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Abstract 
A new analytical model based on the shear-lag 
theory is developed for stress analysis and 
steady state creep deformation of short fiber 
composites subjected to an applied axial load. A 
perfect fiber/matrix interface is assumed and an 
exponential law is considered for describing the 
steady state creep behavior of the matrix 
material. The matrix stress field components 
obtained from the proposed analytical solution 
satisfies the equilibrium and constitutive creep 
equations. Also, the obtained axial stress in the 
fiber in an average form satisfies the 
equilibrium requirements within the fiber and 
between the fiber and the matrix. Moreover, the 
above stress field components satisfy well the 
overall boundary conditions including the 
surface conditions, the interface continuity 
conditions, and the axial force equilibrium 
conditions. These analytical results are then 
validated by the FEM modeling. Interestingly, 
good agreements are found between the 
analytical and numerical predictions for all the 
stress, strain rate, and displacement rate 
components.

2 Introduction
The increasing application of short fiber 
composites at high stress and high temperature 
requires a through knowledge of their creep 
characteristics and deformation mechanisms. In 
recent years, extensive investigations have been 
conducted to determine the creep properties of 
short fiber composites [1-7], which is of great 
importance in practical engineering. The wide 
range of available composite materials for a 

specific purpose makes it difficult to evaluate 
experimentally the creep properties of these 
materials. Thus the use of analytical or 
numerical methods is unavoidable. Although, 
the numerical methods are quick and easy, the 
analytical approaches provide enough
confidence on the predicted results. 

Over the past few decades, different 
analytical models have been developed for 
prediction of the second stage creep rate and 
also stress states in short fiber composites. In 
most of the studies, the stress transfer between 
the matrix and the fiber is considered to be the 
most important mechanism governing the creep 
behavior of these materials. Majority of the 
analytical models are one-dimensional and are 
typically based on the shear-lag theory [1-6]. In 
these models, the concepts employed by Cox [8] 
have been used assuming elastic short fibers and 
exponential or power law creep matrix. 

What for sure is missing, is an analytical 
solution of creep behavior of short fiber 
composites based on the well know shear-lag 
theory, which can satisfy all the constitutive and 
equilibrium equations and match the existing 
FEM results. Also, a little progress has been 
made in development of a tool for analysis of 
stress states in aligned short fiber composites. 

In general, the short-comings of the 
available analytical models could be highlighted 
as follows: 

• Most of these models are available for 
just one type of creep law and some of 
them provide unsatisfactory results by 
changing the law. 
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• The results obtained by the analytical 1-
D shear-lag based models don't 
satisfactorily correlate the FEM results. 

• Calculation of the creep strain rate has 
been the main goal of most of these 
models and due to using shear-lag theory 
only m

z
f

z σσ ,  and iτ  as a function of z
could be obtained. Note that m

z
f

z σσ ,  are 
the respective average axial stress in the 
fiber and matrix and iτ  is the interfacial 
shear stress. In fact, these models are 
unable to calculate other stress 
components and also the displacement 
rates of the composite. Moreover, by
these models, the variation of stress and 
displacement rate fields with zr and  is 
not in hand. 

• Generally, this problem involves with 
two equilibrium equations and a 
constitutive law, which consists of four 
equations [9]. In 1-D shear-lag based 
models only one of the equilibrium 
equations is used. Also, instead of the 
constitutive equations, the simple 
velocity relations of the flowing matrix 
are used for calculating the strain rate of 
the composite in steady state creep stage. 

Normally, with the axisymmetric 
assumption of the problem, satisfaction of all 
the equilibrium and constitutive equations even 
for the elastic state of the composite constituents 
are hardly occurred. The exceptions come here 
with only considering several approximating 
and reducing assumptions [10-14]. It should be 
noted that in elastic case the elastic modulus of 
the matrix ( E ) appears in the constitutive 
equations, which is a constant. However, when 
the matrix ends up in the steady state creep 
stage, as will be discussed later, instead of mE
the complicated term of ee σε 2/&  appears in the 
matrix constitutive equations. Note that here

ee εσ &and , which are the equivalent stress and 
equivalent strain rate of the matrix respectively 
will be functions of r  and z  coordinates. 

