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Abstract  

Future Re-Configurable Multi Mission 

Unmanned Aerial Vehicle (RC-MM-UAV) 

Design concepts are expected to comprise of 

morphing wings with mission segment based 

airfoils. The Direct Numerical Optimization 

(DNO) methodology for airfoil shape 

optimization is established.  The PARSEC shape 

function is used for airfoil geometry 

parameterization, coupled with a low-fidelity 

solver and Particle Swarm Optimizer (PSO) in 

the design analysis of a long endurance airfoil.  

 

A single-point airfoil design study through the 

DNO approach was executed. Results indicate 

that the methodology is computationally 

demanding thus, Artificial Neural Networks 

(ANN) are introduced to address this issue. A 

relationship between PARSEC airfoil geometry 

variables as inputs and the equating 

aerodynamic coefficients as outputs are used in 

network training and validation. The effect of 

varying training sample size was evaluated to 

establish a network with acceptable 

generalization capabilities. The PSO model is 

integrated to the ANN model for airfoil design 

optimization. The hybrid PSO/ANN structure 

required 38% fewer solver calls in comparison 

to the direct search approach. The proposed 

hybrid methodology is applicable for future 

multi-point airfoil design optimizations.   

1  Introduction 

The growth of unmanned technology has led to 

major research and development efforts in the 

aerospace industry. The potential of these aerial 

platforms has been widely acknowledged 

worldwide both on civil and military fronts. The 

designs of UAVs to-date have been uni-mission 

and considering the envisaged missions in 

future, a single mission design concept is 

neither operationally, nor cost effective. A 

multi-mission aerial platform is identified as a 

viable alternative.  

The Sir Lawrence Wackett Aerospace 

Centre pioneered a conceptual design of Re-

Configurable Multi-Mission Unmanned Aerial 

Vehicle (RC-MM-UAV) for futuristic civil and 

military operational needs. Uni mission UAVs 

presently are under various stages of design, 

development and trials as an alternative over 

manned systems to address dull, dirty and 

dangerous missions. Though uni-mission 

designs address a certain section of the 

requirements, the performance is limited; in 

regards to range/endurance and speeds. A RC-

MM-UAV concept will encompass long 

endurance/range requirements of Intelligence, 

Surveillance and Reconnaissance (ISR) and the 

flexibility of speed for Suppression of Enemy 

Air Defence (SEAD) sorties in its mission 

profile – a typical futuristic operational 

scenario. Multi-Mission profile requires 

variations in speeds, altitude of operation and 

maneuverability to address disparate 

performance requirements.  

A detail market survey identified the 

requirement of a Tier of UAVs based on future 

operational requirements (Table 1) [2]. The 

Australian program on UAV acquisition covers 

the request of a High-Altitude Long Endurance 

UAV for Reconnaissance and Surveillance, thus 

the development and introduction of an 

intelligent UAV platform is identified as a key 

operational asset. The re-configurable modular 
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concept of wings and payload consisted of 

disparate mission package. High to medium 

altitude long endurance consisting of 25-42 hour 

mission profiles with range in excess of 4,000 

nm at Mach numbers 0.32-0.60 was established. 

To address the disparate performance 

requirements of a multi-role platform, an 

adaptive airfoil shape is identified. Namgoong 

developed a parallel Genetic Algorithm (GA) 

for multi-objective airfoil design optimisation 

[3]. Design tradeoffs of low drag and energy 

requirements for shape morphing were 

identified for low subsonic to transonic flow 

conditions [3]. Gallart optimised airfoils for 

specific flight segments thus, a single-point 

optimisation process was undertaken [4], which 

does not guarantee optimal performance at other 

flight conditions [4]. The use of artificial neural 

networks (ANN) for airfoil design optimisation 

has been proposed. The technique has been used 

in the design of single [5] and multi-element 

airfoils [6], including the design of 

turbomachinery sections [7] and in the 

minimization of wind tunnel data for 

aerodynamic performance evaluation [8].   

