
26TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

2.1

Abstract

For over 75 years, Rockwell Collins has been
recognized as a leader in the design,
production, and support of communication and
aviation electronics for customers worldwide.
Today at Rockwell Collins, modeling
technologies and Lean Principles are brought
together for the design and development of
complex safety critical systems. Rockwell
Collins calls this the Model-Based Engineering
(MBe) initiative.

The Model-Based Engineering (MBe) vision is
to increase shareholder value and customer
satisfaction by reducing product development
cost and cycle time using Model-Based
Engineering enabled Lean Engineering
principles. The goal of MBe is to achieve the
same results in the design and development
process that Lean has achieved in operations
and manufacturing. In other words, the goal is
to create a Lean design and development
factory.

This paper describes the Lean principles
enabled by MBe technologies and presents the
performance improvements resulting from using
MBe technologies and Lean Principles for
complex avionics systems designs at Rockwell
Collins

1 Introduction
What is Model Based Engineering (MBe)?
MBe is the systematic use of models as primary
engineering artifacts throughout the product
development lifecycle. The emphasis of MBe is
actor centric refinement of requirements and
model centric development needed to:

1. validate customer needs that are
expressed in the model,

2. achieve behavior and performance
requirements expressed in the model,

3. generate lifecycle artifacts from the
model, and

4. verify that the design model is
implemented in the product without
error.

Examples of artifacts that can be generated from
a model include blueprints, software, interface
configurations, and test vectors.

2 Lean Principles
What is Lean? Lean is the relentless
elimination of waste to increase value as defined
by the customer. Lean provides more value to
customers by utilizing tools, methods, and
principles to:

1. eliminate waste throughout the value
stream,

2. create processes that are adequate,
available, capable, flexible and value
added, and

3. continuously drive toward perfection.

The principles of Lean are value, value stream,
pull, flow, and perfection as depicted in Fig. 1.
[1]

USING LEAN PRINCIPLES AND MBE IN DESIGN AND
DEVELOPMENT OF AVIONICS EQUIPMENT AT

ROCKWELL COLLINS
David Lempia

Principal Systems Engineer
Rockwell Collins, Inc.

Keywords: Modeling, Design, Development, Lean, Value Stream

David Lempia

2

Specify Value from
the perspective
of the customer

Characterize the Value
Stream (set of activities) for
each product/process and
identify waste

Always compete against
perfection, not just your
current competition

PERFECTION

PULLFLOW

VALUE
STREAM

VALUE

Relentless
Commitment to Eliminating

Waste & Increasing
Delivered Value to our

Customers

Make work elements
flow continuously with
minimal queues, no
rework, no stoppages
or backflows

Deliver only what
is wanted when it
is wanted

Specify Value from
the perspective
of the customer

Specify Value from
the perspective
of the customer

Characterize the Value
Stream (set of activities) for
each product/process and
identify waste

Characterize the Value
Stream (set of activities) for
each product/process and
identify waste

Always compete against
perfection, not just your
current competition

PERFECTION

PULLFLOW

VALUE
STREAM

VALUE

Relentless
Commitment to Eliminating

Waste & Increasing
Delivered Value to our

Customers

PERFECTION

PULLFLOW

VALUE
STREAM

VALUE

Relentless
Commitment to Eliminating

Waste & Increasing
Delivered Value to our

Customers

Make work elements
flow continuously with
minimal queues, no
rework, no stoppages
or backflows

Make work elements
flow continuously with
minimal queues, no
rework, no stoppages
or backflows

Deliver only what
is wanted when it
is wanted

Deliver only what
is wanted when it
is wanted

Fig. 1. Lean Principles

2.1 Define Value from the Customer
Perspective

The first Lean principle is to specify value from
the perspective of the customer. Lean is the
focus of each and every employee on a team.
Lean is the driving force behind the decisions
teams make in selecting tools, process, and
training.

To be effective in defining value, teams need to
involve both internal and external customers.
They should create a strong working
relationship with the customer to understand
their culture, value system, approach, attitude,
expectations, and issues. They need to validate
the customer needs often using tools such as
mockups, prototypes, and design documents.
They need to be willing to challenge the
customer’s assumptions and to clarify the
requirements. Finally, they need to
communicate the customer needs throughout the
program. In summary, teams need to promote a
culture of putting the customer first. This is
depicted in Fig. 2.

Process

People

ToolsOptimizes
Drives

Motivates

Support

Aid

Value

Customer

Process

People

ToolsOptimizes
Drives

Motivates

Support

Aid

Value

Customer

Fig. 2. Customer Defined Value

Because the customer is the focus, teams can
use customer-defined value as an assessment
tool to help optimize the process, to select and
define tools, and to focus and train people.
Tools, such as MBe tools, must both help the
process and help people provide value for the
end customer.