In the present work, an analytical solution 
for prediction of the steady state creep behavior 
of short fiber composites based on shear-lag 
theory is offered. Here, an axisymmetric unit 

cell representing a fiber with its surrounding 
matrix as two coaxial cylinders is assumed. The 
proposed solution technique satisfies all the 
equilibrium and the constitutive equations along 
with all the existing boundary conditions. This 
model is capable for providing the stress state 
inside the composite, i.e. radial, circumferential, 
axial and shear stress components, as well as the 
radial and axial displacement rates as functions 
of r  and z  coordinates. For verification of the 
solution method, the SiC/6061Al composite is 
selected as a case study and the results will be 
compared with the FEM and other analytical 
available results in [4,7].

3 Model development

2.1 Composite model
The cylindrical unit cell depicted in Fig.1 has 
been used by many researchers [4,7,10-14] to 
model a short fiber composite.

FiberMatrix

2a2b

2l

2l'

0
z

r

Fig. 1. Schematic presentation of the unit cell

In this model it is assumed that a 
cylindrical fiber with a radius a  and a length l2
is embedded in a coaxial cylindrical matrix with 
an outer radius b  and a length l ′2 . The volume 
fraction and aspect ratio of the fiber are defined 
as f and als /= , respectively. Also, in this 

study, 
al
blk

/
/′

=  is considered as a parameter 

related to the geometry of the unit cell. An 
applied axial stress 0σ is uniformly imposed on 
the end faces of the unit cell (at lz ′±= ). The 
cylindrical polar coordinate system ( zr ,,θ ) is 
used with the origin located at the center of the 
unit cell. Due to symmetry in geometry, 
loading, and boundary conditions, the analysis 
is performed only on half of the unit cell (i.e. 

lz ′≤≤0 ). 
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For the purpose of analysis, the following 
further assumptions are made: 

i) Steady state condition of stress is 
assumed. 

ii) Elastic deformations are small and are 
neglected as compared to creep 
deformations.

iii) The fibers behave elastically during the 
analysis and the steady state creep 
behavior of the matrix is described by an 
exponential law as given in Eq. (1), 

)/exp( BA ee σε =& (1)
iv) A perfect fiber/matrix interface is 

considered. 

2.2 Governing equations and relations
The governing equations for the axisymmetric 
problem considering the cylindrical coordinates 
( z,,r θ ) are obtained as 

0=+
∂
∂

+
∂
∂

rrz
rzrzz ττσ (2a)

0=
−

+
∂
∂

+
∂
∂

rzr
rrzr θσστσ (2b)

The generalized constitutive equations for 
creep deformation of the matrix material in θ,r
and z  directions [9] are

[ ]zr
e

e
r r

u σσσ
σ
ε

ε θ −−=
∂
∂
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2
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σ
ε
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σ
ε
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∂
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e

e
rz r
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z
u τ

σ
ε
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2
3

2
1 &&&

& =







∂
∂

+
∂
∂

= (3d)

where the equivalent stress, eσ , is given by 

[ ]2
1

2222 6)()()(

2
1

rzrzzr

e

τσσσσσσ

σ

θθ +−+−+−

=
(4)

and rzzr τσσσ θ and,,  are the stress 
components in the directions indicated by 
subscripts. Furthermore, eε&  is the equivalent 
strain rate and is defined by Eq. (5), in terms of 
the strain rate components, 

(5)

[ ] 2
1

2222 6)()()(

3
2

rzrzzr

e

εεεεεεε

ε

θθ &&&&&&&

&

+−+−+−

=

where rzzr εεεε θ &&&& and,,  are the strain rate 
components in the directions indicated by 
subscripts. 

