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Abstract  

The Lateral overlap probability is a critical 
parameter for estimating the collision risk of 
aircraft pairs flying on parallel tracks. This is 
usually estimated from the distribution models 
of cross track errors. As a model of the 
distribution, a mixed probability density 
function (pdf) model consisting of the 
generalized Laplace (GL) core and double 
exponential (DE) tail is proposed in this paper. 
Based on this model, the characteristics of the 
distribution are discussed in relation to the 
maximum lateral overlap probability.  In 
addition to this, simple expressions of maximum 
lateral overlap probability for an aircraft  with 
RNP alerting capability flying on parallel tracks 
are indicated in this paper. 

 
 

1  Introduction  
 
Most modern RNAV (Area Navigation) system 
provides on board performance monitoring and 
alerting. The navigation specifications 
developed for use by these systems are currently 
designated  RNP (Required Navigation 
Performance) [1]. The concept of RNP has 
changed significantly in the past ten years 
[1],[2].  For simplicity, we discuss the problem 
on the framework  of the RNP manual [2]. 
    In Ref. [2], RNP is one of the key factors in 
the determination of separation minima used in 
the airspace where an RNP type is specified. 
The RNP type was defined only in terms of 
navigation performance accuracy [2], which 
was specified as a limit where total system error 
(TSE) must not exceed for 95% of flight time. 

RNP RNAV was the term to describe 
systems that were compliant with the 
requirements of the MASPS [3] in addition to 
the accuracy requirement. This is currently 
mentioned as RNP.  The containment integrity 
was specified by the maximum allowable 
probability for the event that TSE is greater than 
the containment limit (2× RNP value) and the 
condition has not been detected. The probability 
is 10-5/hr.  

 
Containment Limit (1-1x10-5)

RNP value:  R (95%)

d Sy=4R+d
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Fig.1 Configuration of parallel route. 

 
 
Fig.1 shows the configuration of parallel 

route for RNP RNAV aircraft. The centerline 
corresponds to the desired path.  
 It seems to be reasonable for us to determine 
the route spacing on the basis of collision risk 
assessment.  The lateral overlap probability is 
one of the key parameters of the collision risk 
model. This is usually estimated from the 
distribution of cross track errors of aircraft 
flying on the tracks under consideration. The 
shape of cross track error distribution for RNP 
RNAV aircraft may be constrained by two 
conditions, one is the 95% accuracy (RNP 
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value) and the other is related to the 
containment limit.  Though we have no 
empirical distribution of cross track errors at 
present, we may estimate a maximum lateral 
overlap probability for the RNP RNAV aircraft 
taking into account the conditions.  
 In the previous papers [4][5], the lateral 
overlap probability of RNP RNAV aircraft 
flying on parallel tracks was estimated on the 
basis of TSE (or cross track error) distribution 
models taking into account both the 95% 
accuracy and containment integrity. Models of 
the probability density functions describing the 
distributions of cross track errors have been 
proposed.  The models describing the 
distributions of the core region and that for tail 
region  were assumed separately.  The models 
assumed the Gaussian-like core and the double 
exponential or uniform tail. Under several 
assumptions the characteristics of the lateral 
overlap probability for RNP RNAV parallel 
tracks have been investigated. 

However, the proposed models[3][4] have 
resulted in discontinuity in its probability 
density at a point associated with the 
containment limit. In order to avoid this 
unnaturalness, a continuous probability density 
function model composed of a mixture of two 
distribution models is proposed in this paper.  In 
the new model, a mixture of the generalized 
Laplace(GL) distribution and double 
exponential(DE) distribution is used for 
describing the probability density function of 
cross track errors.  

This paper firstly describes the methods of 
modeling the distribution and estimating the 
maximum lateral overlap probability. Then  
examples of numerical calculation are shown. 
Finally, simple expressions for calculating the 
maximum lateral overlap probability are  
derived. 

 
 

3.  Capability of RNP RNAV Aircraft 
 
An RNP RNAV equipped aircraft system alerts  
the pilot when the TSE exceeds the containment 
limit. Fig.2 shows the possible states of the 
navigational system of an RNP RNAV equipped 
aircraft. . The states are as follows 

E1: |TSE|<2R and no alert of loss of RNP 
capability 

E2: |TSE|>2R and no alert of loss of RNP 
capability 

E3: Alert of loss of RNP capability 
where R is the RNP value (the 95% 

accuracy requirement). 
The frequency of large cross track error 

(TSE) of RNP RNAV aircraft will be reduced 
significantly due to the alerting capability. The 
pilot can take remedial actions when the system 
issues an alert of loss of RNP capability. Finally, 
in most cases (E1 and E3) the TSE will be 
bounded within the interval [-2R,2R]. Only the 
case of E2 allows large cross track errors 
beyond the containment limit.  

