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Abstract

Computational aeroacoustics has been widely
applied as high-performance computer systems
have been available, as well as highly accurate
numerical algorithms developed to directly re-
solve acoustical disturbance. An interface treat-
ment to connect two or more grid boundaries pro-
vides flexibility to handle complex geometries,
such as a high-lift device or turbine cascade, on
a generalized coordinate system; one of com-
mon examples is a multi-block approach. When
used with a compact scheme, however, its accu-
racy and stability may be degraded seriously by
the boundary treatment that arises at a block in-
terface. This paper discusses how to construct
characteristic-based interface conditions, espe-
cially suited to computational aeroacoustics, for
the use with a finite-difference compact scheme.
The validity of current development is demon-
strated through simple convection test cases, as
well as an application problem of computational
aeroacoustics.

1 Introduction

Compact finite-difference schemes are now com-
monly utilized to achieve higher accuracy in
many fields of computational analysis. Their
low-dispersion nature is favored especially in
the direct numerical simulations (DNS) or large-
eddy simulations (LES) of turbulent flows, as
well as aeroacoustics, to resolve short wave-
lengths with high accuracy. One of the advan-

tages of finite-difference schemes is that their for-
mulations can be extended easily to general coor-
dinates. Recently, many application studies have
been done on generalized curved grids using up-
wind or centered compact schemes. Also, the
attempts to solve more complicated geometries
are being made through multi-block approaches
[2, 14]. Usually, in a multi-block framework, the
numerical grids must be carefully constructed to
smoothly bridge grid topologies at a block con-
nection, since the abrupt variation lowers the ac-
curacy of flow simulations. With increasing ge-
ometrical complexity, however, it would be in-
hibitive to meet this requirement. On the other
hand, Kim and Lee [8] introduced the character-
istic interface conditions that do not necessarily
require the smooth connection at a block inter-
face, where the characteristic relations are ap-
plied from both sides; this approach has been
extended to a more general treatment that alle-
viates the local-axis dependence across an in-
terface [13]. However, it is still unclear how
these treatments affect the accuracy of compact
schemes, especially when used in computational
aeroacoustics (CAA).

One of the difficulties in interface conditions
is the boundary treatment of compact schemes
at the interface. Since the derivatives are ex-
pressed implicitly in compact schemes, even if
formally high-order schemes are used for inner
nodes, actual accuracy may degrade seriously, or
even result in unstable modes by using inappro-
priate approximations. Many studies have been
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conducted for this issue. For instance, Carpen-
ter et al. [1] performed the semi-discrete eigen-
value analysis, originally developed by Strikw-
erda [11], on high-order boundary schemes, and
showed that increasing the accuracy of bound-
ary conditions would lead to instability. From
the view point of the Fourier analysis, Sengupta
et al. [10] pointed out that the boundary imple-
mentation can be critical to the stability of com-
pact schemes, by also applying the von-Neumann
analysis, and derived a family of optimized up-
wind compact schemes. Also, to achieve more
accurate schemes, optimization techniques were
introduced to boundary closures [5, 6], combined
with centered compact schemes.

In this paper, our aim is to construct a proper
formulation of characteristic-based interface con-
ditions for the use with compact schemes. Here,
we primarily concern the implementation of cen-
tered finite-difference compact schemes, which is
suited to aeroacoustic problems on, for example,
a low-Mach number flow, as well as turbulent
flow. To develop a proper interface condition,
the boundary closure of compact schemes will be
first discussed using a Fourier mode analysis, and
tested through one-dimensional convection prob-
lems. Next, the extension to multi-dimensions
will be proposed and applied to a vortex convec-
tion on the grid with singularity. Finally, the de-
veloped interface condition is applied to a CAA
test case, 2D flow past an airfoil, and a generated
sound wave is quantitatively examined and dis-
cussed.

2 Analysis of the one-dimensional boundary
closure

2.1 Modified wave-number analysis

To evaluate the accuracy of finite-difference
schemes on phase space, it is common to utilize
a Fourier mode analysis. When applying it to
a compact scheme, however, the modified wave
number of the scheme is not only a function of
each mode, but also coupled spatially. A modi-
fied wave number is given as a form of implicit
representation in an analytical expression; other-

wise, in general, it must be solved with the de-
pendence on the same modes at all other nodes,
as shown in [5, 10].