2.2 Identify the value stream.
The second Lean principle is to identify,
develop, and utilize a value stream. The value
stream is the set of specific actions needed to
bring a specific product through the 3 critical
management tasks for any business.

1. Problem Solving Task. This is the set of
problem solving tasks between concept
inception to the development of talent
and intellectual property to the final
production launch.

2. Information Management. This is the
set of information management tasks
from customer order to customer
delivery.

3. The Physical Transformation. This is
the set of build steps from raw material
and customer requirements to product in
the hand of the customer.

The design and development team impacts each
of these value streams. Team members need to
understand their value streams and how they
affect the value streams of other teams. The
value stream helps team members understand
who their customers are, map value-added
activities as defined by the customer, and
identify activities that add little or no value to
the customer.

Effective value streams are developed and
documented using a cross functional team
consisting of the product development
stakeholders. There are various aids to help
create value streams such as the SIPOC
(Suppliers Inputs Process Outputs Customers)
diagram [2], data boxes to capture activity
details and technical or social issues, and
process flow diagrams. Value stream maps are
created for the current state, a future state, and
the ideal state. The evolution of the tools,

3

USING LEAN PRINCIPLES AND MBE IN DESIGN AND DEVELOPMENT
OF AVIONICS EQUIPMENT AT ROCKWELL COLLINS

processes, and training are methodically worked
by a team to move from the current value stream
to the future value stream and eventually to the
ideal value stream using short term and long
term action plans.

Design and development teams start a project
using a current-state value stream map. Over
the course of the project they mature the tools,
processes, and culture to a future-state value
stream map as defined in the short term action
plan. Likewise, groups of projects collaborate
at the enterprise level to mature the collective
value streams beyond the future state by
implementing additional ideal state
characteristics using the long term action plans.

The six steps in creating a value stream include:

1. Identify the process steps in order,
beginning and ending with the customer.

2. Complete data boxes for each process
step.

3. Map the information flow, designate
what is being communicated and who is
giving/receiving it.

4. Identify what information is flowing in
& out of each process step.

5. Calculate the Takt and Cycle time.
6. Analyze your process and identify

waste.

Takt Time is a measurement of the rate of the
available time divided by the unit demand. For
example, if 40 units need to be built over the
course of 80 available hours, the Takt Time is 2
hours per unit. For every 2 available hours of
work, one unit needs to be built. The Takt time
spreads the customer demand evenly across
available time. A unit should be developed at
the end of each Takt time. This enables
predictable and linear flow. Cycle time is the
time it takes to perform each activity. Takt time
and Cycle time can be balanced to help level
load a process. [1]

The last step in the value stream is to analyze
the process and identify waste. There are 7
types of waste. [3]

1. Transportation – Moving material or
information.

2. Inventory - Having more material or
information than the customer wants.

3. Motion - Moving people to access or
process material or information.

4. Waiting- Idle delays where you can’t do
your job.

5. Over-production – (Making too much)
Making more material or information
than required by the customer.

6. Over-processing - Effort and time spent
that adds no value.

7. Defects - Errors or mistakes causing the
effort to be redone.

These forms of waste are depicted in Fig. 3.

Value

Over-
Processing

Motion

Waiting

Transportation

Fixing
Defects

 Inventory

Making too
Much

People

Q
ua

nt
ity

Quality

Fig. 3. Types of Waste

After the seven forms of waste are removed,
customer defined value remains.

2.3 Enable pull system.
In a pull system, product is pulled at the rate
demanded by end customers. The opposite of a
pull system is a push system. A push system is
the way project teams form naturally to produce
products. In a push system, the development
runs as fast as it is able to and creates as much
product as possible. Inventory builds up at
bottlenecks in the process. When items do not
arrive in time people are assigned to find them
and to expedite their movement through the
system. The system rewards people for fixing
problems. In a push system, the organization
resembles the Wild West. Cowboys become

David Lempia

4

heroes and are rewarded for “riding up on their
stallion and saving the day”.

In a pull system, cowboys are not needed. Units
are not produced until the customer of the
process pulls or requests delivery. The value
stream maps each activity and the time it takes
for it to be completed. The Takt time is used to
lock-step the activities and to synchronize these
activities with customer demand. The pull is
initiated with adequate time to complete the
activity. Because items are not produced until
they are needed, inventory diminishes. People
are not required to expedite products through
the system. The cowboy fades off into the
sunset. A pull system eliminates all seven
forms of waste.

It is easy to visualize how this can happen in a
factory that produces a physical product. In
section 4 the Takt time is translated from the
factory to the design and development
paradigm.

2.4 Create smooth value stream flow.
A smooth value stream processes information
(adding value) one piece at a time without
interruption. A smooth value stream will not
occur if there is waste of inventory, waiting, or
defects. Process variability results in inventory
and waiting. Defects result in re-work which
results in inventory and waiting.

