the small disturbance and
the dynamically fully nonlinear method’s man-
ner of assessing the global load coefficients must
again again be taken into account: Regarding the
FLM-NS-computed cM evolution over the inci-
dence angle, an antisymmetric influence becomes
evident in proximity of both the upper and lower
dead center. It results from the expansion and
contraction of the separated flow region over the
course of a cycle. Even though the first harmonic
still dominates the cM evolution, the contained
higher-order harmonics are again no longer as
negligible as postulated by the small disturbance
premise, thus allowing for the c1

M deviation. The
time-dependent cM is predicted to lag the exci-
tation, yet not as strongly as it did in 90D5 and
90D29.

Discounting viscosity, the character of cM be-
comes significantly altered: FLM-SDEu- / FLM-
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Eu-computed Rec1
M and Imc1

M exchange sign as
well as order of magnitude given by their viscous
counterparts. Through accounted leverage, the
inviscidly predicted Rec1

p- and Imc1
p-peaks in the

shock region, respectively, supply the bulk neg-
ative and positive contribution that tip the scale.
With Imc1

M > 0 the time-dependent cM now leads
the excitation, even doing so by slightly more
than a quarter cycle. In case of a free pitching
oscillation this would have an amplifying effect.
For both Rec1

M and Imc1
M deviation between the

FLM-SDEu and FLM-Eu-computed instance is
within 20% – double the one exhibited between
the viscous counterparts. Whereas this appears
reasonable for Rec1

M on grounds of its minute-
ness, it seems surprisingly high for Imc1

M. Ev-
idently, the deviation compensates itself in the
phase shift of the time-dependent cM yet persists
in its magnitude.

Overall, FLM-SD.NS renders the unsteady
loading of the strong shock case in good agree-
ment to FLM-NS. For either method, the vis-
cous consideration yields a substantial improve-
ment over the respective inviscid approach: The
more complete flow model contrarily indicating
dynamic stability.

4 Computational Efficiency

FLM-SD.NS and FLM-NS computation times, as
well as the inverse ratio between the two are sum-
marized in Table 6. Evidently, FLM-SD.NS re-

Case ť SD.NS
CPU , h ť NS

CPU , h ζCPU

90D5 24.1 419.8 17.4
90D29 21.2 71.3 3.4
94D5 17.2 242.7 14.1

Table 6 Comparison of computational effort be-
tween FLM-SD.NS and FLM-NS for the NCDW
cases

alizes reductions up to an order of magnitude:
Whereas ť SD.NS

CPU are all around 24 h, a far greater
range can be observed for ť NS

CPU , the computa-
tion of 90D5 and 94D5 taking longer than 90D29

by multiples. At default settings, the fully dy-
namical nonlinear treatment of the ˇ̄α = 0 deg
incidence motion had exhibited solution insta-
bilities towards the upper / lower dead center,
that is, at physical time-steps where the deflected
wing experiences strong de- and acceleration.
Merely very high instances of implicit damping
allowed for a remedy, significantly drawing out
the computation in turn. The decreased ζCPU wit-
nessed for 94D5 stems in part from the employed
higher-clocking processor, accelerating FLM-NS
considerably more than FLM-SD.NS. With 1.7
GByte RAM, FLM-SD.NS allocates four times
more working memory than FLM-NS, as both
complex amplitude and time-invariant mean en-
tities need to be stored. It is the tradeoff made
towards superior computational efficiency.

5 Conclusions

In an effort to further substantiate FLM-SD.NS
application readiness, computational results for
NCDW harmonic pitching oscillations were pre-
sented and compared to those of FLM-NS, FLM-
SDEu / FLM-Eu, as well as experimental data:
Both a weak and a strong shock case demon-
strated the small disturbance Navier-Stokes ap-
proach’s accuracy and efficiency in predicting the
unsteady local and global loading. Special at-
tention had been given to the obtained Imc1

m, as
it is indicative of the corresponding free oscilla-
tion’s amplified or damped state. In this regard,
the strong shock case illustrates the benefit of the
viscous consideration, FLM-SD.NS / FLM-NS
predicting dynamic stability where FLM-SD.Eu /
FLM-Eu does not. The medium strength shock /
LEV case, on the other hand, discloses the limita-
tions of the small disturbance approach: Fourier-
analysis of the FLM-NS-computed upper-surface
cp reveals localized higher-order harmonics that
are no longer negligible. They result from the
LEV itself, as well as the LEV’s interaction
with the shock. Exerting influence on the time-
dependent cM evolution, the extracted Imc1

M and
the FLM-SD.NS-computed one exhibit the most
pronounced deviation.

To date, more application-oriented investiga-
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tions have been realized with FTDW harmonic
pitching oscillations: In analogy to the NCDW,
a shockless case, an LEV case, and a medium
strength shock case were computed. The promis-
ing results will be presented in the near fu-
ture. Complementary studies for high aspect ra-
tio wings, as well as a rectangular wing / nacelle
configuration undergoing harmonic motions are
on the verge of completion, while an assessment
of FLM-SD.NS / FLM-SDEu prediction quality
with regard to the AGARD 445.6 wing’s flutter
boundary has just commenced.
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