In the following sections, we consider the 
lateral overlap probability of RNP RNAV 
aircraft flying on parallel tracks under several 
assumptions. The schematic view of the tracks 
under consideration is shown in Fig.1. 

 

|TSE|≦2R
& No alert 
of loss of 
RNP 
capability

Alert of loss of RNP capability

|TSE|>2R
& No alert of 

loss of  RNP 
capability

E1 E2
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Pr[E3]<10-4/hr

Pr[E2]<10-5/hr
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Pr[E3]<10-4/hr

Pr[E2]<10-5/hr

 
Fig.2 Probability of each event [3] 
 
 

3  Models of Cross Track Errors  
 
3.1 Requirements for Probability Density 
Function 
   Let us denote the probability density function 
(pdf) of the cross track error, X, of RNP-RNAV 
aircraft by )(xf . The probability distribution 
function F(x) is defined by 
       ∫ ∞−

=
x dxxfxF )()(                                  (1) 

    From the 95% containment for RNP value, R 
satisfies 

05.01)()( −≥−− RFRF                       (2) 
    From the requirement for the containment 
limit, let the probability that |x|>2R be 2γ  (= 
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10-5) assuming that the average flight period of 
deviated aircraft without the alert of RNP 
capability is one hour. Then, the requirement for 
the distribution function is given by 

21)2()2( γ−≥−− RFRF                      (3) 
Herein, the pdf, )(xf  satisfies 

         1)()( ==∞ ∫
∞

∞−
dxxfF                         (4) 

In this paper we solely consider the case that the 
equalities in Eq.(2) and Eq.(3) are satisfied as a 
simple example. In the previous papers [4],[5], 
separate models were defined to satisfy the 
constraints (2) and (3). This resulted in 
discontinuity at |X| = 2R. In this paper, we 
consider a  continuous mixture distribution  as 
shown in Fig3. 
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Fig.3 Required positions on the distribution. 

 
 

3.2 Model of Probability Density Function 
Let us assume the pdf of the cross track 

error X,  )(xf , has the following characteristics. 
(i) zero mean and symmetric around  X=0. 
(ii) unimodal (has a unique peak at X=0) 
(iii) most heavily weighted in the core  

region ( KX <|| ), )2( RK <  is an 
appropriate value ) and slowly varying 
in magnitude in the tail ( )|| KX >  
region. 

Herein, we assume the following continuous 
mixture distribution  

  )()()1()( xfxfxf tc ⋅+−= αα               (5) 
where α  is the weighting coefficient  associated 
with the tail region ( 10 <<<α ). )(xfc   and 

)(tf t  are the pdfs associated with the core and 
tail, respectively. 

 
3.3 Model for Core Distribution 
As the candidate of the )(xfc , the generalized 
Laplace (GL) distribution may be appropriate 
because it changes the shape according to 
choice of the shape parameter. The pdf of the 
GL distribution is given by 
     )/exp())(2()( /11 b

c axbabxf −Γ= −       (6) 
where )0(>a  is the scale parameter, )0(>b  the 
shape parameter and )(bΓ  is the Gamma 
function which is defined by 

  dtttb b )exp()(
0

1 −=Γ ∫
∞ −                       (7) 

The shape of the GL distribution varies with its 
shape parameter b . In the case of 1=b , Eq.(6) 
becomes the double exponential (DE) 
distribution. The case of 5.0=b  corresponds to 
the normal (or Gaussian) distribution. Fig.4 
shows the shape of GL distribution for different 
shape parameter values. The previous papers 

[4],[5] indicated that the weighting coefficient 
α−1  of )(xfc  for the Gaussian is greater than 1. 

This fact contradicts with the condition 
10 <<<α . This suggests that the value of b  

which meets the distribution requirements 
described in Section 3.1 must be less than 0.5.  
 

0 2 3 4 5

-3

0

-2

-1

x
1

-4

Lo
g 1

0f
(x

)

bax
bab exf

/1|/|
)(2

1)( −
Γ=

a=1

　b=0.1
　b=0.5

　b=2

　b=1

　b=5

 
Fig.4 Shapes of GL distribution (a=1) for 

different shape parameter values. 
 
 

3.4 Distribution Model for Tail Region 
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As mentioned in 3.2, we assume  a distribution  
which  decreases slowly with the magnitude of 
the cross track error and which is very low in 
the tail region. Though it is not impossible to 
assume the GL distribution for the tail, it 
increases the complexity of analysis 
significantly because of too many model 
parameters. Therefore, let us assume the DE tail 
as used in the previous paper [5]. 