It must be noted that from these three sets 
of equations, only the equilibrium equations, 
Eqs. (2a,b), are applicable to both the effective 
fiber and the matrix. Also, based on the 
available literature, to satisfy strictly the 
equilibrium equations, the stress-displacement 
rate relations, and the essential boundary 
conditions, solutions for the stress transfer 
problem require extensive numerical analysis. 
However, simple analytical solutions are 
attainable when some of the above equations are 
satisfied approximately, and the rest of 
equations are satisfied exactly.

2.3 Boundary conditions
In order to obtain the correct strain rate and 
stresses of the composite, it is necessary to 
apply appropriate boundary conditions to the 
mathematical model. Here, the iso-displacement 
condition is appropriate for the present problem, 
see Fig. 2. 

r

z Deformed side edge,
2nd stage creep state

Undeformed side edge,
Elastic state

l'

b

Matrix

Fiber

wl'
.

ub
.

Fig. 2. Schematic of the unit cell edges in the 2nd stage 
creep and the elastic states

According to the physics of the problem, 
three sets of boundary conditions, that is the 
conditions on the border surfaces of the unit 
cell, the conditions on the fiber/matrix interface 



M. MONDALI, A. ABEDIAN, A. GHAVAMI

4

region, and the axial force equilibrium 
conditions, can be proposed. 

The applied boundary conditions on the 
border surfaces of the unit cell (i.e.

lzzbrr ′==== and0,,0 ) are given by 
lzuzbu b ′≤≤= 0),( && (6a)
brarw ≤≤= 0)0,(& (6b)

lzzbz rzrz ′≤≤== 00),(),0( ττ (6c)

brlrr rzrz ≤≤=′= 00),()0,( ττ (6d)
As mentioned above bu&  in Eq. (6a) is the 

prescribed radial displacement rate on the outer 
surface ( br = ), see Fig. 2. Also, the boundary 
conditions on the fiber-matrix interface (i.e. at

lzar ≤≤= 0, ) are as 
0),( =zau& (7a)
0),( =zaw& (7b)

i
f

rz
m
rz zaza τττ == ),(),( (7c)

p
f

r
m
r zaza σσσ == ),(),( (7d)

In fact, due to the elastic behavior of the 
fiber during the creep deformation of the 
composite, no matrix slipping on the fiber at the 
interface is an acceptable assumption. 
Therefore, both displacement rate components 
in the radial and axial directions at the interface 
are zero. Also, according to the shear-lag theory 
the interfacial shear stress of the fiber and the 
matrix are equal. Moreover, for a bonded 
interface, the continuity condition (i.e. Eq. (7d)) 
is required at the interface. 

The axial force equilibrium conditions 
between the fiber and the matrix at any z
location along the model length is presented by 

∫

∫
+

=

b

a

m
z

a f
z

rzr

rzrb

)(d),(

)(d),(

2

0

2
0

2

πσ

πσσπ
(8a)

or in an average manner, 
m
z

f
z abab σσσ )( 222

0
2 −+= (8b)

where the superscripts m  and f  denote the 
respective matrix and fiber and the bar sign on 
the stress symbol (e.g. m

zσ ) denotes the average 
value over the cross-sections of the matrix or 
the fiber. 

Since the matrix only creeps, no index of 
form is given to ewu ε&&& and,  for avoiding 
complications.

2.4 Solution procedure
For solving such a complex problem, the 
composite is divided to two separate regions, 
see Fig. 3. 

Fiber Matrix

Region I

r

z

a b

l

l'

Region II

Imaginary 
Fiber

0

Fig. 3. Illustration of the two important regions for 
problem solution

Without considering region II, the creep 
behavior of region I is determined, first. Then 
by the use of appropriate boundary conditions, 
the creep strain rate for the full composite 
model (i.e. regions I plus II) is calculated. The 
details of the solution procedure are discussed in 
the following subsections. 

2.4.1 Obtaining f
rzτ  and m

rzτ  in region I
The equation dictating the stress transfer in the 
shear-lag model and the approximate shear 
stress distributions in both the fiber and the 
matrix can be derived from Eq. (2a). Integration 
of Eq. (2a) over the cross section of the fiber 
and then division by its cross sectional area 

2aπ  yield [10-12]: 

i

f
z

az
τ

σ 2
d

d
−= (9)

where f
zσ  is the average value of f

zσ  over the 
cross-section of the fiber. 