Here we analyze a compact scheme applied
to a convection problem for a functionu(x, t) de-
fined over a bounded domainx ∈ [0,L] at t > 0.
After the homogeneous discretization of the do-
main by N nodes, orN− 1 cells, the spatial
derivativeu′ can be approximated by an implicit
form:

j+nR

∑
l= j−nL

a j,l u
′
l =

1
h

j+mR

∑
l= j−mL

b j,lul , (1)

for j = 1,2, ...,N, wherenL, nR, mL, andmR rep-
resent the number of nodes required for the given
stencils;h is the width of a cell;a j,l = 1 if j = l .
For inner nodes, we usually apply uniform co-
efficients, namely,ai,i+m = a j, j+m and bi,i+m =
b j, j+m for i 6= j. However, since the domain is
bounded, we need to shift the stencils, and there-
fore modify the coefficients near boundaries; this
modification on a compact scheme is often re-
ferred as boundary compact scheme. Conse-
quently, this also alters the behavior of modified
wave numbers at all the locations. Since the spa-
tial derivatives of a boundary scheme are usu-
ally coupled as those for inner nodes, its modi-
fied wave numbers are also coupled as a system
of equations.

By applying discrete Fourier expansion,u j

can be written as

u j = ∑
n

ûneiknh j, (2)

whereûn is a Fourier coefficient of then-th mode,
kn = 2πn/L, and the summation onn is taken
for a suitable range ofN modes, e.g.,−N/2 to
N/2− 1 for an even number ofN. Then, by
definition, the Fourier coefficient of the approxi-
mated derivative term can be expressed by using

the corresponding modified wave numberκ( j)
n de-

fined for the nodej, as iκ( j)
n ûn. By substituting

this and Eq. (2) into Eq. (1), we obtain an implicit
representation of modified wave numbers for the
n-th Fourier mode,

∑
l

a j,l iκ
(l)
n eiknh(l− j) =

1
h∑

m
b j,meiknh(m− j). (3)
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This can be solved using a conventional multi-
diagonal matrix inversion technique. However,
since all the modified wave numbers are cou-
pled, it would not be straight forward to de-
rive effective coefficients for a boundary com-
pact scheme, unlike the optimization for inner
nodes by reducing a phase error [e.g., 9]. As
was also pointed out in [5], the optimized sets
of boundary schemes in [6, 8] were constructed
without taking the above coupling into account.
Therefore, their optimized schemes show a con-
siderable phase error near the boundary node,
as shown in Fig. 1. On the other hand, in [5],
optimized boundary schemes were obtained by
calibrating free parameters included only in the
boundary-node scheme to minimize phase error,
while standard Padé schemes were used for inner
nodes.

2.2 Test 1D problem

As a test case of characteristic interface condi-
tions, we consider one-dimensional linear wave
equation with convection velocityc (> 0), im-
posing the periodic boundary condition. A one-
dimensional periodic problem may be solved
simply by using an interior scheme with a com-
mon periodic inversion technique. However,
since our objective is to examine the effect of
boundary schemes, the periodicity here is en-
forced by a characteristic boundary condition ap-
plied to bounded schemes. Namely, we impose
the continuity of the spatial derivative at both
ends of domain as,

∂u
∂t

+c
∂u
∂x

= 0,
∂u
∂x

∣∣∣∣
x=0

=
∂u
∂x

∣∣∣∣
x=L

. (4)

Since the convection velocity is positive, the
derivative atx = 0 should be determined by that
evaluated atx = L. Then, a bounded compact
scheme given in Eq. (1) can be applied to this test
case.

The above boundary implementation is one
simple application of characteristic interface con-
ditions for a one-dimensional scalar problem. For
example, we could place the discontinuity of grid
spacing across the periodic boundary by using

a non-uniform grid, stretched gradually. Also
in multi-dimensions, the characteristic interface
condition to enforce periodicity may be effec-
tive because the requirement of grid smoothness
across the periodic boundary can be removed, as
proposed in [8]. However, although we employ
uniform grid spacing in this one-dimensional test,
we would clarify the adverse effects caused by
the characteristic interface condition combined
with the use of bounded schemes.

In [8], the interface condition may reduce to
one-dimension, originally developed for a three-
dimensional case, as follows:

A-1 The spatial derivative is evaluated by an
optimized bounded compact scheme that
uses a centered difference for inner nodes,
and a one-sided compact stencil at bound-
ary nodes, without specifying any boundary
conditions.

A-2 Afterwards, the boundary condition is im-
posed: the derivative atx = 0 is replaced by
that evaluated atx = L.

As observed in Fig. 1, since the convective ve-
locity c is positive, the positive Im(κ) acts as
anti-diffusion at relatively largek. This is pri-
marily due to the downwind or downwind-biased
differences employed on these nodes. By enforc-
ing the above characteristics-based treatment, we
also regain upwinding diffusion for an interface.
Nevertheless, usually on large wavenumbers, it is
more desirable to impose positive diffusion also
to near-boundary nodes.

