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Abstract  

The problem of launcher trajectory optimization 
by criterion of the injected-into-orbit payload 
mass is considered. The fundamental features of 
optimal solutions caused by the presence of 
aerodynamic forces are investigated on the ba-
sis of the rigorous approach using the maximum 
principle. The extremals behavior including the 
qualitative transitions is analyzed at variation 
of launcher aerodynamic configuration in view 
of constraints on a g-load and pitch trim. 

Nomenclature 

Symbols: 
CD aerodynamic drag coefficient 
CD0 zero-lift drag coefficient 
CL aerodynamic lift coefficient  
CL

α = ∂CL /∂α 
Cm pitching moment coefficient 

LC
mC  = ∂Cm /∂CL 

Cm
α = ∂Cm /∂α 

F0 reference cross section area 
g gravity acceleration 
h altitude 
L/D lift-to-drag ratio 
L/Dmax =  )/(max DL

α

M Mach number 
m vehicle mass 
nz transverse loading 
q dynamic pressure 
T thrust value 
T thrust vector 
t time 
V velocity value 

V velocity vector 
α angle of attack 
γ path angle 
θ pitch angle 

Subscripts: 
( )adm admissible limit 
( )f at the final point 
( )i at the initial point 
( )max maximum value 
( )opt optimal value 

1  Introduction  
Aerospace vehicles such as space and sub-
orbital transportation systems, expendable or 
reusable ones, start in dense atmospheric layers. 
Traditionally, they are divided into two segre-
gated conventional types: “rockets” and “air-
planes”. 

From flight mechanics point-of-view the 
vehicles differ in attitude to a role of the atmos-
phere. It is traditionally considered that the at-
mosphere for “rocket” type vehicles is exclu-
sively a source of a backpressure at main en-
gines, a drag and transverse loadings, which 
should be minimized. These reasons result in se-
lection of conventional launcher layout and 
relevant nominal ascent trajectories that are 
characterized by the vertical start, near-zero an-
gles of attack in dense atmospheric layers and 
quasilinear optimal pitch control programs. 
“Airplane” type vehicles, on the contrary, lean 
(in a direct and figurative sense) on the atmos-
phere. Their trajectories do not hurry to leave 
dense atmospheric layers, and the optimal pitch 
control laws have an oscillating structure. 
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Such division of vehicles into “rockets” 
and “airplanes”, although it is traditional, is dic-
tated by departmental reasons, rather than scien-
tific ones. Thus, a priori suppositions about the 
physical boundary between these vehicle types 
based on a “traditional” view can lead to a false 
choice of the control program structure and dis-
tort essentially an impartial vehicle efficiency 
assessment. 
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L/Dmax = 
     0.0 
     1.0 

     2.0 
     3.0 
     4.0 
     5.0 

B

the bifurcation 
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In the paper authors conduct the unbiased 
investigation of optimal launcher trajectories us-
ing a rigorous method of indirect optimization - 
the Pontryagin maximum principle. 

The class of conventional “rocket” layouts 
with side-mounted boosters is considered. Their 
aerodynamic lift capabilities are smaller than 
the weight. Nevertheless, even such rocket lay-
outs are able to reach a rather high aerodynamic 
lift-to-drag ratio L/D at “flat” arrangement of 
side-mounted boosters. According to previous 
results [3, 5] it is the value of L/Dmax that charac-
terizes the structure of the launcher optimal con-
trol law in the atmosphere. Excess of critical 
value of 1.5 – 2.0 leads to a qualitative recon-
struction of the optimal pitch program from the 
classical quasilinear law [1, 2], obtained by Ok-
hotsimskii-Eneev-Lawden for optimal rocket 
flight in the in-plane uniform gravity field with-
out atmosphere, to oscillating ones.   

As “airplane” extremals lie in more dense 
atmospheric layers it is of importance to inves-
tigate the ability to solve effectively the prob-
lems of aerodynamic loads and moments in-
crease. 

2  Qualitative features of optimal control 
laws for spacecraft injection into a low 
Earth orbit 

The maximization problem of payload mass in-
jection into a low orbit has well-known theoreti-
cal approximate solutions [1, 2] determining the 
optimal program of thrust vector orientation, 
which cause the pitch angle to be linear in time.  