 )/exp()2()( 1 λλ xxf t −= −
          (8) 

where λ (>0) is the scale parameter. 
 
4. Lateral Overlap Probability 
 
Let us consider the aircraft pairs flying on the 
parallel tracks of which track spacing is Sy at 
the same flight level as shown in Fig.1.   The 
lateral overlap probability of aircraft pairs is 
given by 

  ∫
+

−
= yy

yy

S

Syy dzzCSP λ

λ
)()(             (9) 

where yλ is the average wing span of aircraft, 
and 

    ∫
∞

∞−
−≡ dxzxfxfzC )()()(        (10) 

is the lateral overlap density function. 
 
Herein, the track spacing Sy is assumed to be 
Sy=4R+d. d( ≥ 0) is the distance between the 
containment limits and yλ =0.0321NM(=59m). 
Under the assumption of 3.2, the following 
approximation[6] can be used 
    )(2)( yy SfSC ≈                       (11) 
At about ySz = , by the assumption (iii) and 
Eq.(11), )(zC  varies very slowly. Then, the 
following approximation can be made 
    )(2)( yyyy SCSP λ≈                     (12)  
Finally, we obtain 
     )(4)( yyyy SfSP ⋅≈ λ                  (13) 
 
 
5 Solving Equations 
 
First of all, we have to obtain the parameters 
of )(xf  which satisfies the equalities in Eq.(2) 
and Eq.(3) simultaneously. In the GL-DE  
mixture model, there are four parameters  

),,,()( αλbaxfxf =                        (14) 
    On the other hand, since the number of 
equations is two,  the parameters cannot be 
determined uniquely.  Therefore, we look for a 
set of parameters, which approximately 
maximizes the lateral overlap probability. 

Let us consider the probability density at 
ySz =  

)()()1()( ytycy SfSfSf ⋅+−= αα       (15) 
Herein, )()( ytyc SfSf <<  for RS y 2≥  and 

10 <<<α . Then, we can use the following 
approximation. 
  )(4)(4)( ytyyyyy SfSfSP ⋅≈≈ αλλ        (16) 

  )/exp(
2

4
λ

λ
αλ

y
y S−=               (17) 

Eq.(17) increases monotonically with α  if α  is 
independent of λ . The condition of 
maximization with respect to λ  is given by  

 0/)( =∂∂ λyy SP                            (18) 
for yS=λ , Eq.(17) becomes maximal. 

 
1)/2()( −⋅≈ eSSP yyyy αλ                 (19) 

However, in our case α  is a function of λ  and 
dependent on it as described later.  
 
 
6. Determination of Parameters 
 
The conditions of equalities in Eq.(2) and Eq.(3) 
for the  mixture distribution can be rewritten as  
       05.01)1( 1,1, −=+− tc II αα                 (20) 
       22,2, 1)1( γαα −=+− tc II       (21) 
where 
       dxxfI mR

mR cmc )(, ∫−=   (m=1,2)     (22) 

    dxxfI mR

mR tmt )(, ∫−=    (m=1,2)  (23) 
For the GL core and DE tail models, we obtain 
  λ/

, 1 mR
mt eI −−=              (24) 

     ∫−
−−Γ=

mR

mR
ax

mc dxebabI
b/1|/|1

, )](2[        (25) 
For the convenience of dealing with x, let us 
normalize the following quantities with the RNP 
value R. 
         Rkx x=                             (26) 
         Rka a=                                (27) 
         Rkl=λ                                   (28) 
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where xk , ak  and lk  are the normalized 
(dimensionless) cross track error, scale 
parameter of GL model and that of DE model, 
respectively. Using these, we obtain  
       lkm

mt eI /
, 1 −−=                              (29) 

 ∫−
−−Γ=

m

m x
kk

amc dkebbkI
b

ax
/1|/|1

, ))(2(     (30) 
We deal with the problem of maximizing  a 
function consisting of four parameters, 

α,,, la kbk . Eliminating α  from Eq.(20) and 
Eq.(21) under a given lk , we obtain the 
following equation               

0)1))(1((

))05.01()(1(),,(
/1

1,22,

1,
/2

2,

=+−−−−

−−+−≡
−

−

l

l

k
cc

c
k

cla

eII

IeIkbkG

γ
  

                                                             (31) 
Once b  and lk  are given, ),( laa kbkk = can be 
obtained by solving the above equation. Then, 
α  can be calculated by               

