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Abstract

This paper presents an optimization model for an
aircraft taxi-scheduling problem that arises on the
surface of airports. Though formulations are al-
ready available for this problem in the literature,
they either ignore aircraft type or do not include
all the safety constraints that are required to keep
any two aircraft separated by a minimum distance
at any time instant. The proposed model im-
proves on the previously known problem formu-
lation in the literature and formulates the problem
as a mixed integer linear program that takes into
account the aircraft type and all necessary safety
constraints. Solutions produced by the optimiza-
tion model are then compared with the taxi times
produced by a First Come First Serve (FCFS)
algorithm to assess the benefits of optimization.
Preliminary simulation results demonstrate that
approximately six minutes of taxi time per air-
craft can be saved for the surface traffic at Dallas-
Fort Worth International Airport using the opti-
mization model as compared to the FCFS algo-
rithm.

1 Introduction

As demand and congestion intensifies, reducing
aircraft taxi times at airports is becoming increas-
ingly important. There are two main methods
to reduce taxi times on airport surfaces. The
first method is to hold aircraft at their gates as
long as possible and then release them on optimal
schedules. The second method is to determine

de-conflicted taxi routes and thereby offer more
unimpeded paths. Credible solutions for either
method must properly account for aircraft type
and several safety constraints, which is a chal-
lenge. This paper focusses on the first method.

The problem of optimally assigning a time to
each aircraft on when to leave its gate, as well
as when to reach specific points on the airport
surface along its route, is referred to as the taxi
scheduling problem in the literature [2],[3],[4].
Though few optimization models are available
for the taxi scheduling problem, they either ig-
nore aircraft type [2] or do not account for all the
safety constraints [3],[4]. The mixed-integer lin-
ear program formulation in this paper accounts
for aircraft type and all the key safety constraints.
The formulation is also general and can be ex-
tended to any airport layout.

To assess the benefits of the optimal solu-
tions, comparisons are made with the taxi times
obtained from a first-come-first-served (FCFS)
algorithm. A preliminary study was conducted
for a group of twenty-five aircraft departing the
east side of Dallas-Ft. Worth Airport (DFW). The
next section gives a detailed description of the
problem along with possible solution approaches.
Next, the optimization model is developed, fol-
lowed by the simulation results and conclusions.

2 Problem setup and background

This paper addresses the following Aircraft
Taxi-scheduling Problem (ATP): Given taxi
routes for all the aircraft (both arrivals and
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departures), the problem is to schedule each
aircraft at all the taxi intersections along its
route such that the total taxi time of all aircraft
is minimized subject to the following constraints:

1. Safety constraint: any two aircraft must
be separated by a minimum distance at any time
instant. Also, any two aircraft must not overtake
or cross each other on a taxi link.

2. Runway occupancy constraint: each
runway must be occupied by only one aircraft
at any time instant. Sufficient time must be pro-
vided between any two aircraft using a runway
depending on whether the aircraft are arrivals or
departures.

3. Origin and destination timing constraint:
each aircraft has to reach its desired destination
before a given time. Similarly, a departure
aircraft is available at the first intersection or
spot1 in its route only after a given push back
time.

4. Speed constraint: the maximum speed of
an aircraft on a taxi link is bounded by a constant
depending on the location of the link.

A taxi route of an aircraft is specified by the
sequence of intersections the aircraft needs to
travel to reach its desired destination (e.g., run-
way or gate). Scheduling an aircraft at a given in-
tersection along its route requires specifying the
time at which the aircraft must reach that inter-
section. The collision avoidance constraint also
ensures that at any time instant the total number
of aircraft on each taxiway link does not exceed
the capacity of that link.