As shown in [3, 5] the strategy of the opti-
mal trajectory control is determined by the cor-
relation of the thrust (T), aerodynamic (A), iner-
tial (C) and gravitational (G) forces. If the thrust 
dominates, the optimal control law is qualita-
tively in conformity with the traditional one [1, 

2] obtained for uniform gravitational field under 
an assumption of the negligibility of aerody-
namic forces. However, if  
|T| >> |A| and |G+C| >> |A|, but 

|T+G+C | ∼ |A|,   (1) 

the effect of aerodynamic forces can change the 
structure of the optimal control law and generate 
multiplicity of extremals. 

 According to the classification [3-5] pos-
sible extremals in the problem of optimal injec-
tion of spacecraft in the Earth atmosphere into 
low orbits can have one of three different types:  
B – ballistic, A – aerodynamic, M - intermediate. 

B-type (“Ballistic”) extremals: 

- the optimal pitch angle programs are quasi-
linear (Fig. 1) to correspond the well-known 
“traditional” solutions [1, 2];   

- the aerodynamic forces influence weakly on 
the optimal control law structure; 

- the optimal start is nearly vertical; 
- the atmosphere is “perceived” only as a me-

dium with some drag; 
- they are typical to be used in guidance algo-

rithms for current space ballistic launchers; 
- they provide the global optimum at low lift-

to-drag ratios. 

A-type (“Aerodynamic”) extremals: 
- the optimal pitch angle program during the 

atmospheric flight has a pronounced oscilla-
tory nature (Fig. 1); 

- an inclined and quasihorizontal start is opti-
mal; 

A

t, s 

Fig. 1. Optimal pitch programs for launchers with
various L/Dmax. 
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-  the atmosphere is mainly perceived as a me-
dium that produces a lift; the optimal trajec-
tories pass into regions with higher dynamic 
pressures as compared with the B-type ex-
tremals; 

- they provide the global optimum at lift-to-
drag ratios that greater than some critical 
value ~ 1.5–2.0. 

M-type (“interMediate”) extremals: 
- they do not provide a global optimum. 
 

In this paper the attention is paid to the ap-
plication of outcomes [4, 5] for a class of verti-
cally started launchers with constraints on aero-
dynamic loadings and the condition of pitch 
trim being regarded. 

3 The trajectory optimization 

The launcher mass centre motion is considered 
in the coordinate system fixed to the start point: 

( )t
dt
d ,,uxfx

= , { }T, μ−+++= Ω,gATVf mm , (2) 

where x={r, V, m}T is the state vector, r is the 
radius-vector, u is the control vector, A is the 
vector of aerodynamic forces, g is the gravita-
tional acceleration vector, Ω is the acceleration 
vector due to coordinate system noninertiality, μ 
is the mass flow rate. 

The vector of aerodynamic forces is writ-
ten in the form [5]: 

( ( ( )( )) ) ,, vv00 eeeeA τα
α

τ
α DCDCqF LL ++−=  (3) 

where eτ is the unit vector directed along the ve-
hicle's longitudinal axis, ev is the velocity unit 
vector. The following form of aerodynamic co-
efficients is used [5]: 

,sin =

cos,sin = 0

α

α+=α
α

α
α

mm

DLL

CC

,DDCCC
          (4) 

that is in accordance with the square aerody-
namic polar  

.2,2
,,

00

2
0

kDkCD
kCCCC

D

DDLL

−=+=
α+≅≅

α

α

         (5) 

at a small angle of attack. 

The maximum lift-to-drag ratio L/Dmax is 
defined by formula 

( )kCC
CDL

DD

L

4
/

00
max +

=
α

. 

Coefficients CD0 and k remain constant un-
der L/Dmax variations while CL

α changes in accor-
dance with equality: 

( )kCCD/LC DDL 400max +=α . 
The thrust is constrained by minimum and 

maximum values: 
Tmin ≤ T ≤ Tmax. 
Thrust orientation is set as follows: 

1) Without taking into account the pitch trim 
the thrust vector is directed along the 
launcher longitudinal axis: 
T = Teτ . 