 In this paper, a direct search and an ANN 

model are used in the design optimisation of a 

single-point airfoil. The performance of the two 

models is evaluated and compared to observe 

the validity of each model is providing a 

feasible solution. The paper is structured as 

follows: In section 2, airfoil optimisation 

structure is defined. The PSO search model is 

validated in section 3 over a series of analytical 

functions. In section 4 the direct search method 

is used for airfoil design. The ANN model is 

utilised in section 5 and comparison between the 

two search models provided. Finally, the 

research findings are summarised and an outline 

of future studies presented in section 6.       

2  Problem Definition 

To facilitate the design of morphing 

airfoils, the Direct Numerical Optimization 

(DNO) architecture is proposed. The 

methodology comprises of the following: a) 

Mathematical shape function to represent 

potential airfoils; b) Flow solver for 

aerodynamic computation; and c) Intelligent 

search agent for overall optimization.  

2.1 Airfoil Shape Representation 

The conformal mapping approach [9] 

including several mathematical shape functions 

through the analytical shape representation were 

examined including the Hicks-Henne bump 

functions, Legendre, Wagner, Bernstein and 

NACA normal modes [10-12]. These methods 

are restricted since the design variables have 

limited correlation to airfoil geometry 

parameters. Thus, the application of geometrical 

constraints for an optimisation run becomes an 

issue. The PARSEC shape function [13] was 

implemented in the design optimisation to 

address this issue. A qualitative analysis through 

the use of Self-Organising Maps was 

undertaken to establish a relationship between 

the PARSEC variables and its effect on airfoil 

geometry and aerodynamics [14]. The study 

showed that each variable provides one-to-one 

geometrical control up to an identified 

threshold. Aerodynamically, parameters that 

influence the lift-to-drag ratio, a key 

requirement in the design of long endurance 

airfoils, were further identified [14]. 

2.2 Flow Solver 

The second part of the DNO process, 

involves selecting and validating a 

computational flow solver. Solution accuracy is 

enhanced with high-fidelity solvers, at the 

expense of execution time. The use of 

Computational Fluid Dynamics (CFD), coupled 

with parallel processing is proposed to address 

the issue of solution accuracy and solver 

convergence time. The NASA LS(1)0417Mod 

airfoil [15] was used as a case study in the 

validation process. The results showed that a 

Reynolds Average Navier Stokes (RANS) 

model, with a two-equation turbulence model is 

capable of providing accurate results. The 

boundary layer tripping point was obtained from 

experimental data [15] and manually 

implemented through the development of multi-

zonal fluid grid, duplicating regions of laminar 

and turbulent flows. Comparison between 

computational and experimental results showed 
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a lift and drag variance of 3% & 4% 

respectively, over a linear angle-of-attack range 

of -1° to 12°. 

During preliminary design stages, panel 

method solvers are proposed due to rapid 

solution execution. Development of 

evolutionary programming techniques including 

neural network methodologies, require 

extensive test set-up and validation. Low 

fidelity solvers are ideal for such scenarios. As a 

result, a series of test simulations involving the 

integration of the previously identified DNO 

components can be executed to validate the set-

up of the proposed architecture, with acceptable 

computation time.  

2.3 Optimisation Model 

The use of evolutionary programming 

techniques have been extensively used for 

single and multi objective airfoil shape 

optimization [5, 16-21]. Gallart examined three 

gradient-based methods for airfoil drag 

minimization at a fixed lift coefficient [4]. A 

sequential quadratic programming technique 

provided an optimal solution with the lowest 

number of design iterations [4]. Holst et. al, 

executed a single objective transonic airfoil 

design optimization analysis [22]. A genetic 

algorithm approach was robust, but 

computationally cumbersome. Thus, the use of 

gradient methods for single-objective problems 

was recommended [22]. 