Besides, as seen in [5], the boundary node
is apt to exhibit a relatively large phase error if
its scheme is evaluated with a one-sided compact
difference, i.e.,a j,l 6= 0 for j 6= l where j = 1 or
N, in Eq. (1). The optimization process proposed
in [5] showed a difficulty in reducing a phase er-
ror at the boundary node as well. The degradation
of accuracy at boundary nodes may not be so cru-
cial to a simple non-periodic boundary applied
to a linear convection problem. However, when
employed with characteristic interface or bound-
ary conditions, especially in a multi-dimensional
problem, e.g., a vortex convected along an in-
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Fig. 1 Modified wave numbers for the scheme
given in [8] near the left boundary. Total number
of nodesN is 51. Re(κ) and Im(κ) denote the real
and imaginary parts of a modified wave number,
respectively.

terface connection, or acoustic disturbances re-
flected back and forth between two solid walls,
an inferior boundary scheme could cause an un-
physical disturbance from its boundary or inter-
face.

In order to remove this difficulty, explicit
stencils are used in [10] for the boundary and
near-boundary nodes: second-order one-sided
difference for the boundary node, and an op-
timized third-order difference for its adjacent
node. Coupled with optimized upwind com-
pact schemes, they attained stable implementa-
tions in terms of both modified wave numbers
and von Neumann analysis.

By using an explicit scheme for the boundary
node coupled with centered compact schemes,
we can make a modification on the implementa-
tion of characteristic interface conditions as fol-
lows:
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Fig. 2 Modified wave numbers for the present
proposed scheme near the left boundary. Total
number of nodesN is 51.
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Fig. 3 Modified wave numbers for the present
proposed scheme near the right boundary.
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Fig. 4 Modified wave numbers for SC scheme
near the left boundary.

B-1 Evaluate the derivative at the upwind-side
boundary node,x = L in Eq. (4), by using
an explicit one-sided difference scheme.

B-1 Employ the above as the boundary condi-
tions, u′1 and u′N; then, solve the system
of equations of a compact scheme for the
derivatives at inner nodes.

Here, we propose one test scheme to carry out
the above implementation. For the boundary
node j = N, the standard third-order difference
is adopted as follows:

u′j =
1
6h

(
11u j −18u j−1 +9u j−2−2u j−3

)
.

(5)
On the other hand, for the inner nodes, the stan-
dard Padé scheme is employed: the fourth-order
centered difference for the nodes adjacent to
boundaries, and the sixth-order difference else-
where. In the following, the scheme defined here
is called presentscheme. The modified wave
numbers near the left boundary,j = 1, are ob-
tained as in Fig. 2, while those near the right

boundary are shown in Fig. 3. Although anti-
diffusion still arises in the middle to relatively
large wavenumbers, the scheme has shifted to-
ward a more stable side by imposing the charac-
teristic relation as the boundary conditions of the
present compact scheme. The resolution in the
phase space is relatively low, as expected from
the formulation of the present scheme, since stan-
dard schemes are employed with no optimization
technique.

For comparison, we also test the compact rep-
resentation for boundary nodes. The standard
third-order one-sided compact difference is used
instead of the above explicit scheme, which is de-
fined as (j = N):

u′j +2u′j−1 =
1
2h

(
5u j −4u j−1−u j−2

)
. (6)

For the inner nodes, however, the same Padé
scheme is employed as the present scheme. This
combination of compact differences is used in
other literatures [e.g., 12], and also examined in
[5]. The original interface implementation [8] is
applied to this standard compact scheme, which
is calledSC scheme here. The modified wave
number distributions are shown in Fig. 4. Al-
though the characteristic condition is imposed at
j = 1, it does not affect the phase behavior of
other near-boundary nodes, which shows anti-
diffusion in largek. Also as the family of com-
pact representations for the boundary scheme, the
scheme given in [8] is referred asKL scheme,
while the optimized scheme derived by [5] is de-
fined asJ scheme in the following.

2.3 Linear convection test

Here, four different schemes that use centered
compact differences for inner nodes are ex-
amined using the linear convection problem,
Eq. (4). In addition, an optimized upwind com-
pact scheme, OUCS-2 defined in [10] is also
compared as a reference case: here, it is referred
asOU scheme. As an initial condition, a periodic
distribution is given as the form:

uo = cos

(
2mπx

L

)
exp

[
−C

(
x− L

2

)2
]

. (7)
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Fig. 5 One-dimensional test case after the run
period of20L/c: m= 3 in Eq. (7).

In this test,C = 25, and m = 3 and 6 are em-
ployed. The total number of nodesN is 51, and
the Courant-Friedrichs-Lewy (CFL) number is
chosen to be0.2. Each scheme is advanced using
the standard fourth-order Runge-Kutta scheme.

