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1  Introduction  
Throughout the history of jet air 
transportation, there have been periodic 
occurrences of dynamic stall on take off or 
go-around, often followed by wing drop [1]. 

en associated with 
nd quite often, wing 
]-[2]. The Institute 
h (IAR) of the 
uncil (NRC) has 
earch project to 

non. Flow physics 
that the effects of 
ace roughness and 
onlinearly coupled 
essments based on 
individual effects 
eading predictions, 

d that simulates the 
ound effect, in the 
 rate and surface 
ion of flight tests, 
namics (CFD) and 
s undertaken. Flight 
133 straight wing 
procedures to be 
d tests for take off 
oughness, followed 

ers at altitude. The 
extension to swept-wing airplane types is 
being accomplished with parallel tests on the 
NRC Falcon DA20. The project is broad in 
scope and of a multi-disciplinary nature. The 
purpose of this paper is to outline the 
approach and new methodologies introduced 
to address the problem. Some preliminary 
results from the first two flight test series, 
details of flow diagnostics, and CFD 
development and validation are presented. 
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2  Rationale  
For obvious reasons, the actual fl
involving stalling and/or loss o
cannot be performed near the g
Hence, a method had to be de
extrapolate the free-air 
characteristics to ground proxim
would use a computational 
wherein the free-air and groun
unsteady aerodynamics are bridge
physics modeling. Both the fligh
CFD simulations would have to a
the effects of wing surface rou
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Whereas the unsteady Reynolds
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account for viscous effe
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the complete phenomenon of 
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motions. The simulation of wing 
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3  Aerodynamic Model  

3.1 Flow Physics 
The first step was to identify the physical 
mechanisms underlying the dynamic stall 
phenomenon. The dominant unsteady flow 
separation mechanisms for airfoil pitch-up 
have been identified as accelerated flow and 
viscous fluid/motion coupling effects [5]. 
Thus, the onset of flow separation is 

ation of pressure 

and a viscous 
fect, which has been 
 wall effect [6]-[7]. 

face of the wing is 
energized through a wall jet-like effect 
acting close to the stagnation point, where 
the velocity gradients are very high (Fig. 1).  
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dynamic stalling.  
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boundary layer 
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[5], 
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referred to as the moving
During the pitch-up maneuver the boundary 
layer on the upper sur

 
Figure 1: Moving wall effect 
and/or plunging motion. 

 
The r

on an airfoil in pitching 

esult is that the boundary layer 
e omes more resistant to separation, 

allowing the static stall angle to be exceeded 
by an increment s, the well-known 

t [8]. On the lower 
ing adverse effect 

layer. The dynamic 
stall angle in fully 

          (1) 

b c

 Δα
dynamic stall overshoo
surface, the correspond
weakens the boundary 
overshoot of the static 
turbulent flow is then:  

Δαs = Δαs1 + Δαs2  

where 
∞

=Δ
U
cKs
αα
&

11  and 
∞

=Δ
U
zK LE

s
&

22α  are 

the contributions due to accelerated flow and 
moving wall effects respectively, and K1 and 
K2 are constants defined in Ref. [5]. The 
nature of the phenomenon depends on the 
boundary layer steady state condition. At 
high angle of attack the peak upper surface 
flow velocity is developed near the leading 
edge, and boundary layer transition occurs 
near the airfoil nose. When the moving wall 
effect acts on transition before flow 
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separation, a leading edge separa
be precipitated. Generally, in su
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freestream turbulence, and the cou
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data [3], correlating ΔαCLmax/(αCLmax - α0) 
with the relative roughness height, k/c. 
Favorable correlation of dynamic stall onset 
delay was obtained on low Reynolds 
number (Re) airfoils and on the NRC 
Harvard airplane at flight Reynolds numbers 
[3]. This demonstrated a degree of 
universality of pitch rate effects on dynamic 
stall onset for the smooth, straight wing 
case, which was not unexpected in this 
confined part of the parameter space, 

nce of the moving 
havior is expected 

ing the roughness 
 stall onset ( sαΔ  < 
and ground effect, 
s due to changes in 
n. Combined pitch 
ound effects could 

another perspective, the susceptibility to 
le roughness may be higher in the 

ith pitch rate and 
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 airplane unsteady 

 viscous flow effects 
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e gap between the 
ffect behavior, it is 
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t captures the flow 
teady stall onset, 

fected by pitch rate, 
ound effect. 
possible to model 
ling in the CFD 

ay not always be 
al. In particular, the 
l onset delay for 

clean wings cannot easily be predicted at 
present [9]. However, for the fully-rough 
wing case, for which CFD can be validated 
and matched to flight test, the accelerated 
flow effect on the external flow, circulation 
lag and boundary layer lag could be 
captured. Below a certain roughness 
threshold, the competing flow mechanisms 
will be determined by boundary layer and 
roughness characteristics. Then, where the 
moving wall effect is dominant, the absence 

0), and Mach number 
introducing nonlinearitie
stall type or progressio
rate, roughness and gr
either delay or promote stall. Viewed from 

small sca
presence of coupling w
ground effects. 