A smooth value stream is synchronized around
the Takt time. Activities with cycle times that
are the same as the Takt time can be lined up
and performed in a smooth flow.

Standardized work, work sequence, work load
leveling, and error-proofing are four
mechanisms that help create a smooth flow of
work when the current activity cycle times do
not match the Takt time.

Standardized work identifies and documents
repeatable activities. The standardized work is
the best, easiest, and safest way to perform an
activity. It is a documented set of work
instructions arranged in a work sequence. The

time it takes to perform standardized work is the
cycle time.

Load leveling is arranging the activities and the
resources such that the Takt time is achieved at
each step in the process. For example if one
activity takes twice as much time as the Takt
time, arranging two resources in parallel will
help the process flow smoothly.

Defects interrupt the smooth flow. Each defect
that escapes from one activity and is caught in
the next activity must be re-run. Re-running
product through steps in the process results in
the downstream step waiting for a product and
the upstream steps queuing extra defective
product. The result is an increase in inventory
and a decrease in production. Error-proofing is
designing standardized work and tools that
prevent errors and results in a smooth flow of
product.

In a load-balanced process each step has
adequate time to finish before the next Tact
time. The finished process steps create a natural
pull through the system.

2.5 Work to perfection.
Perfection is a vision, not a goal. Striving for
perfection will ensure a culture of continuous
improvement. A tool for continuous
improvement is the value stream and the action
plan. A current, future, and ideal value stream
become the roadmap that focuses the continuous
improvement activities. The short term and
long term action plans drive change from the
current to the future to the ideal value stream.

The short term action plan identifies the changes
that a project team can take to eliminate waste
that is immediately avoidable or avoidable in a
short period of time. When the short term
action plan is complete, the future state value
stream becomes the current state value stream.

The long term action plan identifies the changes
that an enterprise group or set of projects needs
to coordinate to eliminate waste. Long term
projects invest in continuous improvements that

5

USING LEAN PRINCIPLES AND MBE IN DESIGN AND DEVELOPMENT
OF AVIONICS EQUIPMENT AT ROCKWELL COLLINS

eliminate waste for multiple teams. The ideal
state characteristics drive the improvement to
the existing current and future value streams.

The project teams and the enterprise group
periodically re-evaluate and update the future
and ideal value stream as they continue to strive
toward perfection.

3 Model-Based Engineering
Lean Engineering defines principles that drive
the culture of project teams. MBe is a
technology improvement that eliminates waste
from the value stream. To understand how MBe
eliminates waste, it is important to understand
models, modeling, modeling languages,
frameworks, and simulation.

3.1 Model Basics
A model is the primary engineering artifact
behind MBe. The model is not the product that
is delivered to the customer; it only represents
some aspect of the product. Numerous models
represent the final product. For example, Fig. 4
shows a representation of the product’s structure
or system.

My System

«block»
Car

«block»
Location_Calculator

«block»
Vehicle

+ Speed: float

+ Location_Calculator() : void
+ Speed_Calculator() : float

«block»
Satelite

«block»
Command_Station

«block»
Path_ Planner

«block»
Steering_Function

Airplane

- Alti tude: float

+ Alti tude_Calculator() : float
+ Location_Calculator() : void
+ Speed_Calculator() : float

Has A

Kind Of

Has A
Has A

Fig. 4. Systems Model Example

Fig. 5 is a view of a model that animates
manufacturing process used to assemble the
parts defined by the system model.

Fig. 5. Manufacturing Model Example

Finally, Fig. 6 is a model of the software used to
generate the behaviors for one of the parts in the
system model of the product.

Vehicle _Dynamics

Steering_Command Vehicle_Rate

Steering _Function

Path_Error Steering_Command

Satelite

Position_Information

Path _Planner

Location_Data

Route_Data
Path_Error

Location _Calculator

Altitude

Speed

Position_Information

Location_Data

Environment

Vehicle_Rate

Altitude

Speed

Command _Station

Route_Data

Fig. 6. Software Model Example

Each of these three example models represents a
work product. The application of a standard
structured methodology to create and validate a
model is called modeling.

Models are developed using modeling
languages. These languages often have a
graphical and textual representation. Modeling
languages express information, knowledge or
systems and are defined by a consistent set of
rules.

Examples of graphical design languages include
SYSML (System Modeling Language) [4],
UML (Unified Modeling Language) [5], AADL
(Architecture Analysis Definition Language)
[6], MARTE (Modeling and Analysis of Real-
time and Embedded Systems) [7], and IDEF0
(Integrated DEFinition Function Modeling
Method) [8], State Charts, FFBD (functional
flow block diagrams), and control flow
diagrams.

Each different design language is good at
modeling one part of a system. For example, a
FFBD is good at describing data flows from a

David Lempia

6

producing function to a consuming function.
The FFBD is not good at depicting the
hierarchical structure of a system. Likewise, a
schematic capture tool is very good at capturing
the electrical layout of parts on a circuit card but
not effective at capturing the functional data
flow. Design languages are generally
specialized to specific domains.