Figs. 5 and 6 show the results after the run pe-
riod of 20L/c and5L/c, respectively, form= 3
and 6. In both cases, the J scheme given in
[5] quickly diverged, and therefore not shown;
the stability of the J scheme will be discussed
in a few more details in Section 2.4 by using
an eigenvalue analysis. The KL scheme shows
a considerable numerical diffusion, which can
be predicted by the modified wave number dis-
tribution, Fig. 1. The boundary nodes have a
fairly large dissipative error, which may add sta-
bility against the anti-diffusion produced at near-
boundary nodes. On the other hand, the SC
scheme induced a spurious high-frequency noise
added on the initial shape, which is specifically
dominant in Fig. 6: the solution gradually tends
to diverge as an additional time integration due
to this short-wavelength error. Supposedly,u′1
evaluated in Eq. (1) by the downwind difference
caused this instability through the implicit cou-
pling of the compact scheme.

The present scheme of an interface imple-
mentation, however, agrees well with the exact
solution, while the OU scheme also shows a rea-
sonably accurate prediction with only a slight de-
viation seen in Fig. 5, probably due to its lower-

u
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Fig. 6 One-dimensional test case after the run
period of5L/c: m= 6 in Eq. (7).

order boundary schemes. Both the schemes use
non-compact, explicit differences, which prefix
a boundary condition of compact differences, at
boundary nodes. These observations indicate that
the improper implementation of a boundary con-
dition for compact schemes not only affects the
stability, but can significantly lower the accuracy,
which is critical to attain an accurate interface
condition.

2.4 Semi-discrete eigenvalue analysis

This section briefly summarizes a stability crite-
rion of linear convection,∂tu+∂xu= 0, using the
eigenvalues of a semi-discrete system, namely
the G-K-S stability analysis [e.g., 1, 9, 11]. Here
we assume that the functionu(x, t) is discretized
spatially with a uniform grid inx∈ [0,L], but still
continuous in time. We apply a compact scheme
to the spatial derivative as:

Auuu′ =
1
h

Buuu, (8)

whereuuu= [ui ], A= [ai, j ], andB= [bi, j ] in Eq. (1).
Then, its stability can be estimated through an
eigenvalue problem,

λAuuu =−Buuu. (9)

To fulfill a stability criterion, the real part ofλ
must be zero or negative.
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In fact, the distribution of eigenvaluesλ may
be affected greatly by the implementation of
boundary conditions. Since no boundary condi-
tion is needed at the outletx = L ( j = N), we
only require an inlet boundary condition,x = 0
( j = 1). Here, we specify the spatial derivative
u′ at j = 1 as the boundary condition, instead of
fixing u(0, t) = u1(t). When solving Eq. (8) for
uuu′, however, we assume that its right-hand side,uuu
is given, includingu1. We consider the following
three types of boundary conditions:

BC-1 Explicitly prescribe u′1 when solving
Eq. (8).

BC-2 Provide no boundary condition when solv-
ing Eq. (8). Afterwards, replaceu′1 by the
prescribed value.

BC-3 Impose the periodic boundary condition
by a characteristic relation,u′1 = u′N, as
tested in the previous section.

BC-2 corresponds to the characteristic boundary
conditions suggested by [7]. Also in [1], a stabil-
ity analysis was performed based on the inflow
boundary condition essentially equivalent to BC-
2, while BC-1 was used in [9] in the eigenvalue
analysis, asu′1 set to zero. The implementation of
a periodic boundary condition, BC-3, differs de-
pending on whether the boundary nodes employ a
compact difference or not, as done in Section 2.3.

In Fig. 7, the above three boundary conditions
are compared by using the J scheme [5]. The
diagram shows two distinct unstable eigenvalues
in the right half of the plane for BC-2 and 3, al-
though the scheme is stable for BC-1. The reason
of the diverged solution by the J scheme in the
linear convection test of Eq. (4) can be attributed
to these unstable modes.

In Figs. 8 and 9, two additional sets that use
the standard Padé schemes are compared: the
present scheme and SC scheme. By using BC-
1 and 2, these two schemes show very simi-
lar distributions. Although the eigenvalues of
BC-1 are shifted toward a more stable region as
also observed in Fig. 7, both boundary condi-
tions are stable. However, both the schemes hold

Im
(λ

)

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−2

−1

0

1

2

Re(λ)

Fig. 7 Distributions of eigenvalues obtained by
the J scheme, for three boundary conditions:4,
BC-1; ·, BC-2;◦, BC-3. Total number of nodes
N is 51.

positive-real eigenvalues on the condition BC-
3. By imposing a characteristic-based periodic
boundary condition, there exist several diffusive
eigenvalues in the left half of the complex plane.
Although those negative-real eigenvalues of the
present scheme are located in a more stable re-
gion than those of the SC scheme, the rest of the
eigenvalues are aligned closely to the imaginary
axis in both the schemes; in fact, some of them
lie in the right half of the plane. This is the con-
sequence due to the enforcement of a periodic
boundary condition, which indicates an infinite-
time integration using bounded schemes. If the
linear convection test carried out in Section 2.3 is
run for a considerably long period of time, these
unstable modes may become apparent, although
the SC scheme showed an amplification of short
waves in Fig. 6 within less iterations.