3.2 Analytical Approac
As the flow physics of
stalling is dominated by
[9], not all the paramete
control can be simulate
flight tests, particularly 
the ground; neither ca
mechanisms governing 
simulated by a URANS m
database is generated c
data from both free-air 
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free-air and in-ground e
necessary to constru
aerodynamics model tha
physics governing uns
including how this is af
surface roughness and gr

Conceptually, it is 
the viscous motion coup
simulations, but this m
practicable or economic
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of the dynamic coupling in the
model is accounted for in a “dy
equivalent” simulation, by definin
kinematic and flow parameters
Assuming further that there is no b
of the stall type, the behavior 
steady, and the contributions to Δ
superimposed (Eq. 1). In the idea
time-accurate Navier-Stokes soluti
be desired that models both the 
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Figure 2: Flow chart of flight test/CFD
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sαΔ  (Eq. 2), 
from both flight test and CFD, are correlated 
with ∞Uc 2/α&  as part of the process (“stall 
onset coupling analysis” in Fig. 2) for 
isolating the various viscous and inviscid 
contributions to the dynamic stall onset. The 
analysis is restricted to the quasi-steady 
domain, which is bounded by critical pitch 
and roll rate boundaries that exclude time 

including transient 
/roll rate-induced 

. To transfer the 
 from free-air to 
ed that the viscous 
affected by ground 

in stall progression; 
n the quasi-steady 
. Some of the steady 
 in this scheme can 
NS analysis. Then, 

he information extracted from 
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 prediction of stall 
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imilar, but 

 required as the 
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 three dimensionality of the 
e stall angle [9]. To 
plexity, additional 

analytical procedure 
visualization and 

 dimensional (3D) 
n mechanisms are 

[9]. 

s highly three dimensional the 
analysis is more computationally intensive 

-wing airplane, and there 
is a greater reliance on experimental 

ogression. For this 
lization involving 

ays a key role. 

4  Roughness Simulation  

4.1 Experimental Simulation of Wing 
Roughness  
Modeling of surface roughness is an 
essential part of the program. The CFD 
approach to turbulent flow over rough 
surfaces is to model rather than to mesh the 

history dependent events, 
phenomena and pitch
changes in stall type
unsteady characteristics
ground effect, it is assum
moving wall effect is un
effect induced changes 
this is justified withi
domain of incipient stall
aerodynamic data needed
be obtained from 2D RA
combining t
flight test analysis and URANS calculations 
as shown 
“dynamically equivalent”
in ground effect can be ma

3.3 Extension to Swept Wings 
The approach to dynam
swept wing airplane is s
additional modeling is
accelerated flow and moving wall ef
modified by the
leading edge flow near th
handle the increased com
steps are required in the 
as well as in flow 
diagnostics. The three
unsteady flow separatio
discussed in more detail in Ref. 

As the swept-wing flow field of the 
Falcon i

than for the straight

determination of stall pr
reason, 3D flow visua
infrared thermography pl
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sandpaper types. 
The image of a sample of 3×3 in2 to be 

analyzed is divided into nine regions of 1×1 
in2. Each region has its contrast enhanced to 
correct for spatial non-uniformity of the 
light excitation. A unique threshold level is 
used to separate the grit (dark) from the 
bright paper (light color) on the entire 
sample. After grit detection, statistics are 
performed on the results obtained separately 
for all nine regions to produce the mean grit 

dard deviation. The 
in percent of area 
area for each region 
wledge of the grit 
es, the contours of 

 superimposed (in 
ndpaper image (Fig. 
fication tool for the 

user. The detection parameter (sample 
l) can then be adjusted to 
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effectiveness of an 
element in eddy 

ndary layer is as 
the distribution of 
its own geometric 
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is related to ks, is 
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is leads to effective values of 
and drag of each 
ly, an effective 3D 

esistance parameter 

, ke/c) (3) 

lidity. 
e parameter ks/k 

elation is obtained. 
 5 for Schlichting’s 

roughness elements [11]. In existing work 
on the correlations of ks/k (Ref. [10]) or 
ks/(CDk) (Ref. [12]) with λF, two regimes are 
apparent, where the roughness effect 
respectively increases and decreases with 
λF. The present result (Eq. 3) is most 
convenient for the determination of 
equivalent sand grain roughness ks/k, as it 
merges the two regimes and is applicable to 
arbitrary roughness types. 
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Φ3DR = fn( k/c, λS, λF
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When correlating th
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This is illustrated in Fig.

t
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Figure 3: Detection results for sample of 
sand paper displayed on original (raw) ima
value is 62.4%, 1σ = 0.5% from all regions.  