In this paper, a single-objective, long 

endurance airfoil, is optimized using a swarm 

approach. A neural network model is then 

developed, validated and coupled with PSO for 

airfoil design optimization.  The two techniques 

are compared to establish the design merits of 

the two approaches for single-objective designs. 

The performance of neural networks is of great 

interest in the context of this research due to the 

potential computational time benefits on offer. 

3  Particle Swarm Optimiser Validation 

The search capabilities of the PSO 

algorithm are verified over a series of 

benchmark functions, to determine the 

sensitivity of the model for convergence. SOMs 

are used to qualitatively show the results of the 

validation process. The maps illustrate the 

relationship between variables that control the 

search process, and its effect on convergence for 

the proposed test functions. From the maps, the 

required model set-up which offers robust 

convergence across the testing envelope can be 

established. The results of the validation process 

can then be applied in the proposed design 

exercise.  

The PSO algorithm has evolved with the 

aim of implementing a robust model that is 

applicable across various optimization problems 

[1, 23-25]. The two variants tested in this study 

include a) Standard-PSO (SPSO) algorithm [24] 

and; b) Adaptive Inertia Weight (APSO) [1] 

model (Table 1) which was introduced to add 

greater search flexibility in comparison to the 

SPSO algorithm. Both variants are similar in 

operation, with the exception of calculating the 

inertia weight, which is modified in the APSO 

scheme (Table 1).  

3.1 Test Functions 

The Rosenbrock and Schwefel functions 

(Eq. 2-3) are used in the validation process. The 

objective function (Eq. 1) is defined as locating 

the minimum of the two proposed functions, 

through the PSO and APSO model (Table 1). 

  

Objective Function: f(x)min (1) 
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Validation Results 

A series of SOM charts are used to 

represent the results of the validation process. 

Figure 1 shows the fitness convergence for 

SPSO (Fig. 1b) and APSO (Fig. 1c), with 

variations in Vmax (Fig. 1a) as a percentage of 

search domain size and solution dimension 

space, D (Table 2). 

The SOM charts (Fig. 1a-c) indicate that 

low velocity equates to low fitness for both 
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SPSO and APSO. This is evident across the test 

domain, where an increase in D, equates to an 

increase in fitness. Slow moving particles settle 

into the global minimum in comparison to faster 

moving agents that skip key areas of interest. 

Thus, the particles must navigate about the 

solution space at slow speeds to assist 

convergence.   

Direct comparison between SPSO and 

APSO (Fig. 1b-c) indicates that the APSO 

provides superior convergence across the 

evaluated testing domain in comparison to the 

SPSO model (Fig. 1b). The SPSO indicates 

greater ‘hot’ regions in red referring to higher 

fitness with the APSO covering larger ‘cold’ 

regions in dark blue thus, indicating that the 

APSO map has much lower fitness. Comparison 

between SPSO and APSO (Fig. 1b-c) confirms 

that a linear decreasing inertia weight, where a 

global search process is encouraged at the start 

of the search phase and local during the later 

stages, provides good solution convergence. A 

fixed w value, experiences convergence 

difficulties, since the search pattern or balance 

between global and local search abilities is 

constant through out the search phase. 

The relationship between particle 

population (m = 20, 40, 80) and velocity as a 

function of fitness is represented in Figure 2 for 

the Rosenbrock model. Higher particle 

population (m = 80), with the velocity restricted 

to approximately 0.1% of computational 

domain, indicates low fitness. With fewer 

particles (m = 20), at a velocity of 1.0% of 

,,,
maxmax1 nλλ … larger fitness is observed (Fig. 2). 

From this test, it is evident that a larger particle 

population size assists solution convergence.  

The fitness presented here is further 

compared with the findings reported by Z. Qin 

et al.[1] with their AIWPSO model [1]. 