))1(/())05.01((),( /1
1,1,

lk
ccl eIIkb −−−−−=α    

                                                            (32) 
 
7  Examples of Calculation 
 
7.1 Method of Solving Equations  
Firstly, let the tail parameter be Rkl=λ  with 

lk =4. Secondly, we set a value for b . Thirdly 
we obtain solutions of ak  which satisfy Eq.(31) 
numerically by the Newton method. Then we 
calculate the candidates of the solution for α  
( 10 <<α ) using Eq.(32). The set of solutions 
can be obtained by the above-mentioned 
procedures. Among these solutions, the set 
which maximizes )( yy SP  would be the final 
solution. The calculation was made by a 
mathematical software package called 
MATHCAD. 
 Fig.5 indicates an example of evaluated 
values of the function )4,1.0,( akG  for b =0.1 and  

4=lk . Solutions for ak  can be seen at 
approximately 1 and 6. The substitution of 
solutions of )(bka  obtained from Eq.(31) for 
Eq.(32) yields the possible α  values.  If the 
calculated α  exists within (0,1) , it would be an 
effective solution.  
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Fig.5 Possible solutions of ka for a given 

b(=0.1). RS 4==λ . 
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Fig.6 Possible solutions for α . 4/ == Rkl λ . 

 
Fig.6  plots the solutions of ),( lkbαα =  for 
various values of b . b  is changed discretely 
within [0.05,0.45] by each 0.05 interval. In this 
case, we took R4=λ . As seen in the figure,  the 
effective solution ( 10 <<α ) can be obtained for 
the region where b  is up to a value between 
0.40 and 0.45.  Detailed numerical computation 
showed that an effective solution existed  until 

40275.0=b . In the region where b  is smaller 
than a value of about 0.3, the value of α  
asymptotically  approaches to a value.  No 
effective solution exists at =b 0.5. This means 
that it is impossible to fit the mixed distribution 
by the Gaussian core . 
 Fig.7 shows examples of distributions by 
solutions for various values of b  when =lk 4. 
The cases for =b 0.1, 0.3 and 0.4 are indicated. 
α  looks constant for small values of b  and 
starts decreasing at about =b 0.3. Since ft(x) >> 
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fc(x) and since the tail probability does not 
depend on b, one can expect that the mixture 
probability for large deviations is a function of 
alpha alone. This is why the tail probabilities for 
b<0.3 seem to have equal values. Fig.8 shows 
the similar distributions for the case 5=lk .  
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Fig.7 Mixture  distribution for R4=λ . 

 

3.0=b

1.0=b
4.0=b

Normalized lateral deviation 　kx=|x|/R
2 31

0

4

-6

-4

-2

0

Lo
g 1

0[
1-

C
um

m
ul

at
iv

e 
fr

eq
ue

nc
y]

)5(5 Rkl == λ

 
Fig.8  Mixture distribution for R5=λ . 

 
 
7.2 Maximum value for Py(Sy) 
From Eq.(21), α  can be obtained by 

   
2,2,

2,21

ct

c

II
I

−

−−
=

γ
α                       (33) 

where 
    dxxfI

R cc )(21
22, ∫
∞

−=                    (34) 
and 

    dxxfI
R tt )(21

22, ∫
∞

−=                    (35) 
Using Eq.(34) and Eq.(35), Eq.(33) can be 
rewritten as 

 
∫ ∫

∫
∞ ∞

∞

−

−
=

R R ct

R c

dxxfdxxf

dxxf

2 2

22

))()((2

)(2γ
α        (36) 

 
 As seen in Fig.7 and Fig.8, the core rapidly 
decreases in  the  region  21 << xk  (R<x<2R) as 
the shape parameter b  deceases from about 0.3. 
In the region 2>xk , i.e., x>2R, the relation 

)()( xfxf tc <<  would be satisfied. Then, α  
becomes a function of λ , independent of b , if 

dxxfR c )(2∫
∞  is negligibly small compared to 2γ  

and dxxf
R t )(

2∫
∞

. The  estimate of α , namely, 0α  
can be approximated by 
   ∫

∞
=

R t dxxf
220 ])(2/[γα             (37) 

 Substituting the DE tail model into  Eq.(37), 
we obtain 
     λγα /2

20
Re⋅=                          (38) 

The conditions 0 < a < 1 are fulfilled for any 
choice of λ  > 0.  
Substituting Eq.(38) for α  of Eq.(17), we obtain 

 
λ

γ
λ

λ/)2(
22)(

RS

yyy

ye
SP

−−⋅
≈                 (39) 

 From the condition 0/)( =∂∂ λyy SP , we can 
see that Eq.(39) has a local maximum at 