Models can be simulated. Simulation is the act
of imitating the behavior of a system or process
by stimulating the model. Simulation enables
testing and performance optimization. Results
of a simulation can be presented as the
simulation runs or after the simulation finishes.
These results are often depicted with graphs,
plots, and user interfaces. Simulation gives the
developer feedback of the behaviors of a model
from the perspective of the end user.
Simulations that animate the model give the
developer a cause and effect diagnostic tool.
For example, if the visible effect of a simulation
scenario causes the end users display to jump
inappropriately, the cause might be a filter that
was not initialized at the right time. To find
this, the model can be executed one step at a
time. The effect of the execution of each block
is examined on the user display. When the
problem filter block is executed, the display
jumps. The designer can then look at scenario
leading up to the problem, visually see the
cause-effect relationship, and use this
information to develop a solution. An example
showing the model of an airplane and the
resulting time-history plot of an aircraft
maneuver is shown in Fig. 7:

14 16 18 20

0

-5

0

5

0

Fig. 7. Simulation Example

Traditional development processes create a
requirements document and a design document.
Based on the information in these two artifacts,

the software is written. These two documents
and the software all represent an aspect of the
final product and can be considered a type of
model. However, these are not the types of
models that MBe needs to eliminate waste and
reduce cycle time and cost. What characteristics
should models have and what types of
automation should tools support to help
eliminate waste?

3.2 Models that Eliminate Waste
To help eliminate waste, models need enough
rigor and formalism to enable tool automation
that eliminates waste. In general, tool
automation does two things. First it eliminates
or identifies errors as models are created,
analyzed, and simulated. Second it seamlessly
or automatically moves and transforms data
from one model to another model or from a set
of models to the artifacts used in the final
product.

Errors may be introduced as models are created.
Construction errors can be identified using
editors that understand the assembly rules of the
modeling language. Model construction errors
can be reduced or eliminated by using smart
editors that check the assembly rules of the
modeling language.

Once the models are created, they may not
exhibit all of the required properties called out
in the requirements. Models can be analyzed
using model checkers to see if properties always
hold true or never hold true. These models may
also have hidden, missing, or incorrect
behaviors designed in. Behavior can be
simulated in executable models. The result of
the simulation is animated in the editor or is
depicted using time-history plots or other
visualization techniques. Each of these model-
enabled capabilities validate that the model is
behaving correctly.

Errors may also be introduced as the models are
translated for use in the final product. To
convert the model into the final product,
translators or generators are used to create
design artifacts such as software and
executables. The process of translating the

7

USING LEAN PRINCIPLES AND MBE IN DESIGN AND DEVELOPMENT
OF AVIONICS EQUIPMENT AT ROCKWELL COLLINS

model to the final product can inject errors.
Qualified tools are developed and tested to a
level that eliminates the translation errors.
Artifact generators such as software generators,
document generators, test generators, model
viewers, and simulators all may be qualified.
Qualified tools reduce the number of manual
steps that are required for developing safety
critical software under regulating process
guidance such as DO-178B. [9]

4 Themes of Change
Change is difficult and painful for individuals
and for organizations. The customer defined
value and the value stream is a way to focus
teams on solving the right issues. Value streams
can be smoothed and waste can be eliminated
by introducing new technology (tools) such as
MBe. To minimize waste using MBe, the
benefits and shortcomings of MBe must be
understood. The proper application of MBe
using Lean principles can radically reduce the
waste in design and development processes.

To help with culture changes, six
communication themes are described in this
section. These themes simplify and depict the
key characteristics of Lean and maximize the
benefits of MBe in a Lean process. These
themes are called “Customers Define Value”,
“Frontload Design”, “Pull-a-little”, “Test-a-little
Build-a-little”, “Single source design data”, and
“Good Enough Common Solutions”. These
themes of change need to be taught, mentored,
and re-taught to new teams starting to apply
Lean MBe at any company.

4.1 “Customers Define Value”
The foundational theme is also the first Lean
principle as described in section 2.1. In
summary of this section, customers define what
value is and what value is not. All of the
remaining themes apply in the context of
customer-defined value and focus on creating
smooth value streams.

Models of customers’ needs can be created
using MBe techniques to help understand needs
and transform the customer needs into
requirements. Models provide both a way to

assess the impact of changes and the ability to
quickly prototype the change when the customer
needs and requirements change.

4.2 “Frontload Design”
In traditional development experts pick a design
based upon their expertise. Developers interpret
what the design is. As design problems are
uncovered, band aids are added to the design.
Changes occur often and are not communicated.
Developers do not understand the design
decisions and are not committed to the design.
The design is a shifting target.