The ATP is closely related to the following
well known air traffic flow management problem
(TFMP) studied by Bertsimas et al. [1]: Given a
set of aircraft (with their respective routes), air-
ports, time periods and the pairs of aircraft that

1A spot is an intersection that is located on the boundary
of the ramp area (controlled by the ramp tower controllers)
and the taxiways (controlled by the ground controllers)

follow each other (i.e., if (i, j) is a pair then air-
craft j departs from its airport (A) after aircraft
i lands at airport A), the problem is to find the
release time of each of the departing aircraft, and
find the speed of each aircraft in the sectors along
its route while satisfying the capacity require-
ments of the sectors at all time periods. The ob-
jective of the TFMP is to minimize the total delay
cost of all the aircraft.

Refer to Fig. 1 taken from Ref. [1] show-
ing an example of the routes of two aircraft. A
route of an aircraft in the TFMP is specified by
the sequence of sectors that the aircraft needs to
travel from its departure airport to its arrival air-
port. The capacity constraint requires that at each
time period, there is an upper bound on the num-
ber of aircraft occupying any sector. Controlling
the speed of an aircraft in a sector along its route
is also equivalent to controlling the time the air-
craft takes to cross that sector. If one can relate
sectors to taxiways, then the TFMP is similar to
the taxi scheduling problem addressed in this pa-
per.

However, there is a fundamental difference
that separates these two problems. There is no
notion of any two aircraft preserving their se-
quence when they enter and leave a sector in the
TFMP. That is, if aircraft i enters a given sector
s before aircraft j, aircraft i may leave sector s
before or after aircraft j leaves sector s. This
constraint is defined as the overtaking constraint
in this paper and is not required for the en-route
problem considered in [1] as the sector spaces
are large. The reader can imagine a sector being
a multilane freeway where the minimum separa-
tion constraint between any two aircraft does not
exist. But this minimum separation constraint is
of utmost importance in the ATP (refer to Fig.
2) where a taxiway is essentially a single lane,
oneway at any time instant. As a result, the ATP
requires the constraint of preserving the sequence
of aircraft when they enter and leave a taxiway.

The minimum separation constraint signif-
icantly influences the type of model one can
choose to formulate the ATP. For example, con-
sider the following choices for formulating the
ATP and the respective challenges. One can
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sector

Bertsimas, D. and Patterson, S. S. (1998)

Aircraft a 3

Aircraft a
2

Aircraft a1 Aircraft a2

Aircraft a1

Basic Model: Multi lane, over pass freeways

Fig. 1 In the en-route problem addressed by Bertsimas et al. [1], each sector has a capacity constraint
without any requirement on the minimum separation between any two aircraft. In the figures, A,B,C,D,E
and F denote the sectors. For example, in the top figure, aircraft a1 travels from airport 1 through sectors
C,D to airport 4.

choose to formulate the ATP using the integer
program formulated in Bertsimas et al. However,
to ensure aircraft do not overtake while traveling
along a taxiway, one needs to divide each taxiway
into smaller cells so that each cell can at most
contain only one aircraft. By modeling this way,
one can eliminate the possibility of aircraft over-
taking each other inside a cell. Since a cell has
to accommodate every type of aircraft, the length
of the cell will be determined by the length of the
largest aircraft that travels that cell. As a result,
apart from increasing the complexity of the prob-
lem (increase in the number of variables), divid-
ing a taxi way into smaller cells ignores the type
of aircraft.

One can also choose to formulate the ATP us-
ing a set of binary variables that track the order
in which each of the aircraft visit the intersec-

tions and another set of continuous variables that
denote the time each aircraft reaches the inter-
sections along its route. In this case, the min-
imum separation constraints can be formulated
as quadratic constraints (refer to subsection 3.2).
These quadratic constraints however can be lin-
earized and this leads to a weak Mixed Integer
Linear Program (MILP). By a weak formulation,
we mean that the optimal LP relaxation cost cor-
responding to the MILP would not be sufficiently
close to the optimal cost of the MILP. If one de-
cides to solve this problem using a Branch and
Bound method, then formulating the problem this
way might increase the computational time. But
there is a distinct advantage in formulating the
problem this way because the type of the aircraft
can be taken into account.