Essentially the APSO used in this study is the 

model developed by Z. Qin et al. [1] with the 

exception being in the treatment of the 

maximum velocity. Essentially Z. Qin et al.[1] 

fixed Vmax to equal the maximum distance of 

each dimension [1]. In this study, the effect of 

varying Vmax for both models (Table 1) on 

solution convergence was evaluated. Table 2 

shows fitness comparisons between the SPSO, 

APSO and Z. Qin et al.[1] AIWPSO model, 

with the data taken directly from the literature 

[1]. The SPSO and APSO data in table 2, 

equates to a velocity threshold of 0.1% of 

,,,
maxmax1 nλλ … as this condition was proven to 

be most effective in Figures 1-2. Comparing the 

SPSO with AIWPSO model, the SPSO model 

yields lower fitness. Thus, the benefits of a 

linearly decreasing inertia weight, in the 

AIWPSO model does not provide the expected 

search benefits, as this is counteracted by the 

higher particle velocity. The SPSO model, 

which has a fixed inertia weight scheme at 

lower velocities, outperforms a model with an 

adaptive inertia weight with higher velocities. 

Thus the importance of correctly setting the 

velocity on solution convergence is re-enforced.  

Table 1. Particle Swarm Optimizer: Model Variants for Validation 

PSO Model SPSO APSO[1] 

Scaling Factors    

Cognitive & Social        

(c1 & c2) 

21 =c  

22 =c  

21 =c  

22 =c  

Swarm Population (m) 20,40 & 80 20,40 & 80 

Number of Dimensions 10,20 & 30 10,20 & 30 

Maximum Iterations 1000,1500 & 2000 1000,1500 & 2000 

Inertia Weight (w) 

;

42

2

2 ϕϕϕ −−−

=w     

where 421 =+= ccϕ  

ε+−

−
=

gjij

ijij

ij
pp

px
ISA  

0.3   where;
1

1
1 =











+
−=

−
αα

ijISAij

e
w  

Maximum Velocity (Vmax) 0.1 – 10% of 
maxmax1 ,, nλλ …  0.1 – 10% of 

maxmax1 ,, nλλ …  
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The simulation presented in the analysis of 

the Rosenbrock function, was repeated for the 

Schwefel model. The function differs from the 

Rosenbrock, as the design space includes many 

local minima. Similar results are observed, with 

a velocity in the range of 0.1% of 

,,,
maxmax1 nλλ … providing the lowest fitness. As 

expected, superior convergence is observed with 

an increase in particle population size. 

4 Direct Search Approach for Single-Point 

Airfoil Optimisation 

Typical single-to-multi objective airfoil 

optimisation functions, take the following 

mathematical form: 

∑
=
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The specified geometrical and 

aerodynamic constraints are related and used to 

define the optimisation problem as: 
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In this paper, a single-objective, 

constrained optimisation run with the aim of 

minimising drag at fixed lift coefficient and 

steady cruise conditions is stipulated (Eq. 5).  
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Thickness-to-chord constraint for 

minimum wing volume requirements is 

specified through PARSEC variables 2 & 5, 

with the remaining coefficients relaxed, to allow 

the PSO to explore the best possible 

combination (Table 3). The PSO adjusts the 

PARSEC variables with the coordinates 

integrated into a flow solver for airfoil 

aerodynamic computation. The coefficients are 

used to establish the magnitude of the fitness 

function, with the process operating iteratively 

until convergence.  

4.1 Flow Solver 

Low and high fidelity solvers are proposed 

in the context of this research. The accuracy of 

the two solvers is disparate. Irrespective of the 

Table 2. Rosenbrock Function: Fitness Evaluation Comparison through different PSO Model  

Population Size Dim 
Max. 