2) In view of aerodynamic moment the thrust 
vector deflects from longitudinal axis in 
pitch plane at the angle δ that is determined 
by the condition of pitch trim: 

αρ=δ αsin
2
1sin 00

2
mT ClFVTl ,  (6) 

where: lT  is the distance between the thrust ap-
plication point and launcher nose; 

 l0   is the reference length; 
Сm is the pitching moment coefficient 

relative to vehicle mass center. 
Launcher parameters and boundary condi-

tions are set up in Appendix A. 
The initial vertical climb leg (γ = 90°, 

θ = 90°) is ended reaching the velocity 30 m/s. 
After the vertical climb a short duration turn 
takes place with a fixed angle of attack αv (here 
αv= -5°). The turn is finished when a current 
orientation of the thrust vector coincides with 
optimal one. The subsequent flight is optimal.  

The optimization problem is to find the 
admissible control 

u = {eτ , T}T ∈ U                   
to transfer the vehicle from the initial point to a 
specified Earth orbit with the minimum mass 
consumption that corresponds to maximization 
of the final vehicle mass:  

Uu∈
⇒≡ maxfmΦ .         (7) 
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A number of constraints are taken into ac-
count. They depend on a purpose of the investi-
gation. In particular there are taken into account: 

αopt, deg 

1) The constraint on the angle of thrust vec-
tor deviation from the launcher longitudi-
nal axis: 

|δ| ≤ δadm.    (8) 
Using the pitch trim condition (6) this 

constraint reduces to the angle-of-attack con-
straint: 

αρ
δ≤α

m

admT

ClFV
Tl

00
2
sin2sin . 

2) The constraint on the transverse g-load 

admzt
n

mg
N <max ,   (9) 

where N is the resultant force acting transver-
sally to the launcher longitudinal axis. 

According to the Pontryagin maximum 
principle [6], the optimal control is found from 
the condition: 

{ } Hmaxarg, opt =τ Te ,    
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where 
fTΨ=H         

is the Hamiltonian. The adjoint vector  satis-
fies the equation 

Ψ

T.
⎟
⎠
⎞

⎜
⎝
⎛−=

x∂
∂H

Ψ       (10) 

and transversality conditions. Thus, the refer-
ence optimization problem reduces to a multi-
point boundary-value problem (BVP) for equa-
tions (2), (10). 

The numerical solution is found using the 
ASTER package [7]. It realizes the practically 
regular procedure of the BVP solution due to 
application of the modified Newton method, pa-
rameter continuation method and local extremal 
selection [7]. 

4  Optimal control laws in aerodynamic lift 
absence 

Let's consider the optimal injection trajectories 
(see Fig. 2) in two imaginary situations when a 
launcher does not have aerodynamic lift capa-
bilities: 

 

1. In view of an aerodynamic drag. 
2. Without aerodynamic drag. 

Launcher characteristics correspond to data 
of Tabs. A.1 and A.2 at Ti/migi =1.2. To elimi-
nate the effect of the aerodynamic lift it was 
supposed L/Dmax = 0. 

As it is seen in Fig. 2 optimal angles of at-
tack are non-zero even in absence of an aerody-
namic lift.  

5 The aerodynamic lift effect on the injected 
mass 

To investigate the aerodynamic lift effect on the 
optimal control laws and the injected mass let’s 
introduce the specific criterion as a relative in-
jected mass⎯mf . This criterion equals to the ratio 
of the injected mass at the optimal through tra-
jectory to the injected mass at the optimal tra-
jectory with the gravitational turn at the first 
launcher stage. 

t, s 

In view of an aerodynamic drag
Without aerodynamic drag 

t, s γopt, deg 

Fig. 2. Optimal time-relationships of the angle of attack 
and trajectory angle in view of an aerodynamic 
drag and without it. 
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Variations of the launcher lift properties 
are modeled by changing L/Dmax with CD0 and k 
remaining constant (see Eqs. (3) - (5)). 

The initial thrust-to-weight ratio is varied 
over the range 1.0 ≤ Ti/migi  ≤ 1.5 at the cost of 
the initial mass at constant initial thrust. 

According to Fig.3 the injected mass grows 
due to an increase in aerodynamic lift. It could 
be explained by the following physical reasons: 

1.   At fixed angle of attack the presence of 
the lift allows to change a direction of a resul-
tant force and approach it to the optimal one. 