Problem formulations for the taxi-scheduling
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or

Schipol taxi layout, J.W. Smeltink et al. (2004)

Basic Model: single lane, oneway

Aircraft can travel either from left to right or right to left on a taxiway

Aircraft a1
Aircraft a2

Fig. 2 In the ATP, each taxi way is a single lane, one way in which overtaking of aircraft are not allowed.
The Schipol airport taxi layout is taken from Smeltink et. al. [4].

problem or its variants has been previously pre-
sented in Visser et al. [2], Smeltink et al. [4] and
Balakrishnan et al. [3]. Visser et al. [2] formu-
late an integer program for a generalization of the
taxi-scheduling problem. They address the min-
imum separation constraint between any two air-
craft by dividing each taxi way into smaller links
and allowing each link to hold at most one air-
craft. For a large airport like the DFW airport,
dividing each taxi link would result in a large set
of variables. Also, the length of the smaller links
for a given taxiway is a constant and does not de-
pend on aircraft type. This would result in a con-
servative estimate on the capacity of a taxi link
and does not include all the traffic conditions. For
example, the length of a Boeing 737 is approxi-
mately half the length of a Boeing 777. So, a

taxiway can accommodate twice the number of
Boeing 737 aircraft as compared to Boeing 777.

Balakrishnan et al. [3] formulate an ILP for
the ATP for the DFW airport by extending the
formulation of the TFMP in Bertsimas et al. [1].
However, they do not formulate the overtaking
constraints in the ILP nor discretize the taxiways
into smaller cells. After solving the ILP, they pro-
pose to take care of the overtaking constraints by
metering the intersection leading into each taxi-
way such that the aircraft when entering a taxi-
way are separated by the required distance. Also,
the ILP they formulate has a minimum speed con-
straint for each aircraft on some taxiways. They
use this approach and test it with data obtained
from surface operations at DFW airport. How-
ever, using this approach of first finding the op-
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timal solution to the ILP without the overtaking
constraints (note just this step could produce op-
timal solutions violating overtaking constraints)
and then metering the aircraft at the intersections,
there is no guarantee that the aircraft sequences
will be preserved on every taxiway for any input
data (i.e., airport layout, aircraft mix, departure
time, runway crossings, etc.). For modeling pur-
poses, the minimum speed requirement for the
aircraft on some taxiways is actually not required
because if the objective of the ATP is to reduce
total taxi delays, then no aircraft would stop with-
out any reason (i.e., waiting for other aircraft to
depart) in the optimal solution.

Smeltink et al. develop a MILP for the ATP
in [4]. They retain the taxi layout of a given air-
port without dividing each taxiway into smaller
cells. They introduce three sets of variables to
formulate ATP. If aircraft i reaches an intersec-
tion u, the first set of variables track which air-
craft immediately follows aircraft i to the inter-
section u. If aircraft i reaches an intersection u,
the second set of variables track all the aircraft
that follows aircraft i to the intersection u. For
a given aircraft, the third set of variables denote
the time instants the aircraft must reach the in-
tersections along its route. They solve the MILP
using the data collected at Amsterdam’s Schipol
airport and report a reduction from 20% to 2%
of taxi delays. They also address issues related
with uncertainty by presenting three variants of a
rolling horizon algorithm.

The formulation presented in this paper is
based on the formulation of Smeltink et al. [4].
However, there are two differences between the
formulation presented in this paper with that of
Smeltink et al. The first difference is that all
the necessary minimum separation constraints
are not included in [4]. Specifically, if two air-
craft are traveling along the same taxiway, the
Smeltink et al. approach does not include con-
straints for the case when the lead aircraft travels
slower than the aircraft trailing behind (refer to
figure 5). In this paper, it is explained how all the
minimum separation constraints can be formu-
lated using distance-time diagrams (refer to sub-
section 3.2). Also, the formulation in this paper

is simpler with fewer variables. In particular, the
set of variables that keeps track of the aircraft that
immediately leads or trails an aircraft at a given
taxi intersection is not used in this paper. While
such variables were used in addition to other vari-
ables in [4], the taxi scheduling problem can be
formulated without using them. This results in
a significant reduction in the size of the problem
formulation both in the number of variables and
in the number of constraints.