To drive the shear stress distribution in the 
fiber and the matrix, the axial stress gradient is 
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assumed to be a function of z , and the obtained 
results are [10-12] 

i
f

rz a
r ττ = (10a)

i
m
rz r

r
b

ab
a ττ 








−

−
=

2

22 (10b)

The above equations satisfy continuity of 
the shear stress at the interface, i.e. Eq. (7c), as 
well as the free surface condition, i.e. Eq. (6d). 

2.4.2 Obtaining wu && ,  and iτ  in region I
In this step u&  and w&  and also )(ziτ , which has 
remained to be defined from the last step are 
determined. The incompressibility condition, 
i.e. adding up the Eqs. (3a-c), will produce 

0=
∂
∂

++
∂
∂

z
w

r
u

r
u &&&

(11)

The above equation is integrated with 
respect to r  from a  to b , i.e. for the effective 
matrix region, to give

0d)2()(1
)(

1

d)2(
)(

1

22

22

=
∂

∂
−

+

∂
∂

−

∫

∫
b

a

b

a

rr
r
ur

rab

rr
z
w

ab

π
π

π
π

&

&

(12)

Since the average axial displacement rate 
over the cross-section of the effective matrix 
can be defined as 

∫−
=

b

a
rrzrw

ab
w d)2)(,(

)(
1

22 π
π

&& (13)

considering Eq. (13), Eq. (12) becomes, 

bu
ab
b

z
w

&
&

22

2
d
d

−
−

= (14)

Now, to determine u& , it is assumed that 

)(zf
z
w

=
∂
∂ &

(15)

where )(zf  is a function yet to be determined. 
Substituting Eq. (15) into Eq. (11) and 

integrating with respect to r  from a  to r  and 
applying the corresponding boundary conditions 
will yield 

)(
2
1 2

zf
r

aru 







−−=& (16)

Then )(zf  and thus u&  will be determined 
by substituting Eq. (6a) to Eq. (16) as 

bu
ab
bzf &

22

2)(
−

−
= (17a)









−

−
=

r
ar

ab
ub

u b
2

22

&
& (17b)

As Eq. (17b) shows, u&  is independent of z
coordinate in the matrix region. Hence, this 
requires that u&  satisfies the following condition, 

0=
∂
∂

z
u& (18)

Substituting Eq. (10b) into Eq. (3d), with 
the use of Eq. (18), gives 

22

23
ab

a
r

r
b

r
w i

e

e

−







−=

∂
∂ τ

σ
ε&&

(19)

Now, using the B.C's on the fiber-matrix 
interface and substituting Eqs. (7a,b,d) into Eqs. 
(3a-c) gives 

p
m
z

m zaza σσσθ == ),(),( (20)
Substituting the above equation into Eq. (4) 

and using Eq. (7c) will give the equivalent stress 
at the interface as 

ie za τσ 3),( = (21)
Now, substituting the above equation into 

Eq. (1) yields 









= ie B

Aza τε 3exp),(& (22)

The basic assumption in the solution 
method is introduced by substituting ),( zaeε&
and ),( zaeσ  into Eq. (13) for calculating w&  in 
the domain )( bra ≤≤  based on iτ  and as a 
function of radial coordinate 'r'. This 
approximation is such that Eq. (19) can be 
completely satisfied at the interface and the 
outer surface of the unit cell and also will yield 
acceptable functions of r  for w&  in the domain

)( bra ≤≤ . 
Now, by substituting Eqs. (21) and (22) 

into Eq. (19) one will reach at 

















−

−
=

∂
∂

iB
r

r
b

ab
aA

r
w τ3exp

)(
3 2

22

&
(23)

Integrating Eq. (23) with respect to r from 
a to r and using Eq. (7b) will yield 
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








×






 −
−

−
=

iB

ararb
ab

aAzrw

τ3exp

2
)/ln(

)(
3),(

22
2

22
&

(24)