As will be seen in Section 4.1, the differ-
ence in the implementation of boundary schemes
severely affects the accuracy in an aeroacoustic
problem even without periodic boundary condi-
tions. In practice, to avoid the instability associ-
ated with high-frequency errors, if any exists, the
use of explicit low-pass filters may be effective
with a centered compact scheme.
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Fig. 8 Distributions of eigenvalues obtained by
the present scheme. See the caption in Fig. 7.

3 Formulation in multi-dimensions

The compact schemes whose boundary nodes uti-
lize one-sided compact differences can be applied
directly to a multi-dimensional problem in con-
junction with the characteristic interface condi-
tion. After all the convection terms are computed
by a compact scheme, their boundary values are
updated through a quasi-linear one-dimensional
characteristic relation, which can be written as:

∂RRR
∂t

+λ
∂RRR
∂ξ

= P
−1

SSSξ, (10)

whereRRR represents the characteristic differential
variables;λ is the diagonal matrix of the speeds
of characteristics;P

−1
is the transformation ma-

trix for characteristic decomposition;SSSξ denotes
the reduced source term, including the convec-
tion terms except theξ-direction, as well as the
viscous terms. For simplicity, we only consider
a two-dimensional case, and assume theξ-axis is
the direction normal to the interface in compu-
tational coordinates. These assumptions are not
requirements; we can easily extend the following
discussion to a general three-dimensional prob-
lem. The decomposed convection term in theξ-
direction is derived by multiplyingP

−1
from the

Im
(λ

)

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
−2

−1

0

1

2

Re(λ)

Fig. 9 Distributions of eigenvalues obtained by
the SC scheme. See the caption in Fig. 7.

left to:

CCCξ ≡ J

[
∂ÊEE
∂ξ
−

{
EEE

∂
∂ξ

(
ξx

J

)
+FFF

∂
∂ξ

(
ξy

J

)}]

= ξx
∂EEE
∂ξ

+ξy
∂FFF
∂ξ

,

(11)

so thatP
−1

CCCξ = λ∂RRR/∂ξ, whereJ is the trans-
formation Jacobian;EEE and FFF are the inviscid
fluxes in thex- and y-directions, respectively;
ÊEE = (ξxEEE+ξyFFF)/J is the transformed flux in the
ξ-direction.

However, when applying Eq. (10) to the
present scheme to determine the boundary con-
dition, the source termSSSξ must be precomputed
carefully, since the convection terms that arise
in SSSξ are generally unknown at this stage be-
fore solving a compact scheme. In the fol-
lowing, we would introduce an alternative treat-
ment for multi-dimensions as an extension of the
characteristic-based interface condition, with-
out directly utilizing the characteristic relation
Eq. (10). Rather, a proper coordinate trans-
formation is employed across an interface. A
schematic of the general interface connection of
two-dimensional grids is shown in Fig. 10.

When we would evaluate aξ-derivative on the
grid R as a characteristic entering from the op-
posite side, gridL, the spatial derivatives should
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Grid L Grid R

Interface 
condition  

 ξR
 ξL

 ηL
 ηR

Fig. 10 A schematic of two grids,L andR, con-
nected through an interface condition, applied to
the nodes marked by black circles. White circles
indicate any other boundaries, e.g., impermeable
wall boundary.

be estimated using the information on the gridL.
This can be achieved via the following coordinate
transformation from the gridR to L:

∂
∂ξR = xξR

∂
∂x

+yξR
∂
∂y

= xξR

(
ξL

x
∂

∂ξL +ηL
x

∂
∂ηL

)

+ yξR

(
ξL

y
∂

∂ξL +ηL
y

∂
∂ηL

)

=
(
dddξR ·∇∇∇ξL) ∂

∂ξL +
(
dddξR ·∇∇∇ηL) ∂

∂ηL ,

(12)

where dddξ = (xξ,yξ). The right-hand side of
Eq. (12) can be understood as the directional
derivative in theξR-direction evaluated on the
grid L. The second term, the derivative in the
tangential directionηL, represents the discrep-
ancy of the direction ofξ-axis across an inter-
face. The inner productdddξR ·∇∇∇ηL will be suffi-
ciently small if two grids are connected smoothly.
In a finite-difference form, the first term∂/∂ξL

is evaluated by the one-sided difference shown
in Eq. (5), whereas the second term∂/∂ηL can
be any high-order differences. In the following
study, this tangential direction is evaluated by the

same symmetric Padé scheme those used for in-
ner nodes.