Iteration 
SPSO APSO AIWPSO[1] 

20 10 

20 

30 

1000 

1500 

2000 

34.4393 

92.4618 

156.8884 

17.1394 

17.3522 

19.1374 

48.6378 

115.1627 

218.9012 

40 10 

20 

30 

1000 

1500 

2000 

18.0475 

85.2453 

129.5636 

17.2192 

16.7663 

18.8235 

24.5149 

60.0686 

128.7677 

80 10 

20 

30 

1000 

1500 

2000 

13.2744 

79.2820 

100.9905 

17.8872 

17.9988 

18.3088 

19.2232 

52.8523 

149.4491 
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computational model integrated, it can model 

the characteristics of the objective function. 

Thus, the character of the proposed objective   

function (Eq. 5) will not change due to the 

fidelity of the solver. Variations in solution 

accuracy and total computational time for 

convergence will be evident. A panel method is 

initially used in the context of this research. The 

lower computational costs provide an avenue to 

test the robustness, flexibility and validity of the 

proposed search algorithm. With the optimiser 

fine-tuned, CFD will be used to accurately 

compute the performance of the airfoil.  

The Potential Flow around Airfoils with 

Boundary Layer Coupled One Way (PABLO), 

panel method program is used to compute the 

aerodynamic coefficients [26]. The method uses 

the Thwaites’ equations to model the laminar 

region and Heads’ equations to model the 

turbulent part of the flow [26]. The onset of 

flow transition and eventual separation is based 

on Michel’s transition criteria. The total drag 

coefficient over the lifting surface is analysed 

using the Squire-Young formula [27].    

4.2 Results & Discussion 

As PSO is a probabilistic search method, 

two independent runs were executed to observe 

solution evolution. The convergence fitness and 

the final optimal airfoil shapes are presented in 

Figures 3 & 4 respectively. The two simulations 

produce different history plots (Fig. 3) with 

solution fitness magnitude differences between 

the two runs having a negligible effect on the 

final aerodynamics (Table 4). Run one 

convergence requires 56 iterations, with 

simulation two at 38 generations. With a swarm 

size of 60 particles, this equates to 3360 and 

2280 airfoils that were computed by PABLO 

respectively over the two runs. Due to the low 

computational cost of panel method solvers, 

computation time was not an issue. Integration 

of Navier-Stokes CFD for similar optimisation 

runs will be computationally demanding.  
Table 4.  PSO Execution Results 

 Fitness t/c Cl Cd Cl / Cd 

Run 1 41010.6 −×  23.57% 0.40 0.0067 ≈ 60 

Run 2 41060.6 −×  21.71% 0.40 0.0065 ≈ 61 

Despite the similar aerodynamic properties 

(Table 4) of the two shapes (Fig. 4), variances in 

the coefficient of pressure distribution plots are 

evident (Fig. 5). The results indicate that a 

multimodal behavior is present for single-

objective airfoil shape optimisation problem, 

which is also confirmed by Ray [28]. Thus, 

multiple airfoils exist for the proposed objective 

function and stricter constraints need to be 

enforced in order to select a suitable planform. 

Examination over multiple flight conditions and 

enforcing aerodynamic constraints including 

maintaining laminar flow and/or avoiding flow 

separation must be applied. Due to the presence 

of multiple solutions, total iteration count for 

convergence varies as a result (Fig. 3).   

The evolution of the PARSEC variables 

during the search process is examined through a 

series of box plots (Fig. 6). The ten PARSEC 

variables are mapped at the start and end of the 

search process, to observe variable convergence. 

The Inter-Quartile-Range (IQR) of the initial 

swarm is larger for all variables with the 

exception of the leading edge radius and the 

trailing edge direction coefficient.  The IQR at 

the start of the search process is based on the 

proposed design variable operating bounds from 

Table 3.  PARSEC Airfoil Geometrical Constraints  

Variable Number Variable Name Variable Notation Lower Bound Upper Bound 

1 Upper Crest Abscissa XUP 0.30 0.60 

2 Upper Crest Ordinate YUP 0.07 0.12 

3 Upper Crest Curvature YXXUP -1 0.2 

4 Lower Crest Abscissa XLOW 0.20 0.60 

5 Lower Crest Ordinate YLOW -0.12 -0.07 

6 Lower Crest Curvature YXXLOW 0.2 1.20 

7 Leading Edge Radius RLE 0.001 0.04 

8 Trailing Edge Ordinate YTE -0.02 0.02 

9 Trailing Edge Wedge Angle βTE 3° 40° 

10 Trailing Edge Direction αTE -25° -2° 

11 Trailing Edge Thickness ∆YTE 0 0 
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Table 3. Thus, the box plots show that the PSO 

