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systematic informal methods is a key factor in 
achieving high confidence in the security of the 
software distribution system at moderate cost. 

1. Introduction 

The use of electronic data distribution systems 
to support airplane maintenance processes 
introduces a need for information protection 

 was formerly 
 other authorities 
cies for the design 
-critical airplane 

re airworthiness. 
r has not been 
ontext of onboard 

mbedded systems 
for accidental 

o be loaded, using 
 (CRC) or similar. 
wards ubiquitous 

rplane models may 
 with ground-based 
ibution of software 

uce overhead and 
iability of airplane 
and maintenance 

ome at the cost of 
ems to potential 
etworks, aimed at 

e transmission of 
ety may become 
n the security of 

ata communication 
ing this issue, the 

FAA has started addressing security threats 
against ground-based support systems, insofar 
as they may affect flight safety [2]. In the future, 
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regulations referring to the well-established 
Common Criteria (CC) for IT security 
evaluation [3]. Documents like the Information 
Assurance Technical Framework [4] by the U.S. 
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os. The PP specifies 
of integrity and 

required – of 
ponent level, and 

hence after successful CC evaluation of the 
l be sufficient evidence 

at the security mechanisms of the ASVs 
jectives under the 
environment stated 

above. The remaining security objectives of 
correct destination and correct version and end-
to-end integrity and authenticity will be covered 
at system level by the formal analysis described 
below. 

3.3  The Protocol for End-to-End Software 
Distribution 

In order to assess the correctness of the AADS 
at system level, we consider the interaction 

 ASV 

ceived 
ng it if 
y and 

nature 

disclosure. Authorized perso
be trustworthy. 
Secure local environment. T
and their underlying OS ru
environment, which may c
facilities for performing local operations on 
software

ances (after decry
needed) and checking the authent
authorization of the sender. 
Approving the software by adding a 
and optionally re-encrypting the soft
making it available to further ASV inst
Delivering software out of the AA
successfully verifying it. 

Introduction of software into th
typically takes place at the supplier,
take place also at intermediate entiti
software delivery happens at the airpl
All ASV instances except at a suppl
incoming software. Adding a new sign
be done usually at ASV 

re and 
ces. 
 after 

firewall ensures that the AS
and the local environment a
through network access.  
Reliable PK

AADS 
et may 
 while 
e only. 
 verify 
re will 

certify keys used by the A
and properly managed. Revo
is issued regularly and 
revocation of a signing key. 
Airplane configuration enfo
environment of 

ces located at whether the
 local 
adding 
ection. 
e local 

ftware 
ecurity 
 costs. 
ic Key 
sed to

items is authorized by an approval statem
the airplane operator. Depen
design, this assumption can
ASV itself may perform suc

3.2 Certification of the AS
The ASV is a component for
Target may be produced ac
methodology. The documen
Profile (PP) for the ASV in
airplane software distributio
could easily be adapted to h
software distribution scenari
the security objectives 
authenticity and – if 
confidentiality at the com

processing of the software, 

Such processing is performe
environment o

3. Security Assessment of the AADS

3.1 Assumptions on the Operational 
Environment  

Not all assurance issues related to
distribution can be covered by the
assessment 
For example the reliability of the Pub
Infrastructure (PKI) [5], which is 
provide keys and certificates f
protection, is considered out o
According to the CC methodology, suc
are collected as explicit assumption

f scope. 
h aspects 

ASV instances, there wil
th

on the 
ystem. 

achieve these security ob
assumptions on the ASV 
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between the ASV instances located 
different nodes. As the interaction co
exchanging cryptogr

at the 
ists of 
ecured 
 of a 

Asset a software item includ
identity 
the concatenated cont

of the intended receive
certificate, which ties the
together with its public key, 
the message. The certific

ns
aphically s

m

otocol 
. In Figure

ere d as follows

airplane, and  
 certificate authority.  

 i
nvironment. In

tive node 

E y ASV s ap
ture, ess

e to th

The m g of the constructs

A - M -> B e M sent from

M.N e
and N 

h(M) the hash value of content M 
{M}_inv(K) content M signed with private 

key K 
{M}_K content M encrypted with 

public key K 
 

As usual when producing a signature, not 
the asset itself is signed but only its hash value. 
Note that the signature also includes the identity 

r. The sender’s 
 sender’s identity 
is also included into 
s are self-signed or 
thority (CA) that 

ertificate holder.  
ol, signatures are 
SV keeps the old 
n. However, each 

ature applied by its 
t not the signatures 
 as it is not assumed 

tha tionship with all 
re e, the airplane trusts 

its operator, but is not configured to know all 

certificates, the 
nsists in looking up 
c key in a locally 

set of authorized 
 For instance, the 

pically knows the 
public key of its operator. 