3 Optimization model

Notations: Given a taxi layout of an airport, each
taxi intersection on the layout is represented by
a vertex. Each taxiway joining any two inter-
sections is represented by a directed edge. Let
G = (V,E) be a directed graph with V denoting
the set of all vertices and E denoting the set of
edges joining the vertices. Each edge (v1,v2)∈ E
joining vertices v1 and v2 is directed and indi-
cates the direction that an aircraft can travel along
that edge. To model the scenario when a taxi-
way is bi-directional (i.e., aircraft can travel in
both directions along the taxiway), two directed
edges are used. Let D and A be the set of all
the departing and arriving aircraft respectively.
Let D

⋃
A= P . In this paper, only one depar-

ture runway is assumed and all arriving aircraft
must cross this departure runway to reach their
destinations (i.e., spots)2. A taxi route for air-
craft i is specified by a sequence of vertices,
Si = { f i

1, f i
2, · · · , f i

ni
} where f i

k is the kth vertex
visited by aircraft i. Refer to Fig. 3 that shows
vertex f i

ni
for a departing aircraft i. If vertex v is

the next vertex visited by aircraft i after reaching
u, then let the taxi link joining vertices u and v be
denoted as (u,v). Let Ei denote the set of all taxi
links present in the sequence Si. An arriving air-
craft j crosses the departure runway by traveling
along edge (b j,a j) as shown in Fig. 3.

A departing aircraft i must reach its last
vertex f i

ni
before its scheduled departure time

(SDTi) for take off. Let PBTi be the push back

2This assumption can be relaxed and extended to other
scenarios.
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time for a departing aircraft i. Essentially,
aircraft i is available to reach vertex f i

1 only after
its push back time (PBTi). Similarly, let SSTi
and SATi be the scheduled destination time and
scheduled arrival time for an arriving aircraft i.

Decision variables: tiu denotes the time
aircraft i reaches vertex u. zi ju is a binary
integer variable. zi ju is equal to 1 if aircraft i
visits vertex u before aircraft j and is equal to 0
otherwise. ri j is equal to 1 if aircraft i uses the
departure runway before aircraft j and is equal
to 0 otherwise.

3.1 Objective function

The following is the objective for the taxi-
scheduling problem:
Minimizing total taxi time:

min ∑
i∈P

(ti f i
ni
− ti f i

1
) (1)

3.2 Constraints

Sequencing constraints:

For all u ∈ Si
⋂

S j, for all i, j ∈ P , i 6= j,

zi ju + z jiu = 1, (2)
zi ju ∈ {0,1}.

Equation (2) states the requirement that if
two aircraft i and j share a common vertex u
along their respective paths, then either aircraft i
must reach vertex u before aircraft j or vice versa.

Safety constraints:

Overtaking constraints:

For all (u,v) ∈ Ei
⋂

E j, for all i, j ∈ P , i 6= j,

zi ju = zi jv. (3)

If aircraft i and aircraft j share an edge (u,v)
along their respective paths, equation (3) states
that the sequence of the aircraft cannot be altered
while traveling along the edge. This essentially
implies that an aircraft cannot overtake any other
aircraft while traveling on a taxi link.

Crossing constraints:

For all (u,v) ∈ Ei,(v,u) ∈ E j, for all i, j ∈
P , i 6= j,

zi ju = zi jv. (4)

If aircraft i visits vertex v after u and aircraft
j visits vertex u after v along their respective
paths, equation (4) states that they cannot cross
each other along the taxi links connecting vertex
u and vertex v.