 
 

#40 grit 
ge. Mean 

 
Figure 4: Close-up view of the bottom right corner 
region (Region #9) with the grit contour 
superimposed (in white).  

5  Instrumentation 
On both research airplanes, wing pressure 
distributions are measured at two spanwise 
wing stations by means of closely spaced 
pressure taps, together with a set of pressure 
transducers. In the case of the Falcon, 

 (IR) provides data on 
the boundary layer flow (see Section 3.3). 
 
 

infrared thermography

 
Figure 5: Correlation of ks
roughness parameter for Schl
elements.  

 
A FLIR SC3000 ca

is sensitive in the far inf
capturing 60 images pe
image resolution of 24
camera is focused on t
dummy emergency e
window in the case o
equipped with a special
case of flight tests. The
equipment (a PC, con
installed on a rack 
aircraft. The wing top 
coated with matt black 
surface emissivity an

/k with the distributed 
ichting’s [11] roughness 

mera is used, which 
rared and capable of 
r second, with an 
0×320 pixels. The 
he wing through a 
xit door, without 
f ground tests, or 
 IR window in the 
 camera and related 
trol box, etc.) are 
secured inside the 

surface has been 
paint to increase the 

d minimize the level of 
 Figure 6 shows a 
n left wing painted 
 2-inch long white 

tufts for surface flow visualization. Due to 
the presence of a wing fence, the field of 
view is restricted to a region of the outboard 
wing up to the wing tip and to 
approximately 97% of the wing chord. The 
wing leading edge and the first one percent 
of the chord are not visible in the images. 

The IR camera start event is controlled 
by the on-board data acquisition system. 
During a typical ground test, when the 
aircraft speed reaches about 90 knots, the IR 

background reflections.
photograph of the Falco
black and covered with
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camera is triggered and records th
25 seconds. Figure 7 sho

e 
ws some

eters (speed and pitch angle) a
during a ground test versus run time. 

 

data for 
 of the 
cquired param

 

 with the 
tufts for 
d behind 

Figure 6: Photograph of the Falcon aircraft
left wing painted black and covered with 
flow visualization. The IR camera is locate
the emergency exit door. 

 

 
 first run 

out most of the wing d
aerodynamic loading (pr
too large). 

The computation 
Figure 7: Speed and pitch profiles from the
of the ground test. Red symbols correspond to IR 
image acquisition (1500 images). 

 
The principle of infrared thermography 

for flow visualization is based on the 
variation of heat transfer coefficients with 
air flow characteristics. The heat transfer 
coefficient is greater for an attached flow 
than for a separated flow. In the present 
study, the central part of the wing, 

er than the air (Tamb 
e attached flow is 
 wing down. As 

n region occurs on 
ng the pitch-up 
mperature tends to 
poral temperature 
tion of the flow 
wing. After flow 
as become locally 

ll be cooled down 
s on the wing (e.g. 

maneuver). In this 
radient is reversed. 
. 8, showing a raw 

same image after 

erature distribution 
. 8 a) is non-uniform due to wing 

and various heat 
 wing section and 
s (reflections of the 
noticed when the 
igh angles of attack 

sing methods were 
elevant information 
he most interesting 
computation of the 

or gradient (ΔT) 
 image. This refers 

the current image is 
an image lagging 
ber of images (ΔI). 

antage of cancelling 
eformations under 

ovided that ΔI is not 

of a temperature 
gradient using ΔI=25 images produces a 
temperature difference with most of the non- 
uniformities and artifacts removed. In the 
processed image (Fig. 8 b), the trailing edge 
separation is visible as well as a leading 
edge separation close to the wing tip.  

This process was applied to the 
complete run. Some characteristic images 
extracted from the second pitch-up of the 
first run are shown in Fig. 9. The first 
image, at a pitch angle of 4.49°, shows a 

containing fuel, is warm
~ -15°C). Therefore, th
continuously cooling the
soon as a flow separatio
the wing (e.g. duri
maneuver), the wing te
increase and the tem
variation is an indica
characteristics on the 
separation, the wing h
warmer. The wing wi
again if the flow reattache
during the pitch-down 
case, the temperature g
This is illustrated in Fig
image (a) and the 
processing (b). 