The implementation procedure of the pro-
posed interface condition for a two-dimensional
case can be summarized as follows:

1. On the boundary node of the gridR, com-
pute the convection term in theξR-direction
evaluated on its-own grid,CCCξR

∣∣
R

as shown in
Eq. (11).

2. Likewise, evaluateCCCξR on the opposite side,
grid L, by applying the transformation shown
in Eq. (12), denotedCCCξR

∣∣
L
.

3. Apply characteristic decomposition to both
CCCξR

∣∣
R

andCCCξR

∣∣
L
, and retain only the compo-

nents of upwind side for each convection ve-
locity. Combine them to reformCCC∗

ξR. Then, re-

assess the convection term in theξR-direction
through,

∂ÊEE
∗

∂ξR ≡ 1
J
CCC∗

ξR

+

{
EEE

∂
∂ξR

(
ξR

x

J

)
+FFF

∂
∂ξR

(
ξR

y

J

)}
.

(13)

4. On the boundary node of the gridL, follow the
same process forCCCξL .

5. Solve a compact scheme by using the resultant
convection term for each grid as a boundary
condition.

By taking these steps, since each side of the in-
terface is evaluated in different numerical proce-
dures, the physical variables will differ computed
on each side. To ensure the continuity at the in-
terface, they must be averaged in some way; here,
we employ a simple arithmetic average.

We would note that the characteristic inter-
face condition by [8] required the alignment of
the gradient vectors of the coordinate normal to
the interface; namely,∇∇∇ξL ‖ ∇∇∇ξR at the interface.
However, the approach presented here does not.
Geometrically,∇∇∇ξR represents a vector normal to
the surface of a constantξ. Therefore, their re-
quirement is naturally satisfied when both entire

9
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boundary surfaces completely coincide. How-
ever, this does not hold on the interface shown
in Fig. 10, as only a part of the surfaces are con-
nected, if the metrics are evaluated by using a
compact scheme, too. In generalized coordinates,
metrics should be computed by the same compact
scheme as that used in flow simulations [15]. If
a part of one surface does not have a geometric
correspondence with the other, where the inter-
face conditions are meant to be excluded (e.g.,
the nodes marked by white circles in Fig. 10), the
metrics evaluated there affect those at the inter-
face connection, because a compact scheme has
a global influence. Eventually the coordinate-
gradient vectors of metrics do not have a common
direction, even if the local grid topologies are
identical. The present method can be extended
to this type of grids; an application of this feature
to a C-grid topology will be shown in Section 4.2.

On the other hand, if two interface surfaces
correspond completely, the original formulation
of characteristic interface conditions is still appli-
cable. In stead of using the coordinate transfor-
mation shown in Eq. (12),CCCξR evaluated on the
grid L can be expressed as:

CCCξR

∣∣
L

= CCCξL

∣∣
L
−SSSξL +SSSξR, (14)

derived through the characteristic relation across
the interface. In the original formulation,SSSξ con-
tains the viscous terms, as well as the convec-
tion terms in the other directions. SinceCCCξR is
sought as the boundary condition of the convec-
tion term, we may exclude the viscous terms from
SSSξ; nevertheless, they also cancel out in an an-
alytical form. In this case, we can show that
Eq. (14) is analytically equivalent to the appli-
cation of the coordinate transformation, Eq. (12),
toCCCξR. Therefore, the method developed here re-
duces to an alternative formulation of the charac-
teristic interface condition.

4 Test cases

In this section, two non-linear tests are presented,
solved in two-dimensions. In each case, inter-
face conditions are applied to the connection of
the grid lines bent abruptly. The fluid property

is assumed to be of air; the specific-heat ratio is
treated to be constant,1.4. For the time advance-
ment of each scheme, the standard fourth-order
Runge-Kutta scheme is used.

4.1 Vortex convection across an interface

Here, a vortex is convected with an inviscid uni-
form flow, whose Mach number is0.5. The fol-
lowing swirl velocityVθ and associated pressure
distribution is provided as an initial condition:

Vθ ≡ εU∞
r
R

exp

(
− r2

2R2

)
,

p′ ≡ p− p∞ =−1
2

ρε2U2
∞ exp

(
− r2

R2

)
,

whereU∞ and p∞ are the velocity and pressure
of the inflow, respectively;r is the distance from
the vortex center at the initial state;R andε are
the parameters that determine the vortex size and
strength. Here,R = 0.2 and ε = 5× 10−3, at
which the maximum ofVθ corresponds to0.3%
of U∞. Also, the maximum pressure deviation
from p∞ is about4.5× 10−6p∞; this pressure
level is affected easily by the numerical scheme
of low accuracy. In the following description,U∞
is assumed to be1.0.