Minimum separation constraints
at intersections:

Let two aircraft i and j be traveling along
edges (u,v) and (u,w) respectively. Vertex u is
the common vertex for both the aircraft. Note that
vertex v can be different from vertex w. Assume
that aircraft i leads aircraft j at vertex u. Let sepi j

uv
be the minimum separation distance that the two
aircraft must maintain when the lead aircraft is
traveling edge (u,v). Consider the movement of
the aircraft as plotted in the distance-time dia-
gram (Fig. 4). In the figure, luv denotes the length
of the edge (u,v). For the discussion given be-
low, assume that luv ≥ sepi j

uv. Let l1, as marked in
the figure, denote the distance between the posi-
tions of aircraft i and aircraft j at the time instant
when aircraft j has reached vertex u. It is clear
the distance l1 must be at least equal to sepi j

uv for
the minimum separation criterion to be met. This
minimum separation constraint can be mathemat-
ically expressed as follows:

For all u ∈ Si
⋂

S j,(u,v) ∈ Ei and for all i, j ∈
P , i 6= j,

zi ju(l1− sepi j
uv) ≥ 0. (5)

6



An Optimization Model for reducing Aircraft Taxi Times at the Dallas Fort Worth International Airport

Arrival aircraft j crossing
an active runway

bjaj

DEPARTURE 
RUNWAY

Route of departing aircraft i
f i

in

Fig. 3 An arrival aircraft j crosses the departure runway along edge (b j,a j).

In the above scenario, aircraft i was travel-
ing along edge (u,v) and had already left vertex
u. Consider the other scenario where aircraft i
has just reached vertex v and aircraft j is travel-
ing along the edge (w,v). In this scenario, the
common vertex is v. As shown in Fig. 5, let l2
denote the distance between the positions of air-
craft i and aircraft j at the time instant when air-
craft i has reached vertex v. Also, let sepi j

wv be the
minimum separation distance that the two aircraft
must maintain when the trailing aircraft is travel-
ing edge (w,v). It is clear from Fig. 5 that the
distance l2 must be at least equal to sepi j

wv. This
minimum separation constraint can be mathemat-
ically expressed as follows:

For all v ∈ Si
⋂

S j,(w,v) ∈ E j and for all

i, j ∈ P , i 6= j,

zi jv(l2− sepi j
wv) ≥ 0.

(6)

Constraints stated in equation (6) are not for-
mulated in Smeltink et al. [4].

From figure (4), one can deduce that

l1 = (
t ju− tiu
tiv− tiu

)luv,

and
l2 = (

t jv− tiv
t jv− t jw

)lwv.

Substituting for l1 and l2 in equations (5, 6)
and linearizing them using a large positive con-
stant M, one can obtain the following linearized
equations:
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tiu tju tiv
Time 

Distance traveled
from vertex u

luv

l1
(0,0)

Aircraft i

Aircraft j

Fig. 4 Distance-time plot for two aircraft i and j. Aircraft j has just reached vertex u and aircraft i is
traveling on edge (u,v).

For all u ∈ Si
⋂

S j,(u,v) ∈ Ei and for all i, j ∈
P , i 6= j,

t ju− tiu− (tiv− tiu)
sepi j

uv

luv
≥−(1− zi ju)M. (7)

For all v ∈ Si
⋂

S j,(w,v) ∈ E j and for all
i, j ∈ P , i 6= j,

t jv− tiv− (t jv− t jw)
sepi j

wv

lwv
≥−(1− zi jv)M.

(8)

Runway occupancy constraints:

Consider any two aircraft i and j. Then either
aircraft i must use the departure runway before
aircraft j or aircraft j must use the runway before
aircraft i. That is,

For all i, j ∈ P , i 6= j,

ri j + r ji = 1. (9)

The departure times of any two departing air-
craft i and j must be at least separated by a given
constant based on the type of the aircraft. This
separation is required for safety reasons and is
necessary to avoid one aircraft being in the wake
vortex of an other aircraft. If aircraft j follows
aircraft i, let the minimum separation time be de-
noted by T i j

sep. This requirement is stated as fol-
lows:

For all i, j ∈D, i 6= j,

t j f j
n j
− ti f i

ni
−T i j

sep ≥ −(1− ri j)M. (10)