explores all possible variable permutations 

based on the identified operating range. As the 

search space narrows towards a global solution, 

most PARSEC coefficients settle to an optimal 

value, with a reduction in the final swarm IQR. 

Due to the multimodal behavior of the objective 

function, the box plots for the leading edge 

radius, upper and lower crest curvature and the 

trailing edge direction indicate that these 

parameters can take multiple values.  

5  Artificial Neural Networks 

As the DNO process is computationally 

inefficient, an ANN methodology is proposed. 

A trained network, when integrated to a 

heuristic algorithm can significantly reduce the 

computation expense of airfoil shape 

optimization. The proposed network de-couples 

the solver from the DNO process thus, the 

swarm search methodology operates directly 

with the trained network. The foreseen 

computational benefits of the proposed 

approach is only plausible if the training airfoil 

population is less than the number of 

generations required in a direct search approach 

as outlined in section 4.2.  

5.1 Network Modeling  

An ANN structure is introduced (Fig. 7), to 

develop a relationship between PARSEC shape 

coefficients and the equating aerodynamic 

coefficients. Greenman suggests utilizing 

separate networks for the individual 

aerodynamic coefficients (Cl, Cd and Cm) [6] to 

improve network generalization. The 

corresponding aerodynamic coefficients are 

established as outputs, at a Reynolds and Mach 

number of 3.0 million and 0.32 respectively. 

These conditions simulate the cruise phase of a 

long endurance sortie for the proposed RC-MM-

UAV platform.  

5.2 Network Training & Validation  

The Bayesian regularization approach by 

MacKay [29] is used to train the network, to 

improve system generalization capabilities. 

Latin Hypercube Sampling (LHS) is 

implemented to distribute the ten PARSEC 

variables and ensure an even representation of 

airfoils across the proposed design space [30].  

An example of a LHS output for the leading 

edge radius and trailing edge point is shown in 

Figure 8 with a sample size of ten.  

A trial-and-error process is undertaken to 

develop a network by varying the number of 

hidden layers and neurons within the layers and 

the activation functions. Training sample size 

was varied from 800-2300 LHS distributed 

PARSEC airfoils. Additional planforms, not 

used in the training process were introduced to 

monitor network generalization capabilities. 

System performance is measured by observing 

training and generalization error with an RMS 

error of zero between trained and target output 

data set for convergence. Again, separate 

networks were developed to model the 

aerodynamic coefficients. The network 

development trial-and-error process indicated a 

training database of 2100 airfoils is required to 

simulate lift and drag coefficient. Both 

structures were modeled with two hidden layers, 

with the lift coefficient architecture consisting 

of 40 neurons within the two layers and tan-

sigmoid transfer functions (Table 5). Drag 

coefficient required additional ten neurons 

within the two layers, with log-sigmoid used as 

the transfer function in the first layer (Table 6). 

Current research focuses on developing an 

appropriate model to simulate the moment 

coefficient.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

The effect of varying network input 

population size from 800-2300 planforms was 

Table 5.  ANN Design Structure for Lift Coefficient 

Layer One Two 
Three         

(Cl Output) 

No. of Neurons 40 40 1 

Transfer 

Function 

Tan-

Sigmoid 

Tan-

Sigmoid 
Linear 

 
Table 6.  ANN Design Structure for Drag Coefficient 

Layer One Two 
Three       

(Cd Output) 