Substituting Eq. (24) into Eq. (13), with the 
use of Eq. (14), will yield 








−= z
C
uBz b

i
&

ln
3

)(τ (25)

where C  is a constant related to the geometry 
and material property of the matrix region and 
can be written as 








 +
−+

−
=

4
3ln

)(2
3 44

224
22

abba
a
bb

abb
aAC (26)

Now substituting Eq. (25) into Eq. (24) 
yield 

zararb
abC
uAazrw b








 −
−

−
−=

2
)/ln(

)(
3),(

22
2

22

&
& (27)

Consequently, the strain rate components 
of the matrix material in region I, 

)0and( lzbra ≤≤≤≤ , could be obtained.
 Substituting Eq. (17b) into Eqs. (3a,b) 

gives the radial and circumferential strain rates, 
respectively.  









+

−
= 2

2

22 1
)( r

a
ab

ub b
r

&
&ε (28)









−

−
= 2

2

22 1
)( r

a
ab

ub b&&θε (29)

Then, using Eq. (27) in Eq. (3c) will lead 
to 








 −
−

−
−=

2
)/ln(

)(
3 22

2
22

ararb
abC
uAa b

z

&
&ε (30)

Also, substituting Eqs. (18) and (27) into 
Eq. (3d) gives the shear strain rate as

zr
r

b
abC
uAa b

rz 







−

−
−=

2

22 )(2
3 &

&ε (31)

2.4.3 Obtaining m
z

f
z σσ ,  and bu&

Now, the rule of mixture equation can be used 
to calculate bu& , which is still an unknown 
parameter. To do this, it is necessary to obtain 

f
zσ , first. Therefore, substituting Eq. (25) into 

Eq. (9) and integrating the obtained equation 
with respect to z from l  to z  gives 

lz

f
z

b

bf
z

C
lu

a
Bl

a
zlB

C
zu

a
Bz

=
+






−+

−
−






−−=

σ

σ

&

&

ln
3

2
3

)(2ln
3

2

(32)

where 
lz

f
z =

σ  is the stress acting on the fiber end 

face ( lz = ), i.e. the end stress. 
In the present study, for securing the least 

possible approximation in the fiber end stress, 
the behavior of the shear stress in region 

)and0( lzlar ′≤≤≤≤  is assumed to be 
linear. It must be noted that the interfacial shear 
stress at )( lz ′=  is equal to zero and at )( lz =  it 
is found by Eq. (25). Therefore, the shear stress 
will then be determined as 

li ll
zlz ττ
)(
)()(

−′
−′

=′ (33)

where the prime sign indicates that the equation 
is written for the domain mentioned above, 
which is so called the imaginary fiber region, 
see Fig. 3. 

Therefore, using the shear-lag equation, i.e. 
Eq. (9) for the mentioned region, one will get 

i

f
z

az
τ

σ ′−=
′ 2

d
d (34)

where f
zσ ′  is the average axial stress in the 

imaginary fiber region. 
Substituting Eq. (33) into Eq. (34) and then 

integrating with respect to z from l to l' and 
applying the appropriate boundary condition 
(i.e. 0σσ =′

′=lz

f
z ) will yield 

0ln
3

)( σσ +





−

−′
=

= C
lu

a
llB b

lz

f
z

&
(35)

Now, by substituting Eq. (35) into Eq. (32) 
the average axial stress in fiber can be given by 

0ln
3

)'(
3

)(2ln
3

2

σ

σ

+





−

+
+

−
−






−−=

C
lu

a
llB

a
zlB

C
zu

a
Bz

b

bf
z

&

&

(36)
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Finally, the only unknown parameter, i.e. 
bu& , is calculated using the rule of mixture 

equation as 
0)1( σσσ =−+ m

z
f

z ff (37)
where double bar sign on the stress symbol (i.e. 

f
zσ  and m

zσ ) indicates the averaging of the 
physical quantity along both zr and  directions. 
therefore, f

zσ  can be expressed as 

∫=
l f

z
f

z z
l 0

d1 σσ (38)