Frontload Design encourages cross functional
teams to carefully balance the different
customer or stakeholder needs and to create
multiple design options early. The team quickly
eliminates the options that will fail (the fail fast
principle). The good designs are refined and the
process repeats itself until the best design
emerges. Because the final solution has
weathered the test of time, fewer design changes
occur.

?
?

?
Trade Study
Proof-Of-Concept

Design Decisions

Fig. 8. Frontload Design Process

In Fig. 8, the frontload design process is
summarized. The stakeholders (person holding
a key) work with team members to describe
their needs in the form of use cases (UC) and
requirements (puzzle piece). The stakeholders
include a broad set of interested parties such as
end customer(s), users, and government
regulators. Key technology risks are identified
and used to identify the work units (the wrapped
present). The work units are the tasks team
members work on each day. For each of the key
technology risks, numerous design options are
captured and described (the question marks).
Each design option is studied and understood
using techniques as simple as white-board

David Lempia

8

prototypes. After the numerous design options
are studied, the team down-selects the options to
the most promising designs. The promising
designs are further refined (the arrows) using
more complicated techniques such as aircraft
flight deck simulation proof-of-concept. Trade-
studies are conducted to select the best design
option (the box). The selected design solution is
documented and validated with key
stakeholders. The design and development
teams work in the framework of this design as
they implement each use case and the associated
requirements.

4.3 “Pull-a-little”
The “Pull-a-little” theme is pull as described in
section 2.3. The word pull was renamed to Pull-
a-little to emphasize pull and small tasks. This
section refines and applies the concept of pull
from its original factory application to this
design and development environment
application.

Traditional design and development process
collect large quantities of requirements, use
cases, high-level design, and test documents
before moving to the next step in the process.
Pull-a-little encourages engineers to identify
small well-defined work units and to pull them
all the way through the design and development
process. Each work unit is created and made
available at the Takt time. When an engineer
finishes one work unit they pull the next work
unit.

The concept of Takt time originates in a factory
that produces units at a specific rate. The
production rate is set to match the customer
demand rate. What is the customer demand rate
for design and development? The customer
demands product availability at a specific date
with a specific set of features or capabilities.
Each feature takes a different amount of time to
implement.

To translate a date and a list of features into a
Takt time, a work unit and a design cycle need
to be defined. A work unit is a task defined by a
team and estimated to take one average person

one working day to accomplish. The formula
for Takt time is:

T = H / W (1)

where T is the Takt Time, H is the number of
hours of available in a work day, and W is the
number of work units that need to be completed
in one day (by definition, this is also the number
of people on the project).

A design cycle looks forward for one month of
work days (~ 22 days). The team defines the
work units for the entire design cycle in the
beginning of a design cycle. To do this, the
team starts with design decisions and a
prioritized list of use cases and requirements.
They then develop a list of tasks. Finally they
refine the task list until each task is estimated to
take one day to implement. At the beginning of
each day, team members share any issues they
have. Issues are assigned to the appropriate
person (internal to the team or external to a
support organization). Progress metrics are
updated. Team members then select and
implement the next work unit. The design cycle
ends with an acceptance test and delivery of a
working set of use cases.

Larger design teams may consist of numerous
small teams working to a common architecture.
A technical and program management team
resolves issues and identifies coordinating
design decisions, and creates prioritized use
cases and requirements for each team. The
teams are re-synchronized at the start of each
design cycle. The deliveries from each team are
integrated together and tested as part of the next
design cycle. Design cycles end and support
begins with the delivery of the design for
manufacturing.

4.4 “Test-a-little Build-a-little”
Traditional process and especially model-centric
process teams will develop a design (model)
first and then develop tests after the function is
working. The design is often developed as a
large batch with a mix of new functions that
work and have been tested, functions that may
work but have not been tested, and functions in

9

USING LEAN PRINCIPLES AND MBE IN DESIGN AND DEVELOPMENT
OF AVIONICS EQUIPMENT AT ROCKWELL COLLINS

various stages of development. Testing is
pushed to the end. Design errors caught in
testing at the very end may drive large changes
and result in rework and schedule slips.

Test-a-little Build-a-little encourages engineers
to create a measure of success (test) for a small
set of functions (work unit) from the eyes of the
customer and then to build only what is needed
in the model to pass this test. Using the inputs
from upstream customers and standardized
communication languages and building blocks,
the models are developed one piece at a time.
The work is designed to pass the test. Any
model parts not needed to pass the test are waste
and should be eliminated. For example,
developing place holders for future functionality
is waste. It is better to re-factor an existing
design to fit a new function. Small fully-tested
functions are created and passed on for
integration. Engineers find defects early in the
design process and reduce waiting, over-
production, and inventory.

FlowFlow

Fig. 9. "Test-a-little Build-a little" Process

In Fig. 9, the measure of success (Scale) is
defined, the design for one work unit is
developed (Box) until the test (Ruler) passes.
The new function is integrated (pyramid of
boxes) every design cycle and tested for
customer acceptance (Person).