If a arriving aircraft j uses the runway imme-
diately after departing aircraft i, then the time at
which aircraft j reaches vertex b j (i.e., t jb j , refer
to figure 3) must at least lag the departure time of
aircraft i by a given constant (Tdep). This require-
ment is stated as follows:
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tjw tjvtiv

Time 

Distance to reach
vertex v lwv l2

(0,0)

Aircraft i

Aircraft j

Fig. 5 Distance-time plot for two aircraft i and j. Aircraft i has just reached vertex v and aircraft j is
traveling on edge (w,v).

For all i ∈D, j ∈ A ,

t jb j − ti f i
ni
−Tdep ≥ −(1− ri j)M. (11)

Similarly, if an departing aircraft i uses the
runway immediately after an arriving aircraft j,
then the departure time of aircraft i (ti f i

ni
) must

at least be equal to the time at which aircraft
j reaches vertex a j (t ja j). This requirement is
stated as follows:

For all i ∈D, j ∈ A ,

ti f i
ni
− t ja j ≥ −(1− r ji)M. (12)

Origin and destination timing constraints:

For all i ∈D ,

ti f i
ni

≤ SDTi,

ti f i
1
≥ PBTi.

(13)

For all i ∈ A ,

ti f i
ni

≤ SSTi,

ti f i
1

= SATi.

(14)

The above equations state that a departing
aircraft i can reach the first vertex along its
path after its given push back time (PBTi) and
must reach the last vertex along its path by its
scheduled departure time (SDTi). Similarly, an
arriving aircraft i reaches the first vertex at the
given arrival time (SATi) and must reach its last
vertex by its scheduled spot time (SSTi).

Speed constraints:

For all (u,v) ∈ Ei, for all i ∈ P ,

9



SIVAKUMAR RATHINAM∗, JUSTIN MONTOYA∗∗, YOON JUNG∗∗

luv

vmax
uv

≤ tiv− tiu. (15)

In the above equation luv denotes the length
of edge (u,v). vmax

uv is the maximum speed that
any aircraft can travel along edge (u,v).

Remarks:

1. The above optimization model includes
two difficult problems, namely the sequencing
problem and the time scheduling problem. If
the sequence of all the aircraft at each taxi
intersection is given, then the above formulation
reduces to a linear program in just the continuous
variables.

2. Note that there is no need for separate
modeling of queues. It is automatically taken
care of by the minimum separation constraints.

3. The objective in the problem minimizes
the total taxi time of all the aircraft. Other
objectives such as minimizing the maximum
destination time of any aircraft or minimizing
the total deviations from a given destination time
for each aircraft can also be formulated.

4. In the simpler case when only departure
aircraft are considered, this problem is a direct
generalization of the well known single machine
scheduling problem with job dependent separa-
tion constraints [5].

4 Simulation results

As a preliminary case study, a set of 25 aircraft
(12 large, 13 heavy) departing from the east side
of DFW airport has been considered. A set of 25
aircraft was chosen because normally during rush
hours, around 25 aircraft depart from the east side
of the DFW airport in 30 minutes. Fig. 6 shows
the network layout of the east side of the DFW
airport. Each aircraft is available at a specified

spot after its push back time. A route is assigned
to each aircraft from its spot to the departure run-
way.

Fig. 6 shows a sample route for a departure
aircraft. The maximum speed of an aircraft on
any taxiway is assumed to be 8 m/sec. The min-
imum separation distance between any two air-
craft must be at least 200 meters at any time in-
stant and is a constant for all the taxiways. The
departure timings of all the aircraft must be sep-
arated based on their type due to the wake vortex
separation constraints.

The separation matrix given in Fig. 7 was
used for the simulations. For example, if a heavy
aircraft follows a large aircraft on a departure
runway, then their departure times must be sepa-
rated by at least 75 seconds. The push back times
of all the aircraft are randomly chosen using a
uniform distribution in a time window [0,T ].