-signed certificates, 
 key has to be 
d in a locally stored 

e 
that the two locally stored sets of trusted public 

are managed by a trustworthy 

tallation approvals 

ing the identity 
ane in the asset signature 

e formally validate 
the authenticity of the asset origin and the 
integrity and confidentiality during asset 
transport. More precisely, we check that  

(1) assets accepted by the airplane have 
indeed been sent by the supplier,  

(2) assets accepted by the airplane have not 
been modified during transport, 

(3) asset authenticity and integrity are 
maintained hop-by-hop, i.e. from any 
ASV instance to the next, in particular 
between the operator and airplane, and 

messages, we have chosen the for
cryptographic protocol analysis.  

F t the prirst we presen in the 
 3, the 
: 

ate
signed by a certificate au
confirms the identity of the c

In the AADS protoc
applied in parallel: every A
signatures and adds its ow
ASV only checks the sign
immediate predecessor, bu
applied in the steps before,

t an ASV has a trust rela
vious nodes. For exampl

signed 
check co
the publi
stored 
senders.
airplane ty

common ‘Alice-Bob notation’
diff nt nodes are abbreviate
SUP  supplier,   software
MFG airplane manufacturer,  
OP airplane operator (airline),  
AP 
CA

For each node N, the associated public key p
is denoted by KN, and the private key is denoted 

potential suppliers. For signatures with self-by inv(KN). 

In the first step, the supplier ASV
assets from its local e

mports 
 every 

For CA
the CA
containe

set of public keys of trusted CAs. We assum

 
1. SUP - ).CertSUP{Asset.{h(Asset).MFG}_inv(KSUP }_
 

(K

v(K
v(K  
(KOP )

e di

further step, the ASV at the respec
receives a signed asset and checks the signature. keys 

ver  except the last one adds it
signa encrypts the whole m

proval 
age if 
e next 

administrator.  
We do not model ins

explicitly. Instead, we model part of the needed, and sends the new messag
ASV instance.  

eanin  used in 
approval information by includ
of the intended airpl

Alice-Bob notation is as follows: 
 messag  A to B 

ing its 

nts of M 

3.4 Security Properties 
For the AADS protocol, w

applied by the operator. 

KMFG -> MFG 

MFG).CertMFG}_KOP  -> OP 

SUP).CertSUP 
MFG).CertMFG

2. MFG - {Asset.{h(Asset).MFG}_inv(KSUP).CertSUP 
               .{h(Asset).OP }_inv
 
3. OP  - {Asset.{h(Asset).MFG}_in
               .{h(Asset).OP }_in
               .{h(Asset).AP }_inv

Figure 3: End-to-end softwar

.CertOP}_KAP   -> AP 

stribution protocol 
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(4) assets remain secret among the A
Clearly the security objec

authenticity, integrity and confidential
in Section 
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tem level. As

ff

showing only message exchanges, is not 
detailed and precise enough for thorough 
analysis. It leaves important processing steps 
implicit, in particular the checks an agent 
performs to accept a message and the parts of 
received messages and other state information 
the agent uses to construct further messages. 
The specification language of the AVISPA tool 
[6], HLPSL, offers constructs to express all 
steps involved in the message exchange in a 
precise, declarative way. Agents are defined 

f which multiple 
 given system or 
role is specified as a 
g such a transition, 

 checks messages before 
 new messages, which then can be 

 modeling all roles, 
er, operator and 

ce 
ce we can specify a 

parameterized role, called ASV, which is then 
tiated multiple times to represent the 

tocol. 
he header declaration for 

 parameters are used to 

configure the different instances, e.g. Import is 
true if signed assets may be received. The 
parameter KeySet holds a set of public keys 
that acts as authorization information: software 
items signed with a key in this set are accepted. 
For instance, the airplane only accepts software 
items signed by its operator. Alternatively, 
signed software items can be sent together with 
a CA-signed certificate, and are accepted if the 
public key of the CA is contained in KCASet.  
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performs to accept a message and the parts of 
received messages and other state information 
the agent uses to construct further messages. 
The specification language of the AVISPA tool 
[6], HLPSL, offers constructs to express all 
steps involved in the message exchange in a 
precise, declarative way. Agents are defined 