Test-a-little Build-a-little adds quality at every
step in the process or error-proofs the process.
A process that is error-proof has less variation
and improves the smooth flow of design
development through the value stream.

4.5 “Single Source Data”
Traditional processes are document centric and
find engineers re-entering design information
multiple times in the value stream. Each new
entry of data must be maintained and updated to
be correct. If a bug is found in the design,
engineers often look at the software first even if
the design is easier to understand. This is

because the software is closer to the truth about
what the system does and is more trusted.

This theme utilizes the power of a model and a
tools framework to help maintain a common
source of design data for handoff points
between tools and between people. The model
formalizes the information and the tools
framework maintains the single source of data.
Design artifacts such as software, documents, or
tests are generated from the single source of
data rather than re-entered or maintained by
hand. Single source data error-proofs handoffs
between tools and people and reduces the waste
of over-processing that occurs when engineers
re-enter design data.

Systems

Software
Design

Document

System
Design

Document

Software
Implementation

G
en

er
at

e

Smooth Flow

SoftwareSoftware SoftwareSoftware

Fig. 10. Single Source of Data

Single source design data is easier to achieve
when the number of handoffs between people,
the number of handoffs between tools, and the
overall number of tools is minimized. Each
handoff is the waste of motion. “Keep it simple”
rules the day. Teams should use the value
stream to identify waste and to determine where
tools can and should be applied.

4.6 “Good Enough Solution” or “Common
Solution”

Traditional development teams select and
customize tools and designs to meet the needs
of their project. The tool and design
customizations are tailored to meet the specific
needs of the team and are worded in the
vocabulary of the team. Other teams often re-
develop the same solution along with their own
unique customizations. Re-development is the
waste of over-processing.

The “Common Solution” approach encourages
engineers to find and support common tools and
designs. The “Common solutions” is as much
about what a development team should do as it

David Lempia

10

is about what a development team should not
do. Design and development teams should be
the best at finding and re-using existing
solutions in their products and in their MBe
toolsets. Every tool or model that is re-
developed by another team creates waste at the
company level and is sunk cost to the project.

In an ideal world, the development of a design
of similar applications is the assembly and
tailoring of existing components and the
development of new components. New
components are published for reuse by other
project team members and by other
development project teams. In Fig. 11, the box
on the bottom of the picture depicts a store of
reusable components. The reusable components
are found in a common reuse store and are
available to assemble into the software and
system design model.

Systems

R
eu

se
 S

to
re SoftwareSoftware SoftwareSoftware

Development

Fig. 11. Common Solution Reuse Store

Reuse of components requires design teams to
embrace the concept of standard frameworks.
Effective reuse requires both a standard design
framework and a standard target framework.
The standard design framework is the
collaborative development environment
enabling users to share design models back and
forth and enabling models to be reused to
develop new design models. The standard
target framework enables models to be quickly
generated and built for execution on the target
system.

Each time a team implements design in the
common frameworks they get better at
understanding the issues and at predicting the
schedule. Re-use opportunities can be
capitalized as teams get better at developing and
identifying the models. Common Solutions
implemented in frameworks reduce unnecessary
motion and over-processing caused when each

development team solves the same problem in
slightly different ways.

5 Case Studies
Early in the evolution of MBe at Rockwell
Collins, MBe was used in a limited set of
domains and was used to create very simple
design artifacts. Feeling the pressure to reduce
cycle time and costs, design teams began to
leverage the characteristics of modeling to
eliminate waste and improve design
understanding. Executive leadership
commitment to Lean principles enabled and
accelerated this process. The following case
studies describe the conception of MBe, the
adoption of MBe by new teams, and the
problems encountered in modeling. These real-
world examples clarify the Lean principles
enabled by MBe and describe how the MBe
themes were identified.

The first case study describes how a
development team evolved and adopted
modeling techniques over the course of a long
period of time. The second case study describes
a project that started with no modeling
experience or legacy and was able to quickly
implement tools and methods for modeling. In
both case studies the process was described and
analyzed to remove waste. The resulting
process and efficiency improvements are then
described.

5.1 Case Study 1 – Flight Guidance
Function

A Flight Guidance Function (FGF) uses a
computer algorithm called a control law to
command the flight path of an airplane. In
simple terms, the FGF flies the airplane as an
assistant to the pilot. The pilot sets guidance
references that tell the FGF where to fly. The
FGF flies the airplane to these references. For
example, the pilot might direct the FGF to fly
the airplane along a specific altitude (distance
above the ground) and heading (direction).

The flight control function process has evolved
over a number of years. The team members
were using models when the initial process (a
simplified value stream) was documented.

11

USING LEAN PRINCIPLES AND MBE IN DESIGN AND DEVELOPMENT
OF AVIONICS EQUIPMENT AT ROCKWELL COLLINS

Because this is a case study, this section will
describe the current value stream which is the
process used to build systems before the MBe
Lean initiative was started, and the future value
stream, which is essentially the way the team
builds systems today.