To simulate a case with high congestion, T
can be chosen to be a small number. Simi-
larly, choosing a large value for T would result
in a case with low congestion. For the simu-
lation study, six values for T were considered:
T = 0,5,10,15,20,25. For each T > 0, 100 sce-
narios were generated by choosing the push back
times of each aircraft uniformly in the interval
[0,T ]. For T = 0, there is only one scenario as all
the aircraft are available at their respective spots
at time equal to 0.

Optimizing the push back time of the depar-
ture aircraft could result in solutions that would
hold the departure aircraft as long as possible at
the spots. Therefore, each aircraft in the opti-
mization model is constrained to only wait for a
maximum of 10 minutes in all the simulations.

To assess the benefits of optimization, a
FCFS algorithm has also been implemented as
a base case. At any time instant, the FCFS al-
gorithm always gives priority to the aircraft that
reaches a taxi intersection or the departure run-
way at the earliest time. The FCFS algorithm
also enforces the maximum speed constraint and
maintains the minimum separation between any
two aircraft at any time instant. The FCFS al-
gorithm generates both the departure sequence
at the runway and the times at which all the
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spot
taxi intersection 

Departure runway (17R)

Arrival runway (17C)

a sample route 

Fig. 6 Network layout of the east side of the DFW airport.
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Fig. 7 Separation matrix for departure aircraft in seconds.
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aircraft reach their respective taxi intersections.
The average taxi time per aircraft generated by
the FCFS algorithm for different values of T is
shown in Fig. 8. For example, if T is equal to
15 minutes, the average taxi time per aircraft is
14.14 minutes for the FCFS algorithm.

Once the departure sequence is determined
using the FCFS algorithm, it is then used as
an input for the optimization model of the taxi
scheduling problem. The basic idea here is to
compare the taxi times obtained by the FCFS al-
gorithm with those from the optimization model
given the departure sequence of the aircraft on
the runway. To simplify the MILP formulation,
the departure sequence at the runway is used for
each of the taxi intersections for all the aircraft.
As a result, the optimization model reduces to a
linear program where there are only continuous
variables (i.e. times at which the aircraft must
reach all their respective intersections).

This linear program was programmed in
MATLAB [6] and solved using the YALMIP tool
box [7]. YALMIP is an open source software
available for MATLAB and can be used to solve
MILPs. Fig. 8 shows the average taxi time per
aircraft as obtained by solving the optimization
model. Fig. 9 shows the average savings in taxi
time using the optimization model. For the Ith

scenario, let CostI
f c f s (CostI

opt) be the total taxi
time obtained by using the FCFS algorithm (op-
timization model). The percentage savings using
the optimization model with respect to the FCFS
algorithm for a given scenario (I) is defined as
100(CostI

f c f s−CostI
opt)

CostI
opt

. Figure (10) shows the aver-
age savings in percentage. Though the average
savings for different values of T is around 6 min-
utes, the savings in percentage decreases as T
tends to zero. This is due to the fact that the dif-
ference between CostI

f c f s and CostI
opt decreases

as the maximum pushback time, T , decreases. As
congestion increases, this says that the taxi times
using the first come first serve algorithm is simi-
lar to an optimal solution.

5 Conclusions

An optimization model for an aircraft taxi
scheduling problem has been presented in this
paper. The proposed model improves on the
formulation presented by Smeltink et al. [4].
Specifically, the model presented includes all of
the safety avoidance constraints and is a simpler
formulation with a significant reduction in the
number of variables and constraints. To assess
the benefits of optimization, a FCFS algorithm
has also been implemented. For a preliminary
study involving 25 departing aircraft, on aver-
age, approximately six minutes of taxi time were
saved per aircraft using the optimization model
in comparison with the FCFS algorithm. Cur-
rently, the authors are investigating the scenar-
ios where both departure and arrival aircraft are
present. Fast heuristics are also being developed
for the taxi scheduling problem with an aim of
producing quality solutions that can be computed
efficiently.
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