f which multiple 
 given system or 
role is specified as a 
g such a transition, 

 checks messages before 
 new messages, which then can be 

 modeling all roles, 
er, operator and 

ce 
ce we can specify a 

parameterized role, called ASV, which is then 
tiated multiple times to represent the 

tocol. 
he header declaration for 

 parameters are used to 

configure the different instances, e.g. Import is 
true if signed assets may be received. The 
parameter KeySet holds a set of public keys 
that acts as authorization information: software 
items signed with a key in this set are accepted. 
For instance, the airplane only accepts software 
items signed by its operator. Alternatively, 
signed software items can be sent together with 
a CA-signed certificate, and are accepted if the 
public key of the CA is contained in KCASet.  

Vs. 
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, stated 
nd (4). 
sender 

nodes are covered by CC 
certification, we gain 
substantial confidence in 
the overall security of the 
AADS. 

4. Formal Analysis of the 
AADS Protocol 

The Alice-Bob notation, 

generically as a role, o
instances may exist in a
scenario. The behavior of a 
set of state transitions. Durin
an agent receives and
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s of 
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nd (4). 
sender 

nodes are covered by CC 
certification, we gain 
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the overall security of the 
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4. Formal Analysis of the 
AADS Protocol 

The Alice-Bob notation, 

generically as a role, o
instances may exist in a
scenario. The behavior of a 
set of state transitions. Durin
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2.1, are covered by (1), (2)
Further, when sending a message, ever
includes the name of the intended recei
signature, and the receiving ASV
whether it is the intended destin
together with (3), the objective 
destination is also satisfied. In other w
signature of the operator containing th
the airplane models part of the in
approval statement for the asset. The r
part of the installation approval s
namely the ve

ng the A
Clearly the security objec
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ks 
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received in a transition by another agent.  

4.1 Modeling  an ASV 
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i.e. supplier, manufactur
airplane

ks 
on, so 
correct 
ds, the 
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llation 
aining

received in a transition by another agent.  

4.1 Modeling  an ASV 
Instead of individually

i.e. supplier, manufactur
airplane

ement, 
, we use the fact that all run an instan

of the ASV component. Henement, 
, we use the fact that all run an instan

of the ASV component. Hen
rmation, is not contained rmation, is not contained 

 our model. The 
objective of correct v
airplane configuration
i.e. that version chec
local environment. 

Hence the fo
analysis, presented in
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our formal model of
AADS architecture sati
the security objectiv
the sys

 our model. The 
objective of correct v
airplane configuration
i.e. that version chec
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Hence the fo
analysis, presented in
next section, implies
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AADS architecture sati
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rmal 
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2.1, are covered by (1), (2)
Further, when sending a message, ever
includes the name of the intended recei
signature, and the receiving ASV
whether it is the intended destin
together with (3), the objective 
destination is also satisfied. In other w
signature of the operator containing th
the airplane models part of the in
approval statement for the asset. The r
part of the installation approval s
namely the ve

erent erent 

the ASV role. Thethe ASV role. The

role softwareSignerVerifier( 
 SND,RCV: channel(dy), 

t SessN: nat,    % session number, needed just for echnical reasons 
xpressing asset_end_to_end 

 Import,Export: bool, % Import is true if a signed asset is expected, 
                      % Export is true if a signature has to be added. 
V, NextASV: agent, 

ic_key,  % public key of this ASV and 
one to which it sends messages 
 

     }_inv(public_key), % certificate for the private key inv(KASV) 
KCASet: public_key set,      % set of accepted CA certificates 

     % set of public keys of authorized senders 
) 

a
s
sg
CA
er , 
re

ta

SV role 

SUP,AP: agent, % supplier and airplane, just for e

   
 AS
KASV,KNextASV: publ

                                                          % the 
ASV: {agent.public_key Cert

           
 
 KeySet: public_key set  

local 
      St
      As
      M
      K
      C
      P
     
init 
      S

te: nat, 
et: text, 
,X,PrevSigs: message, 
,KprevASV: public_key, 
t: {agent.public_key}_inv(public_key)
vASV: agent 

te := 0 

Figure 4: Header and local variables of the A
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The local variables of the ASV in
variable State, wh

clu
ich acts as a p

nd others that are mainly used to hold 
essages. 

se
t a
me

unsigned form). The second and third rules 
cover the reception of a signed part, authorized 
either by a CA-signed certificate or by a public 
key contained in the internal key set. The 
remaining two rules describe what the ASV 
does with the received asset: either forward it in 
signed form to the next one, or consume it.  