The current set of activities for the current value
stream (the value stream at the start of the case
study) is summarized as follows:

1. The systems analyst creates a design
model and tests this model against
functional and performance
requirements.

2. The systems analyst then describes the
design by writing it down as a design
document and as detailed requirements.

3. The software engineer receives the
design document and the requirements.

4. The software engineer updates the
software design document and writes
software.

5. The software engineer builds the system
for testing on a test platform.

6. The software engineer performs
functional and integration testing.

7. The systems analyst runs functional and
performance testing.

These value stream activities are summarized in
See Fig. 12.

Queue

Queue

Queue

Before

R
ew

or
k/

W
as

te

Fig. 12. FCF Current Value Stream Activities

Errors occur at the handoff between the systems
engineer and the software engineer. Because

the systems engineer runs tests after the
software has been built, errors escape from
systems engineering to engineering. Errors in
the systems design cause the entire development
cycle to be re-run. Queues form as errors
accumulate, the design is changed and fixes are
implemented.

Waste was identified in the form of defects,
queues and over-processing. The future value
stream was developed to reduce these three
forms of waste. The future value stream is
described as follows:

1. The systems analyst receives new
requirements or change requests at the
beginning of a design cycle.

2. The systems analyst develops work units
for new functions or change requests.

3. The systems analyst develops test work
units from the requirements and use
cases.

4. The systems analyst creates the design in
a model

5. The systems analyst tests the model and
modifies the design until the model
passes all tests.

6. The model is handed off between the
systems analyst and the software
engineer.

7. The software engineer creates work units
for the new functions or change requests.

8. The software engineer creates or updates
unit tests and hardware/software
integration tests.

9. The software engineer updates the
software integration model and the
systems algorithm model.

10. The system analyst or software engineer
generates the software directly from the
models.

11. The system analyst or software engineer
tests the software and modifies the
design until the tests pass.

12. The software engineer integrates all
changes and performs all tests at the end
of the design cycle.

See Fig. 13.

David Lempia

12

After

Fig. 13. FCF Future Value Stream Activities

The new value stream was implemented by the
flight control team and did reduce the waste of
defects, queues and over-processing.

The flight control team discovered the theme of
small rapid design cycles called “Test-a-little
Build-a-little”. The original process took on the
order of a day for a change to be designed,
implemented, built, loaded into a test platform,
and tested. The new process reduced this time
to hours to test on the model, to build a system
and to test the system on the target platform.

The flight control team also discovered the
theme of single source design data. The
software model was directly derived from the
systems model. This reduced the effort
involved in both translating an algorithm model
first into a design document and then into
software and also reduced effort in checking the
consistency of the algorithm model and the
software. The single source model resulted in
fewer errors because the manual transfer of data
from one format to another was replaced with a
common model.

5.2 Case Study 2 – Flight Displays
A second example of using MBe to assist in
Lean engineering is the flight displays group.
Flight displays are integrated instruments that

assist the pilot in flying an airplane. The flight
displays team adoption of MBe was different
than the flight control computer team’s adoption
for the following reasons:

1. The flight displays team knew very little
about modeling technologies before
adoption.

2. Flight displays tool chains were more
complex because a graphical user
interface model and the algorithm model
tools needed to be integrated together.

3. The change was revolutionary as
opposed to the flight control computer
evolutionary change.

The value stream activities for the flight control
function described the handoff of design data
between different design teams. The displays
group current value stream activities identified
the same handoff between design teams. In
addition to this they also identified a handoff
between the Graphical User Interface (GUI)
design and the Behavior design. This case study
examines the handoff between the GUI design
and the behavior design. The value stream
activities describing the hand-off of changes
between the GUI and Behavior design are
described as follows:

1. A requirement is changed or added.
2. The software GUI engineer changes the

software GUI portion of the design
document.

3. The software behavior engineer changes
the Behavior portion of the design
document.

4. The software GUI engineer changes the
GUI software.

5. The software behavior engineer changes
the behavior software.

6. The tester changes the tests.
7. The tester builds the system for testing

on a test rig.
8. The tester performs requirements based

functional and integration testing.
9. A validator checks that the software is

consistent with the design.

13

USING LEAN PRINCIPLES AND MBE IN DESIGN AND DEVELOPMENT
OF AVIONICS EQUIPMENT AT ROCKWELL COLLINS

ReqReq
GUI
Design

Behavior
Design

GUI
Software
GUI
Software

Behavior
Software
Behavior
Software

Before
(6 changes)

C

C

C

C

C
TestsTestsC

Test
Rig
Test
RigB T

V

V

Fig. 14. Flight Displays Current Value Stream
Activities

Errors occurred at the handoff between design,
software, and test. Queues formed between
GUI design and Behavior design, GUI design
and GUI software, behavior design and behavior
software, and between software and testing.
Finally one change caused the update of
requirements, GUI design, behavior design,
GUI software, behavior software, and testing.
The errors, queues, and numerous changes are
examples of defect, inventory, waiting, and
over-processing waste. Changes require hours
to days to implement.