RS y 2−=λ (assuming RS y 4≥ ). The maximum 
lateral overlap probability for the DE tail 
model, DEyy SP )(  can be given by 

  
RS

eSP
y

yDEyy 2
2)(

1
2

−
⋅

≈
−γ

λ                      (40) 

 
7.3 Example of Calculated  Py(Sy) 
Fig.9  plots  the quantities, i.e., 

),(1 λyt Sfq ≡ , )(max2 λα≡q , and ),(3 λyy SPq ≡  
as a function of the DE tail parameter λ  for the 
case RS y 4=  and R=1NM. As shown in the 

figure, 1q  becomes maximal at 4=lk ( yS=λ ) 

(not visible) and 3q  has a maximum at 
2=lk (λ =Sy-2R) as shown in Section 7.2. 
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Fig.9 Relation between tail parameter λ  and 

Py(Sy). 
 
 
8 Discussion 
 
In the previous chapter  we only dealt with the 
DE tail model. However, we have no 
information about the true tail distribution  at 
this moment. As a most conservative  model for 
the non-increasing (flattish or decreasing with 
the magnitude of cross track error) tail 
distribution, let us consider a uniform  
distribution for )(xf t  . 
 In the case  of a  uniform tail distribution, 

)( yy SP  depends on the length of the  tails. From 
the consideration in the previous paper [3], we 
can understand intuitively that the most 
conservative case is that one  tail on one track 
covers the whole core region of  the other track. 
Then, the pdf model of the uniform tail can be 
given by 

 
⎩
⎨
⎧ +=≤

=
otherwise

RSLxforL
xf y

t 0
2)2/(1

)(   (41) 

 Eq.(20) and Eq.(21) can be satisfied 
regardless of the distribution types for the core 
and the tail.  Eq.(37) is also not limited to the 
DE tail model. Accordingly, plugging  Eq.(41) 
into Eq.(37), we obtain 0α for the above 
uniform tail. This is given by 
  ySL /20 γα =                                (42)  

Then, the value of )( yy SP  for the uniform tail 
model is given by 

   
yy

ytyuniformyy

S

SfSP

/2

)(4)(

2

0

γλ

αλ

=

≈
                (43) 

 Table 1 compares the simple expressions of 
the maximum lateral overlap probability for 
each model. These can be expressed as a 
function of four essential parameters, i.e., the 
route spacing yS , RNP value R, the probability 
of large cross track errors associated with the 
containment limit 2γ  and the average wing span 
of aircraft yλ .  
 Accordingly, the ratio of the maximum lateral 
overlap probabilities for the DE and uniform tail 
models is given by 

   
y

y

DEyy

uniformyy

S
eRS

SP
SP ⋅−

=
)2(

)(
)(

              (44) 

In case of RS y 4= , the ratio becomes very 
simple, i.e., 2/e 36.1≈ . This means that the 
maximal overlap probability for t )( yy SP  the 
uniform tail model is about 1.4 times greater 
than  for the DE tail model. 
 
 

Table 1 Comparison of maximum lateral 
overlap probability for each model. 

Tail 
model

Double 
Exponential 

(DE) 

Uniform with 
RSL y 2+=  

)(xft

λ

λ

2

/||xe−

 
⎩
⎨
⎧ ≤

otherwise
LxforL

0
)2/(1

 

0α  λγ /2
2

Re  
yS
L2γ  

)( yy SP
eRS y

y

)2(
2 2

−

⋅γλ
 

y

y

S
22 γλ ⋅

 

 
 

9. Concluding Remarks 
This paper proposes a continuous mixture 
distribution model for cross track errors of the 
aircraft with RNP alerting capability. Its 
components are the generalized Laplace (GL) 
distribution and the double exponential (DE) 
distribution. For large deviations, a simple 
expression for  the maximum lateral overlap 
probability was derived. This approximation 
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was compared with that for a uniform tail model.  
 The analysis of the lateral overlap probability 
indicated the following characteristics: 
(1) a Gaussian distribution for the overlap 
probability is not accurate and 
(2) for large deviations, the maximum lateral 
overlap probability for DE tail model is up to 
70 % smaller than that for the uniform tail 
model . 
 Our results are initial. They involve a large 
number of parameters. But they motivate the 
following future work: an analysis of the 
robustness to other tail distributions than the 
double exponential distribution. This answers 
“how conservative” the current models are.  
And the exact solutions of the maximization 
problem will be investigated. This requires 
formal solutions to non-linear constrained 
optimization problems, but gives the confidence 
that  the results are applicable. 
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