We explain the second transition in more 
detail. A transition is divided by the =|> symbol 
into a condition part in which a message may be 
received and checked, and an action part in 

ent. Subcomponents 
 by the /\ symbol. 

Variables can occur in a transition in primed or 
unpri rimed from refers 

 value of the 
le before the 

, whereas the 
 form refers to the 

the same variable 
the transition. 

les can obtain a 
alue once during a 

n, either by 
ents, written in 

tion part, or by 
 matching in the 

ion part, typically 
reception of a 

e. For example, 
State = 0 means the 

hat the variable 
 has the value zero, 

State':= 1 
 that the variable 

is assigned a new 
one.  
he expression 
'.PrevSigs'}_KASV 

that a message that 
be encrypted with 
 KASV is received, 

rt of which is 
 in the variable 
, and the second 

is stored in 
igs. The next line 
es the constraint 
he message has a 

y 
X'.({h(Asset').ASV.SessN}_inv(Kprev
ASV').Cert'). As Asset has already been 
assigned a value in this transition, in this way it 
is checked whether the hash value of the asset is 
correct. Furthermore, the name of the receiving 
agent must be the identity of the current ASV. 
The public key with which the signature can be 
validated is stored in KprevASV. Next the 
certificate is validated: it has to contain the 
identity of KprevASV, and has to be signed by 
a CA whose public key is contained in KCASet. 

de the 
rogram 

There are five transition rules, pre
Figure 5. The first covers the case tha
is imported from the local environ

which a message may be s
of a transition are conjoined

med form, where the unp
to the
variab
transition
primed
value of 
after 
Variab
new v
transitio
assignm
the ac
pattern
condit
during 
messag

counter, a
values received in m

nted in 
n asset 
nt (in 

condition t
State
while 
means
State 
value: 

T
{Asset

means 
must 
the key
the first pa
stored
Asset
part 
PrevS
specifi

that the second part of t
specific form, namel

transition 
 
introduceNew.          
     State  = 0 /\ Import = false /\ RCV(start)  

evSigs' := nil 
 

 =    
ASV.SessN}_inv(KprevASV').

evASV'}_inv(KCA') 
ck if CA is in the accepted CA set 

_hop,Asset

 /\ Import = true  

')
.KprevASV'}_in KprevASV') 

g key acceptable

(ASV,PrevASV',asset_hop_by_hop,Asset

CV(start) 
 =|> State':= 

sset).NextASV.SessN
 

ho
en

 /\

to

s of 

 =|> State':= 1  
     /\ Asset' := new() /\ Pr
     /\ secret(Asset',asset,{})
 
importCASignedCert.    

= 0 /\ Import = true       State  
     /\ RCV({Asset'.PrevSigs'}_KASV) 
     /\ PrevSigs'
           X'.({h(Asset'). Cert')  

')   

     /\ Cert' = {PrevASV'.Kpr
che     /\ in(KCA',KCASet) % 

 =|> State':= 1  
     /\ wrequest(ASV,PrevASV',asset_hop_b

  
y

  
importSelfSignedCert.  
     State  = 0
     /\ RCV({Asset'.PrevSigs'}_KASV) 

Sigs' =       /\ Prev
            X'.({h(Asset').ASV.SessN}_inv(KprevASV .Cert')  

  
 

')  

}_inv(KASV) 

p_by_hop,Asset) 
d_to_end,Asset) 

 RCV(start) 

_end,Asset) 

the ASV role 

     /\ Cert' = {PrevASV' v(
check if sign     /\ in(KprevASV',KeySet) % in

 =|> State':= 1  
     /\ wrequest
 
send.          
     State  = 1 /\ Export = true /\ R

       

2  
     /\ SND({Asset.PrevSigs.({h(A
           .CertASV)}_KNextASV) 

     /\ witness(ASV,NextASV,asset_
     /\ witness(SUP,AP     ,asset_
 
final.                
     State  = 1 /\ Export = false
 =|> State':= 2  
     /\ wrequest(AP,SUP,asset_end_

Figure 5: Transition
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As a by-product of the
the identity of the sen
stored in the vari
PrevASV. As expla
above, the ASV ch
only the signature a
by the direct sender. This is 

s

 

p

ng the 
variable the 

not 
not 
on 

a 

ies 
tantia

f
 

ASV is configured with its 
own parameters. For 
instance, the eighth 
parameter is the name of 
the agent, i.e. SUP in the 
first instantiation, MFG in 
the second, and so on.  