No. of Neurons 50 50 1 

Transfer 

Function 

Log-

Sigmoid 

Tan-

Sigmoid 
Linear 
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evaluated. Training and generalization RMS 

error for the lift coefficient based on the 

structure presented in Table 5 was examined 

(Fig. 9a-c). A network with 800 airfoils shows a 

steady training and validation error over an 

extended run. A difference of approximately 

five percent, between actual and network 

simulated lift coefficients, for a training RMS 

error of 7102.1 −× was computed. A higher 

validation RMS error in comparison to training 

miss-match, together with a steady error run, it 

is apparent that the network requires further 

modifications. With no changes to the network 

architecture (Table 5), airfoil training size was 

increased to 2100 sections (Fig. 9b). The 

training residual in this case decreases to zero, 

with the validation RMS error at .101 8−×≈  

Comparison of actual and simulated lift 

coefficients for the validation set, showed 

variances of less than one percent between the 

two data sets. The validation RMS continues to 

decline during training progression and with 

acceptable tolerances between actual and 

simulated lift data, a valid network is developed. 

A model with 2300 airfoils in Figure 9c 

indicates an over-fitting trait. The training error 

remains low as expected, but the network fails 

to generalize over new input data. A validation 

RMS error at convergence is .102.1 1−×≈  As a 

result, differences between actual and simulated 

lift coefficients reveal errors in excess of 10%-

20%. Together with a steady increase in the 

validation error during training, the network 

exhibits over-fitting properties.  

5.2 Coupling of PSO with ANN for Single-

Point Airfoil Optimisation 

The single-objective constrained 

optimisation run from section 4 is presented 

with the use of a hybrid technique. The PSO 

model adjusts the PARSEC variables as inputs 

within the neural network. The network outputs 

the aerodynamic coefficients of lift and drag and 

the solution fitness is evaluated. The process 

operates iteratively until convergence based on 

the objective function (Eq. 5). 

The final optimal shape has an 

approximate thickness-to-chord ratio of 20% 

(Fig. 10), with a lift coefficient of 0.40 

according to defined flight requirement from 

equation 5 (Table 7). In general the final results 

obtained with the hybrid technique, are similar 

to the analysis presented in table 4, through the 

direct search approach.  

The fitness of the converged solution is 

slightly less than the magnitude obtained 

through the DNO approach (Table 4). This has a 

negligible effect on the aerodynamics of the 

final solution (Table 4 & 7). The hybrid 

approach converged at 223 iterations, which is 

considerably greater than the direct PSO 

approach. This is attributed to the differences in 

the termination criteria set within the two search 

models. In the direct approach, a conservative 

termination criterion, with fitness of all the 

particles to be within 0.05 of each other was set. 

In the neural net / PSO approach this criteria 

was extended to 0.005. The aerodynamics of the 

final solution remains unchanged despite the 

enforcement of a stricter termination criterion. 

In the hybrid approach, the overall best solution 

has been established at iteration 127. The 

defined termination criterion is such that the 

relative fitness of all the particles within the 

swarm is not 0.005 at this stage. As a result, the 

optimizer continues to execute until all the 

particles are within this range. Consequently, 

the fitness of the optimal solution within the 

swarm remains constant from epoch 127 to the 

end of the search phase (Fig. 11). This suggests 

that a magnitude of 0.005 can be relaxed for 

future analysis.     

The results presented here show the 

benefits of the PSO / ANN approach. The 

hybrid methodology required 38% and 8% 

fewer airfoil solver executions, in comparison to 

the direct search approach from runs 1 and 2 

respectively. The aerodynamics of the final 

solution between the two methods was 

negligible thus, further illustrating the benefits 

of this approach. The final optimal shapes in the 

three simulations (two from the direct approach 

+ one from the hybrid technique) are unique but 

share similar aerodynamic performance. The 

Table 7.  PSO / ANN Execution Results 

 Fitness t/c Cl Cd Cl / Cd 

ANN / PSO 41060.5 −×  19.8 0.40 0.0066 ≈ 61 
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hybrid approach has further verified the 

presence of a multimodal design space for 

single-point airfoil designs.  