The raw image temp
(Fig
internal heat sources 
capacities (droop, main
flap). Additional artifact
runway lights) were 
aircraft was pitched to h
on certain runways.  

Various data proces
evaluated to extract r
from the IR images. T
was found to be the 
temperature difference 
using a sliding reference
to an analysis whereby 
being compared with 
behind it by a fixed num
This process has the adv
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uniform temperature gradient, 
that the flow field remained u
between the current and referenc
This is interpreted as attach
everywhere on the wing. The 
images, from pitch angles 7.49°
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e 
ed
ne

 to

n ge 
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fts, clearly 
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de
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CT-133 research jet. Examples of the
from the first series are presented here. 

The instrumentation of the NRC CT-
133 has been recently upgraded [3], 
covering a customized air data sensing 
system, and the NRC FRL integrated inertial 
reference and navigation system (FIIRNS).  
The data acquisition system acquires air and 
inertial data at 600 Hz, optimized for 
atmospheric research, although excessive for 
the present flight dynamic research. 

ng maneuvers were 
te (gear and flaps 
ear down and flaps 

onfigurations. The 
in the take off 

 using an extended 
rborne wheel height 

above the tarmac, where possible to the 
point of wing flow separation onset.  Each 
flight consisted of four stalling maneuver 
sets. 

 
 

icating 
hanged 
images. 
 flow 
xt two 
 8.75°, 
ent of 
g ed

Straight flight stalli
conducted in the en-rou
retracted) and take off (g
deployed at 32°) c
airplane was landed 
configuration, generally
flare maneuver at low aidisplay the onset and developm

spanwise separation near the traili
along the entire visible portion of 

The following image, at 
particularly interesting, show
separation front reaching some tu
no longer aligned with the wing s
the next image, at a pitch angle 
flow has separated from the

 s n.

indicated by the disorganized tuft
image, recorded during pitch-
11.91°, shows the trailing e
reattachment as the wing cools dow
temperature decreases (negative g

During the tests, it
tufts were highly visi
images. This means th
flow separation progression obtai
the temperature gradients could 
correlated with the tufts on the sam
a positive result for the analysis. 

6.  Dynamic Stall Flight Tests 
Dynamic stalling flight tests con
central element of the m

tute the 

predicting stall behavior i
proximity (Section 3). The fligh
techniques have been described 
detail in Refs. 

g und 
testing 
 some 
ynamic 
 been 
, with 
e NRC 
 results 

[3] and [4]. Two
stalling flight test series h
conducted in free-air at altitu
complementary ground runs, usin

a) N=1259 – t = 21sec – V=95.6 knots – Pitch = 8.75° 
Raw image 

 

b) N=1259 – t = 21sec – V=95.6 knots – Pitch = 8.75° 
Processed image – Sliding Ref image ΔI = 25 

 
Figure 8: a) Wing surface temp
first IR image (Run time = 756
temperature gradient for the
using a sliding reference.  

erature at t = 21s after 
 s in Fig. 7). b) Wing 

 same image processed 

 
The reference wing surface roughness 

configurations consisted of clean (i.e. no 
additional roughness added), #180, #120, 
#80 and #40 grades of sandpaper applied 
from the leading edge to 8% of the chord on 
the upper and lower surfaces. Alternatively, 
dimpled aluminum tape produced to 
appropriate specifications was applied. Stall 
onset was invariably identified by the onset 
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of significant angular acceleration
as a roll instability with nearly 
pitch break instability, although, a
was a pitch break

of significant angular acceleration
as a roll instability with nearly 
pitch break instability, although, a
was a pitch break

; ge
con
t t

 instability witho
significant roll break, or a roll
followed by a pitch break. 
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Figure 12: Mach number distribution around the 
NACA 651-212 airfoil with 8%c roughness near the 
leading edge. M∞=0.14, Rec=6×106, α=11 deg, 
roughness height k/c ≈ ks/c = 45.8×10-5. 
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Figure 14 Computed aerodynamic lift for oscillating 
NACA 0015 airfoil with comparison to experimental 
data at M∞=0.291, Rec=1.953×106 and k=0.095. 

 

 
Figure 15 Mach number distr
0015 airfoil in oscillatory 
Rec=1.953×106 and k=0.095; a
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). 

The NRC program on dynamic stalling of 
transport airplanes has spawned a compre-
hensive experimental/analytical approach 
which, in its first phase, has elucidated the 
factors determining stall onset on a straight 
wing airplane, and laid the groundwork for 
extension to swept wing airplanes in the 
second phase of the program. The following 
conclusions can be drawn. 

The flight test results demonstrate that 
the effects of pitch rate, surface roughness 

9  Conclusions 
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