The last part of the 
model, given in Figure 7, 
specifies the environment, 
including initializing 

and other 
, defining the 
owledge of the 
nd starting three 
essions of the 
for instance a 

between supplier 
up1 with a CA-signed 

certificate Sup1Cert, 
manufacturer MFG, operator 
op, and airplane AP. 

e checks, the ASV learns 
der, 
able 
ined 
ecks 
plied 

modeled by usi
X' for 

signatures that are 
handled and by 
performing verificatio
X'. 

4.2 Modeling the AADS
Figure 6 shows 

composed role c
session, which 
together the ins

n 

 

alled 
t

tions 
of the ASV needed for the 
end-to-end transport o
asset. Each instantiated

channels 
parameters
initial kn
attacker, a
different s
protocol, 
session 
s

role session(SND,RCV: chann
agent, 

el(dy),SessN: nat, 

public_key, 

                        
blic_key}_inv(public_key), 

bli ) 

false,true, 
KCA},SUPKeys) 

MFG,OP ,KMFG,KOP ,MFGCert,{KCA},MFGKeys) 
/\ softwareSignerVerifier(SND,RCV,SessN,SUP,AP,true,true, 

KAP ,OPCert ,{KCA},OPKeys) 
,SessN,SUP,AP,true,false, 

Cert ,{}   ,APKeys) 

le 

     SUP,MFG,OP,AP: 
     KSUP,KMFG,KOP,KAP,KCA: 
     SUPCert,MFGCert,OPCert,APCert: 
   
{agent.pu
     SUPKeySet,MFGKeySet,OPKeySet,APKeySet: pu c_key set
def= 
 
composition 
   softwareSignerVerifier(SND,RCV,SessN,SUP,AP,

SUP,MFG,KSUP,KMFG,SUPCert,{
/\ softwareSignerVerifier(SND,RCV,SessN,SUP,AP,true,true, 

OP ,AP ,KOP ,
/\ softwareSignerVerifier(SND,RCV

end role 

Figu

 one 

AP,none,KAP,knone,AP

re 6: Specification of the session ro

role environment() def= 
 
local 
      SND,RCV: channel(dy), 
      SUP1Cert,SUP2Cert,MFGCert,OPCert,APCert: 
                          {agent.public_key}_inv(public_key), 

blic_key set 

 agent, 
 public_key, 

d_to_end,asset: protocol_id 

) /\ 
SUP2Cert := {sup2.ksup2}_inv(ksup2) /\ % self-signed 

v(kca  ) /\ 
\ % self-signed 
 % self-signed, unused 

        % unused 
 % ksup3 is unused 
  

, op, AP, 

composition 
 session(SND,RCV,sessN1, sup1, MFG, op, AP, 
                         ksup1,kMFG,kop,kAP,kca, 

                        SUP1Cert,MFGCert,OPCert,APCert, 
                         SUPKeys ,MFGKeys,OPKeys,APKeys) 
    /\ session(SND,RCV,sessN2, sup2, MFG, op, AP, 
                         ksup2,kMFG,kop,kAP,kca, 
                         SUP2Cert,MFGCert,OPCert,APCert, 
                         SUPKeys ,MFGKeys,OPKeys,APKeys) 
    /\ session(SND,RCV,sessN3, sup2, MFG, op, AP, 
                         ksup2,kMFG,kop,kAP,kca, 
                         SUP2Cert,MFGCert,OPCert,APCert, 
                         SUPKeys ,MFGKeys,OPKeys,APKeys) 
end role 