2.   The lift allows compensating partially 
the gravity. Thus, gravitational losses of the 
characteristic velocity decrease, but they exceed 
characteristic velocity losses on the aerody-
namic drag in order.  

3. The aerodynamic drag increment is a 
higher-order value as compared to the lift at a 
small angle of attack. 

The effect of the optimal use of launcher 
carrying properties increases at reduction of 
Ti/migi that is connected with increasing a share 
of aerodynamic forces in the resultant of forces 
(1) acting on the launcher. 

Time-relationships of the pitch angle on 
the initial segment of the optimal trajectory for 
various L/Dmax are given in Fig. 4. At increase 
in L/Dmax these relationships alter, passing from 
quasilinear that are typical for B-type extremals 
to oscillatory, typical for type A. 

The boundary line that divides condition-
ally the areas in which optimal control laws be-
long to A and B types is shown in Fig. 3. Let's 
show this boundary line lies in range of L/Dmax 
values implemented for typical “rocket” layouts. 
We shall consider the launcher with four and 
two side-mounted boosters. Their aerodynamic 
characteristics are borrowed from the mono-
graph [8] by K.P. Petrov, a known TsAGI scien-
tist in the field of an experimental investigation 

Fig. 3. Dependencies of the relative optimal injected mass 
on the maximum lift-to-drag ratio at various thrust-
to-weight ratios  
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Fig. 4. Optimal time-relationships of the pitch angle at 
various L/Dmax. 
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of aerodynamic characteristics of rockets. The 
corresponding data are presented in Appen-
dix A. 

 For the launcher with four side-mounted 
boosters averaged maximum lift-to-drag ratio 
(depending on the initial thrust-to-weight ratio) 
lies in the range 0.8 < L/D*

max < 1.3. The similar 
range for the launcher with two side-mounted 
boosters is 2.4 < L/D*

max < 2.9. In Fig.3 these 
ranges shown by color bands. Here the averaged 
maximum lift-to-drag ratio denote such constant 
on Mach numbers L/Dmax value, at which the 
criterion⎯mf is the same as at variable aerody-
namic characteristics on Mach numbers accord-
ing to [8].   

Time-relationships of pitch and trajectory 
angles for optimal control program of these 
launchers are presented in Fig. 5. One can see 
that structures of these relations for the launcher 
with four side-mounted boosters correspond to 
B-type extremals, and for the launcher with two 
side-mounted boosters do to A-type extremals. 
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Thus, variations of layout parameters in-
side the conventional ballistic launcher class can 
result in qualitative change of optimal control 
laws. 

6 The aerodynamic moment effect 

An aerodynamic pitching moment, arising from 
the use of non-zero angles of attack at the ascent 
trajectory, is usually compensated by deviation 
of the main engine thrust vector. For typical 
“rocket” layouts at α > 0 the thrust vector 
should deflect from the launcher long axis mak-
ing an upward component. Thus, the thrust vec-
tor is closing to the “ideal” optimal direction 
(see Section 4) that increases the launcher mass 
efficiency.  

Let us test this supposition by the example 
in view of the constraint on the angle δ of thrust 
vector deviation (8). Take for distinctness  

|δ| ≤ 5°.    (11) 

γopt, deg 
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Fig. 5. Optimal time-relationships of pitch and trajec-
tory angles for launchers with four and two side-
mounted boosters. 

α

Fig. 6. The dependencies of ⎯mf  on the Cm
α (derivative of 

aerodynamic moment due to angle of attack) for 
various values of L/Dmax. 
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The relationships between⎯mf and Cm
α for 

various values of L/Dmax are shown in Fig. 6. 
While L/Dmax is varying the derivative Cm

α is 
assigned by the condition that  is fixed 
(here, = 0.24). 

LC
mC

LC
mC

Note, that the dependency⎯mf(Cm
α) has the 

maximum. The existence of the maximum point 
Cm

α
opt means that the aerodynamic moment (in 

certain limits) can help to improve the mass ef-
ficiency of launchers.  

All the maximum points Cm
α

opt correspond 
to values at which constraint (11) is in force. 
The optimal pitch angle time-programs taking 
into account the constraint (11) are shown in 
Fig. 7. 