Fig. 11 shows the grid used in this test, and
also the initial pressure distribution presented in
an overhead view. The grid is bent abruptly by
30° at x = 0, where the interface conditions are
applied; the employed resolution is120× 120
for the given field. If this bent grid is treated
continuously with no interface condition applied,
the vortex will be smeared substantially by high-
frequency errors, which induces a considerable
level of fictitious noise. Att = 0, the vortex cen-
ter is placed at(x,y) = (−1,0), and conveyed
in the x-direction with the flow. The simula-
tion is run at∆t = 5.0×10−3 that corresponds to
CFL = 0.46. The vortex center reaches the grid
interface att = 1.0.

In this test, we examine two different bound-
ary implementations for a compact scheme: one
is the SC scheme defined in Section 2.2, which
uses a third order compact scheme for boundary
nodes, and the other is the test scheme proposed

10
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in the present paper. As seen in the linear convec-
tion test, the implementation procedure of bound-
ary conditions is more crucial for stability. There-
fore, only these two schemes are compared by
employing the standard Padé schemes for inner
nodes. No additive artificial diffusion or filtering
technique is applied to the schemes; the charac-
teristics of the original formulations are of inter-
est in this test. To outer boundaries, the charac-
teristic inflow and outflow conditions given in [7]
are used. However, the modification used with
an explicit difference is also implemented in the
present scheme; namely, BC-1 is employed as de-
fined in Section 2.4, while the SC scheme uses
the implementation equivalent to BC-2.

Figs. 12 and 13 compare the temporal varia-
tion of pressure distributions for the two schemes,
when and after the vortex crosses the grid in-
terface. In this simulation, the pressure field is
rather sensitive than the velocity field. The differ-
ence in the velocity, or vorticity fields, is almost
indiscernible; they are not shown here. However,
the presented pressure fields clearly exhibit the
effects of numerical treatments. In Fig. 12, the
original bell shape is distorted across the inter-
face att = 1.0 by using the SC scheme. Away
from the interface, the vortex regains its original
pressure shape. However, as the vortex passes
by, a relatively low-frequency noise that resem-
bles a sound wave is emitted from the interface
toward upstream. Besides, sharp peaks can be
recognized at the inflow boundary att = 1.5.
They are not the wave propagation from the in-
terface, since not enough time has passed from
t = 1.0. Rather, they would be the indication
of the numerical instability held by the bound-
ary implementation. On the other hand, as seen
in Fig. 13, the present scheme significantly im-
proves the conservation of the original pressure
shape. Although still recognizable, the spuri-
ous noises are suppressed successfully; they are
within 6% of the maximum of|p′| during this
run, while the maximum error of the SC scheme
reaches nearly40%, due to the distorted vortex
profile att = 1.0.

y

−2 −1 0 1 2
−2

−1

0

1

2

3

x

Fig. 11 Configurations of the vortex convection
problem: (top) numerical grid; (bottom) over-
head view of initial distribution of−p′. Grid
lines are coarsened by a factor of 2 for visual-
ization.
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Fig. 12 Snap shots of−p′ distribution for the SC scheme: (top) overhead views; (bottom) contours near
the interface. One contour level indicates0.2×10−6p∞; a dashed contour line denotes a negative value.

Fig. 13 Snap shots of−p′ distribution for the present scheme. See the caption in Fig. 12.
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y/

L

x/L

Fig. 14 C-grid topology around the airfoil. Grid
lines are coarsened by a factor of5 for visualiza-
tion.

4.2 Sound generation from a 2-D airfoil

Finally, the present interface scheme is tested in
an application problem of computational acous-
tics. In the flow past a two-dimensional object
at a relatively low Reynolds number, it is well
known that an aeolian tone is generated accompa-
nied with Karman vortex shedding. Direct sim-
ulations are able to reproduce this sound gen-
eration by using high-order numerical schemes.
When constructing a numerical grid, however, a
great care must be taken not to affect the sound
pressure that can be the order of10−4 or less [3].

As a verification test of the present method-
ology, we simulate the sound generation from an
NACA0012 airfoil using a C-grid with the inter-
face condition applied. The flow conditions are
summarized as follows: the inflow Mach number
M = 0.2; the Reynolds number Re= U∞L/ν =
5000, whereL is the chord length,ν is the kine-
matic viscosity at infinity; the angle of attack
is 5°.

We have a reference case for this flow con-
figuration: the numerical study by [4] also ex-
amined the noise generation from the foil using
a sixth-order compact scheme. Nearly2 million
grid points were imposed on a C-grid topology
to resolve the two-dimensional sound field up to

y/
L

−5 0 5 10

−5

0

5

x/L

Fig. 15 Instantaneous pressure fluctuation,δp.
One contour level denotes2.0× 10−5p∞. The
solid and dashed lines denote positive and neg-
ative values, respectively.