Figure 7: Specification of the environment and session role instances 

      SUPKeys,MFGKeys,OPKeys,APKeys: pu
 
const 
 sessN1,sessN2,sessN3: nat, 

 sup1, sup2, sup3, MFG, op, AP    :
op,kAP,kca: ksup1,ksup2,ksup3,kMFG,k

hop_by_hop,asset_en asset_
 
init 
 SUP1Cert := {sup1.ksup1}_inv(kca  
 
  MFGCert := {MFG .kMFG }_in
   OPCert := {op  .kop  }_inv(kop  ) /
   APCert := {AP  .kAP  }_inv(kAP  ) /\
 SUPKeys  := {}             /\  
 MFGKeys  := {ksup2, ksup3} /\         
 OPKeys   := {}             /\         
 APKeys   := {kop} 
 
i
                      ksup1,ksup2,ksup3,kMFG,kop,kAP,kca} 
ntruder_knowledge = { sup1, sup2, sup3, MFG
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4.
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The AVISPA tool offers several model 
checkers as back-ends, which we have used to 
validate the AADS protocol, i.e. to check the 
specified security properties. We have 

e protocol with and 
without encryption of messages, and in both 

ork 
ecture for a security-

tion system, in 
 component that is 

ts of the AADS. For 
r design, we have 
es, namely CC 
lysis in the form of 
CC methodology is 
vering the secure 

ned IT-product, it 
nt support for the 
mposed of several 
ponent with a high 

other hand, the 
done by model 

latively small and 
 high-level security 
ential size of the 

 and dealing with 
uires the use of 
 assessing the 

component, the 

ll AADS protocol 
mbine the two 

s according to their strengths, and 
e in the overall 

om its role in the 
ess of writing a 
removing the 

ns usually present in 
natural language. 

al model of the AADS 
protocol is valuable in itself, as it provides 
highly precise documentation.  

As further work, we plan to extend the 
formal model and include full configuration 
management with explicit installation 
instructions and configuration reports. We also 
have formally modeled aspects of the PKI [5] 
underlying our software distribution system, in 
particular certificate initialization, and we plan 
to continue this work. 

3 Modelchecking the AADS 
In order to validate or falsify th

goals, the model checker e
(essentially) all message exchanges po
the system model applying the usual D
attacker model 

numerates cases, no attack has been found. 

ble for 
ev-Yao 
ntruder 
 traffic. 
 (as far 
ecrypt 

ct new 
m, and 

n, the 
AADS 
 and 
ified in 
wn in 
otation 
op,A
 agent 

e the 
(ASV, 

hat the 
t’. If 
quest 
tness 
s case, 
lues of 
 attack 
oal is 
tation: 

5. Conclusions and Future W
We have proposed an archit
critical software distribu
particular the use of a generic
instantiated at different poin
assessing the security of ou
combined two approach
certification and formal ana
model checking. While the 
strong in systematically co
implementation of a confi
does not offer cost-efficie
assessment of a system co
instances of a generic com
assurance level. On the 
automatic state exploration 
checking is restricted to re
abstract system models, like
protocols, due to the expon
state space of the models,
implementation details req
abstractions. Hence by
implementation of the core 
ASV, with the CC methodology and by 
formally analyzing the overa
at high level, we co
methodologie

[8], which assumes a
capable of controlling the whole netwo
He can intercept and take apart messa
as he knows the secret keys required t
them) and learn their contents, cons
messages out of the material known to h
send them to any party.  

As stated in the previous secti
security properties to be checked for
protocol are authenticity, integri
confidentiality. These properties are spe
HLPSL by adding annotations, as 
Figure 5. For instance, the a
witness(ASV,NextASV,asset_hop_b
sset) asserts that agent ASV has sen
NextASV the value Asset, w
corresponding annotation wrequ
PrevASV',asset_hop_by_hop,Asset
expresses that the agent ASV expects
agent PrevASV’ has sent the value Asse
during the model checker run, a wre
event is not matched by a previous 
event with the same identifier (in t
asset_hop_by_hop) such that the 
sender, receiver and asset correspond,
has been found. The confi
expressed by another a
secret(Asset',asset,{}). An ck 

sset' 
un this 
ntruder 
 keeps 
system 

gain substantial confidenc
security of the AADS. Apart fr
security assessment, the proc
formal model helps 
inconsistencies and omissio
a design specified in 
Moreover, having a form

against the confidentia
is found if 

comes part of the
owledge, which the model check

track of. The overall system goals an
run are activated as shown in Figure 8. 

performed the analysis on th

goal 
  weak_authentication_on asset_hop_by_hop 
  weak_authentication_on asset_end_to_end 
  secrecy_of asset 
end goal 
environment() 

Figure 8: Overall system goals 
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