Substituting Eq. (36) into Eq. (38) and then 
integrating the result with respect to z  from 0 to 
l  will give 

032
ln

3
σσ +−







−
′

=
a
Bl

C
lu

a
lB bf

z
&

(39)

But m
zσ  could not be calculated with the 

similar way as used for f
zσ . This is because 

m
zσ  belongs to the total matrix of the composite 

model (i.e. regions I and II, Fig. 3). To calculate 
m
zσ , according to Fig. 2, in the steady state 

creep stage the volume of the composite 
remains constant. Therefore, the relationship 
between the unit cell displacement rates in 

zr and  directions at br = , i.e. bu& , and lz ′= , 
i.e. lw ′& , could be found from Eq. (40). 

b
ulw b

l
&

&
′

−=′
2

(40)

Hence, the composite creep strain rate can 
be obtained as 

b
ub

c
&

&
2

−=ε (41)

Note that the calculated creep strain rate 
will produce an average stress in the matrix as 

m
zσ , which could be found by substituting Eq. 

(41) into Eq. (1) as 







−=

Ab
uB bm

z
&2lnσ (42)

Now, by substituting Eqs. (39) and (42) in 
Eq. (37), bu&  can be obtained as 



















−+′







′−−+

×

−=

)1(3
2

ln)1(32
exp

2

0

fBaBlf
C

AblBlffaflB

Abub

σ

&

(43)

2.4.4 Obtaining radial, circumferential and 
axial stresses in region I

For defining the radial, circumferential and axial 
stresses in the matrix, substituting Eqs. (3a,b) 
will result in

m
z

e

em
r r

u
r
u σ

ε
σ

σ +





 +

∂
∂

=
&&

&
2

3
2

(44a)

m
z

e

em

r
u

r
u σ

ε
σ

σθ +





 +
∂
∂

=
&&

&
2

3
2

(44b)

Substituting the above equations into Eq. 
(2b) and performing some simplifications gives

),(),( zrhzr p
m
z += σσ (45)

where 

( )

zararb
ab

aB

rAB
r

r
r

ABzrh

r

a
e

e
r

r

a
z

e

e








 −
−

−
−









∂
∂

+−

∂
∂

=

∫

∫

2
)/ln(

)(3

d
3

)/ln(22

d
3

)/ln(4
),(

22
2

22

ε
ε

εε

ε
ε
ε

θ &

&
&&

&

&

&

(46)

Now, the only unknown parameter for 
calculating ),( zrm

zσ  is pσ , which is a function 
of z  direction only. The average axial normal 
stress in the matrix for region I can be obtained 
as 

∫−
=

b

a

m
z

m
z rrzr

ab
z d)2)(,(

)(
1)( 22 πσ

π
σ (47)

Therefore, the interfacial radial pressure, 
i.e. pσ , could be calculated by substituting Eq. 
(45) into Eq. (47) as 

∫−
−=

b

a

m
zp rzrrh

ab
d),(2

22σσ (48)

where m
zσ  can be determined by substituting 

Eq. (36) into Eq. (8b). 
Then, the axial stress in the matrix as a 

function of zr and  is found by substituting the 
above equation into Eq. (45). Due to the 
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complications involved with Eqs. (46) and (48), 
calculating the obtained analytical integrations 
are almost impossible. In the present research 
work, these integrations are done numerically 
for the chosen test case, which is discussed in 
the next section. 

4 Results and discussions
To examine the validity of the present analytical 
model, the SiC/Al6061 composite is chosen as a 
test case. For comparison purpose, the finite 
element numerical calculations of creep 
behavior of this composite are also carried out 
using the finite element commercial code of 
ANSYS (version 7.0). The model geometry is 
chosen as shown in Fig. 1 and the surface 
conditions are applied as presented in Eqs. (6a-
d), see Fig. 2. The axisymmetry approach with 
nonlinear quadratic element of PLANE 183 is 
used for FEM analysis. This element is a higher 
order eight-node element and has creep 
modeling capability, as well. 