The future value stream eliminated or reduced
these forms of waste by introducing MBe and a
standardized interface definition. Interface
requirements are captured in the standardized
interface definition. The interface change can
be updated or imported in the GUI and Behavior
model. Tests are generated from the model and
run on the simulator or on the target build. In
the best case scenario an interface change that
previously required the manual update of 6
artifacts, 2 validation steps, 1 build, and 1 test
(See Fig. 14) is reduced to a manual update of 1
artifact, 3 automatic updates, 1 build, and 1 test.
In the worst case, the 3 automatic updates
require manual updates. See Fig. 15.

ReqReq

Framework &
Simulator

GUI
Model

Models

Models

Tracing

CM Sys

After
(1-4 change(s))

GUI
Library

Library

Behavior
Model

C

U U

B T
Test

U

Fig. 15. Flight Displays Future Value Stream Activities

The future value stream activities are now as
follows:

1. A requirement is changed or added to
the formal interface definition.

2. The work unit is defined to implement
changes or to add new features.

3. The engineer creates the manual test or
generates automatic tests.

4. The software engineer updates the
software GUI model (may require
manual changes to the model).

5. The software engineer updates the
Behavior model (may require manual
changes to the model)

6. The tester builds the system for testing
on a simulator or test rig.

7. The tester performs requirements based
functional and integration testing.

The future value stream activities are
streamlined and efficient. Simple changes to
the interface can be accomplished by one person
in minutes to hours.

6 MBe and Lean Benefits
In these two case studies, MBe and Lean waste
reduction were applied to the processes and
tools used by the teams. The teams identified
the current process and the forms of waste.
Using MBe technologies, the teams were able to
reduce the waste of transportation, inventory,
motion, waiting, over-production, over-
processing, and defects. Focusing on the 6
themes of Lean: Customer Defined Value;
Frontload Design; Pull-a-Little; Test-a-Little
Build-a-Little; Single Source Design Data; and
common solutions, new teams at Rockwell
Collins are quickly learning and implementing
the key strategies of Lean and MBe. Fig. 16
summarizes the trends teams see as they apply
MBe and Lean.

Traditional
Development

Design Models
Simulation

Manual Coding
Manual Verif

• Requirements Volatility
• Errors Found Late
• Rework

• Reduce Defects (Build the
wrong thing)

• Early Customer Validation
• Find Some Errors Early

• Avoid Wasted Effort
• Test Cases Generated
• Test Harness Generated

Manual Process

• Avoid Wasted Effort
• Error Proof the Code Step
• Eliminates Coding
• Model & Code Consistent

Autocoding
Manual

Verification

Autotest

Rqmt

Design

Code Unit Test

Integration

System Test

• Error Proof the
Implementation

• Avoid Rework

Qualified Code
Generator

Cycle-Time

Current Value
Stream Map

Eliminate
Waste Today

Eliminate Waste
with capital
investments

Ideal Value
Stream Map

Lean & MBe
Development

Fig. 16. Cycle Time Savings Trends with Lean and
MBe

The result of this trend is both satisfied
customers who receive products earlier and

David Lempia

14

satisfied share-holders who receive increased
stock prices because of cost reductions. How
often does that happen?

Reference

[1] Womack J, and Jones D. Lean Thinking. 2nd

edition, Simon & Schuster, 2003
[2] George M, Rowlands D, Price M, Maxey J.

The Lean Six Sigma Pocket Toolbook, 1st
edition, McGraw-Hill

[3] Morgan J, Liker J. Toyota Production
System. 1st edition, Productivity Press,
2006.

[4] SYSML. SysML – Open Source
Specification. http://www.sysml.org/

[5] Unified Modeling Language. Object
Management Group – UML.
http://www.uml.org/

[6] AADL. The SAE AADL Standard Info Site.
http://aadl.info/

[7] MARTE. The Official OMG MARTE Web
Site. http://www.omgmarte.org/

[8] IDEF Integrated Definition Methods.
http://www.idef.com/idef0.html

[9] RTCA SC-167/EUROCAE WG-12.
Software Considerations in Airborne
Systems and Equipment Certification.
RTCA, Inc. 1992

Copyright Statement
The authors confirm that they, and/or their company or
institution, hold copyright on all of the original material
included in their paper. They also confirm they have
obtained permission, from the copyright holder of any
third party material included in their paper, to publish it as
part of their paper. The authors grant full permission for
the publication and distribution of their paper as part of
the ICAS2008 proceedings or as individual off-prints
from the proceedings.