30L from the airfoil; a buffer layer was added to
500L. However, they employed a Cartesian grid
for the region behind the trailing edge to remove
a possible adverse effect on noise generation due
to curved grid lines. In addition, the derivative in
the vertical direction was evaluated continuously
in the Cartesian region to avoid the use of an in-
terface connection in the wake region.

In our calculation, the numerical domain is
limited to 30L in the radial direction, and50L
in the downstream region, with a non-reflecting
boundary condition applied to both the bound-
aries. Only a near- to middle-field is of inter-
est for a quantitative comparison of sound lev-
els to the reference case. Therefore, the number
of grid points is rather small:900×250= 0.23
million. We also conducted a grid-convergence
study to confirm that the near-field velocity and
pressure fluctuations do not greatly vary by in-
creasing the grid resolution, although the far-field
pressure level does show the adverse effects of
the present coarse grid, typically forr > 10L. The
numerical grid is shown in Fig. 14. The airfoil
is tilted by 5° to the streamwise direction; the
trailing edge of the airfoil is located at the origin.
The interface condition is applied along with the
grid line extended from the trailing edge. As seen
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δp
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p ∞

1 5 10 20

5.0e−5

1.0e−4

2.0e−4

r/L

Fig. 16 Decay of pressure fluctuation:•, the
present result;©, Irie et al. [4]. The dashed line
denotesr−1/2 dependence for reference.

from the figure, no efforts were made to smooth
the grid near the interface connection. Rather, the
grid holds the singular slope variation. Since the
generated Karman vortices are supposed to con-
vect along with the interface line, an ill-formed
interface condition would easily create a fictitious
pressure disturbance from the connection.

Fig. 15 shows the instantaneous pressure fluc-
tuation, after the Karman vortex has fully devel-
oped in the wake region. The obtained frequency
of vortex shedding is1.8, normalized byU∞/L,
which agrees with that reported in the reference
case. Generally, the pressure field is more prone
to receive numerical errors, as was seen in Sec-
tion 4.1. However, these pressure visualizations
clearly capture the propagation of a dipole sound
generated at the airfoil. No spurious pressure
fluctuation is recognized at the interface connec-
tion, where the vortex street coexists. This sound
pressure field is also consistent with that shown
in [4].

To quantitatively examine the obtained sound
pressure, the root-mean-square values of pressure
fluctuation,δprms, are plotted in Fig. 16, on the
radial distance vertically upward from the middle
of the airfoil. The amplitude of a dipole sound
shows the dependence onr−1/2 [3]; it is also
shown in the figure. By comparing the present
result to the reference case, although a slight
discrepancy can be seen relatively near the foil,

these two results agree quite well, in spite of the
difference in the grid resolution. The result is
presented up tor = 15L. Beyond that,δprms ob-
tained in the present calculation starts to deviate
from ther−1/2 dependence due to the insufficient
resolution. Nevertheless, this comparison pro-
vides an adequate validation for the present nu-
merical treatment, in conjunction with the quali-
tative behavior of a dipole sound generation ob-
served in Fig. 15.

5 Summary and conclusion

We presented an interface condition using finite-
difference compact schemes suited to CAA prob-
lems. The modified wave number analysis indi-
cates that we can reduce an anti-diffusion effect,
which may be caused by the boundary closure of
compact schemes, by employing the convection
term evaluated on the upwind side of the interface
as its boundary condition, even if centered differ-
ence stencils are used for inner nodes. By uti-
lizing an explicit finite-difference form at bound-
ary nodes, this requirement is satisfied naturally.
We proposed a combination of standard differ-
ence forms as a model scheme, to implement the
interface condition. The validity of this method
was also confirmed througha posterioristudies
in terms of both stability and accuracy.

The extension of the interface condition to
a general multi-dimension case was attained
through the transformation on the local grid co-
ordinates adjacent to an interface. As a two-
dimensional test case, a weak vortex convection
across an interface was examined, and the ob-
tained results demonstrate that the present im-
plementation of the interface condition has great
advantages. As a CAA application problem, the
flow past a two-dimensional airfoil was simulated
on a C-grid topology. In spite of the grid singular-
ity placed in the wake region, the present scheme
successfully reproduced the Karman vortex shed-
ding, and the associated aeolian tone generation
from the airfoil. The quantitative agreement with
an available DNS study also supports the valid-
ity of our methodology: this approach minimizes
the spurious sound generation at the interface
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connection without taking a great care for mesh
smoothing. This will allow the accessible use of
high-order schemes to more complicated geome-
tries, especially in three-dimensional problems.
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