The true benefits of this approach will be 

apparent, when high-fidelity solvers are 

introduced within the design optimization 

framework. It was seen that a neural network 

requires fewer airfoil samples thus, reduced 

solver time in comparison to a direct search 

approach. Navier-Stokes models, when 

implemented for network training and integrated 

to a PSO algorithm, will provide accurate 

aerodynamic coefficients for airfoil shape 

optimization, with reduced computational load.   

6  Conclusion and Future Research  

The DNO approach for airfoil design and 

analysis was introduced. The PSO model was 

validated for application in airfoil design. Two 

benchmark functions were used in the validation 

process. The effect of varying particle 

population and velocity across multiple 

dimensions, on solution convergence was 

examined. The results were mapped onto a 

series of SOM charts, which showed that the 

adaptive inertia weight model was superior in 

comparison to a standard PSO algorithm. Large 

particle population with low velocities provides 

acceptable convergence in comparison to an 

optimization run with fewer particles navigating 

at faster speeds. Current research focuses on 

developing an adaptive inertia velocity function, 

similar to the inertial weight model, to adapt the 

speed of the particles through a PSO run. This 

has the potential of providing greater solution 

agreement with fewer design iterations. 

The direct search method was used for a 

single-point airfoil optimisation. Series of 

aerodynamic and geometrical constraints were 

applied. A single-point optimisation run is 

characterised by a multi-modal solution space. 

The need to enforce stricter aerodynamic 

constraints and a multi-objective function is 

required to address this issue. Panel method 

calculations showed that a direct optimisation 

run is computationally demanding. Integration 

of high-fidelity solvers will result in 

computationally inefficient optimisation 

architecture.  

An ANN methodology within the overall 

DNO framework was introduced to address the 

issue of high computational cost. The PARSEC 

design variables were used as inputs with the 

equating aerodynamic coefficients as outputs. A 

detail network development study was 

undertaken through variations in training sample 

size and altering network set-up. A model with 

two hidden layers comprising of 40 and 50 

neurons for lift and drag respectively was 

required. Together with a training sample size 

of 2100 airfoils, the network simulated lift and 

drag to one percent of actual solver solution. 

Current research focuses on developing a 

network to simulate the moment coefficient.  

The hybrid methodology was then used in the 

design of an airfoil; repeat of the analysis 

performed through the direct search approach. 

Comparison of results between the hybrid 

approach and the two stand-alone PSO 

simulations indicated computational saving in 

the range of 8% - 38%. Future research focuses 

on performing a multi-point airfoil design 

analysis. With the introduction of a moment 

coefficient neural network and Navier-Stokes 

models, stricter aerodynamic constraints can be 

imposed, to reduce the multimodal behavior of 

the search process. The computational resources 

through the utilization of high-fidelity solvers 

will benefit from the proposed hybrid search 

methodology.     
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 Low Velocity = Low Fitness   
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Fig. 1 Rosenbrock Function Convergence: SOM Visualization 

 
Fig. 2 Rosenbrock Function: Effect of Varying Particle 

Population & Velocity on Fitness 
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0 10 20 30 40 50 60
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-3

Iterations

F
it
n
e
s
s

PSO Progress Plot

Run 1

Run 2

 
Fig. 3 Convergence Plot 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

x/c

y
/c

Final Optimial Shape

Run 1

Run 2

 
Fig. 4 Final Optimal Airfoil Shapes 
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Fig.6 Box Plot of Initial and Final Swarm (Run 2) 

 

Fig. 7 Proposed Artificial Neural Networks Structure 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

r
le

y te

LHS Distribution of PARSEC Variables

 

Fig. 8 Latin Hypercube Sampling of PARSEC Variable yte and rle  
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Fig. 11 ANN / PSO Convergence Plot 
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