7 The transverse load constraint effect 

The optimal ascent trajectory lies in 
denser atmospheric layers then the optimal 
gravitational turn. How the admissible trans-
verse g-load effects typically on the rela-
tive inserted mass is shown in Fig.8 (the calcu-
lations are fulfilled with the thrust vector angle 
constraint (11)). The bolded points correspond 
to the maximal transverse g-load , which is 
reached at the optimal trajectory, calculated 
without the transverse g-load constraint. Evi-

dently the increase of above  does 
not cause any change of 

admzn

maxzn

admzn maxzn
fm . The results show 

that the optimization of the atmospheric ascent 
leads to a noticeable gain in the functional even 
under strong constraints on the admissible 
transverse aerodynamic g-load. 

The considered range of  can be con-
ventionally divided on two parts. The L/Dmax 
rise provides the payload increase at 

admzn

1.0~
admadm ≈> zz nn  and the payload decrease at 

admadm
~

zz nn < . 

Conclusions 
The use of the rigorous method of the trajectory 
optimization based on the Pontryagin maximum 
principle makes it possible to provide efficiently 
the control law optimization and reveal the 
qualitatively new solutions. The dependency of 
the maximum mass injected into a low Earth or-
bit on launcher parameters can have essentially 
nonlinear character. The nature of such behavior 
is stipulated by a possibility of changing the op-
timal control law structure at launcher parame-
ters variation. Ballistic launchers with two lat-
eral boosters such as “Delta IV”, “Atlas V”, 
“Ariane 5” have large enough lift-to-drag ratio 
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Fig. 8. The dependencies of ⎯mf  on the n  for various 
values of  L/Dmax. 
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Fig. 7. Optimal time-relationships of the pitch angle at 

various L/Dmax in view of the constraint (11). 
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that can result in the qualitative change of opti-
mal control laws at dense atmospheric layers 
that makes them similar to typical laws for air-
craft. 
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Appendix A 

Task parameters 
The three-stage launcher with four side-

mounted boosters (Table A.1) is chosen as pri-
mary.  

Table А.1. Characteristics of launcher with four 
side-mounted boosters 

Ratio of vehicle length to diame-
ter of central booster 

7 

Ratio of diameter of side-
mounted boosters to diameter of

0.4 

central booster  
Ratio of length of side-mounted 
boosters to total vehicle length  

0.525 

Ratio of nose conical section 
length of central and side-
mounted boosters to diameter of 
the corresponding booster 

2.5 

Reference area F0 33m2 
The distance between the vehi-
cle mass center and launcher 
nose divided by the reference 
length 

2/3 

Specific mass flow rate μgi / Ti = 3.0·10-3 с-1 
 
Aerodynamic characteristics of the 

launcher are determined based on data obtained 
for this layout in [8, p. 103]. At the parametric 
analysis the following average values are used: 

 
Table А.2. Characteristics of the launcher at the pa-

rametric analysis 
CD0 0.31 
k 4.55 
L/Dmax 0.0 – 3.0 
Ti/mi  1.0 – 1.5 

 
Variation of the initial thrust-to-weight ra-

tio Ti/migi is performed by the change of the ini-
tial mass. Characteristics of the launcher with 
two side-mounted boosters are presented in Ta-
ble A.3. 

 
Table А.3. Characteristics of the launcher with two 

side-mounted boosters 
Ratio of vehicle length to diame-
ter of central booster 

10 

Ratio of diameter of side-
mounted boosters to diameter of
central booster  

1 

Ratio of length of side-mounted 
boosters to total vehicle length  

0.7 

Ratio of nose conical section 
length of central and side-
mounted boosters to diameter of 
the corresponding booster 

1.54 

Reference area F0 20m2 
Distance between vehicle mass 
center and launcher nose di-
vided by reference length 

2/3 

Specific mass flow rate μgi / Ti = 3.0·10-3 с-1 
 
Aerodynamic characteristics of launcher 

with two side-mounted boosters are determined 
based on the data obtained for this layout in [8, 
p. 93].  
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Boundary conditions are presented in Table 
А.4. 

 
Table А.4. Boundary conditions 

Initial conditions Vi = 0 
hi = 0 
γ = 90° 
θ = 90° 

Final orbit circular, horb = 200 km 
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