For the composite used here (SiC/Al6061), 
the volume fraction of fibers is 15% and the 
fibers have an aspect ratio of 7.4 and 76.0=k , 
which are in accordance with the suggestions 
made in [4]. For more information regarding the 
experimental measurements of the above factors 
including the micrographs, one can refer to Ref. 
[4]. Also, the steady state creep constants of the 
matrix material, BA and , in Eq. (1) are 
considered as )7.24exp(−=A  and 47.6=B , 
which are also given in [4]. 

To present the results it is important to 
verify the most critical point in this solution, 
first. This is the relationship between the 
equivalent stress at the interface )),(( zaeσ  and 
the interfacial shear stress )( iτ  along the fiber 
length during the secondary creep stage as given 
by Eq. (21). Then the analytical results of eσ
and rzτ  at the outer surface of the unit cell (i.e. 
at br = ) are presented. This is backed by the 
calculated stress components in the matrix at the 
outer surface of the unit cell. Also, the average 
axial stresses in the fiber and matrix in region I 
will be compared with the FEM results. To do 
this, it is necessary to verify the interfacial shear 
stress distribution in the matrix in region II. As 

was explained in the previous section, to solve 
the problem, a linear distribution for the shear 
stress along the model length from the fiber end 
to the unit cell free surface was assumed. 

Then a comparison of the mentioned 
average stresses and the interfacial shear stress 
in the elastic and the secondary creep states 
could highlight the power of the proposed 
solution technique. This comparison enables 
one to exactly describe the load transfer 
mechanism between the fiber and the matrix 
during the second stage creep and the nature of 
the stress components in the composite 
constituents become more easily describable. 

What remains to be describe here, are the 
radial and axial displacement rates (i.e. wu && , ). 
This is necessary to be done before talking 
about cε& . Finally, the creep strain rates 
calculated by FEM and the presented analytical 
method vs. different applied constant loads are 
discussed and also the results will be compared 
with the available experimental creep 
measurements of the composite. 

2.5 Verification of the stress field 
components
The results of the analytical and FEM 
calculations of shear stress and equivalent stress 
along the fiber length at the interface are shown 
in Fig. 4. Interestingly, an excellent correlation 
between the results exists.

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

Normalized axial position, (z / l)

M
at

rix
 s

he
ar

 &
 e

qu
iv

al
en

t .
st

re
ss

es
 (M

pa
) @

 r 
= 

a 
(in

te
rfa

ce
) 

FEM, shear stress
FEM, equivalent stress
Analytical, shear stress
Analytical, equivalent stress

6061Al/15%SiC
573 K
80 MPa

Fig. 4. Analytical and FEM curves of shear and 
equivalent stresses of matrix in Region I at the interface

The power of the proposed method is 
further backed by comparison of the analytically 
calculated eσ  and rzτ  at the outer surface of the 
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unit cell (i.e. at br = ) with the FEM results, see 
Fig. 5. As expected, at the outer surface, 0=rzτ
and eσ  is constant along the fiber, i.e. 
independent of z . 
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Fig. 5. Analytical and FEM curves of shear and 
equivalent stresses of matrix in Region I at the outer 

surface

The analytical and FEM calculations of the 
axial stress of the matrix along the fiber length 
at ar =  and br =  are shown in Figs. 6. 
According to the figure, the analytical and FEM 
results match well. 
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Fig. 6. Analytical and FEM curves of the axial stress in 
matrix @ ar =  and br =

To show the validity of the method for 
calculating the axial stress in the fiber, the FEM 
axial stress at five different locations in domain

ar ≤≤0  along the fiber length and the average 
analytical axial stress are presented in Fig. 7. 
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Fig. 7. Analytical and FEM results of the axial stress in 
fiber and matrix

As it is seen, the calculated average 
analytical values exactly match the FEM results. 
Moreover, an excellent match occurs between 
the analytically calculated average axial stress in 
the matrix and the FEM results. 

Based on Fig. 7, the average axial stress at 
the fiber end is in a good agreement with the 
FEM results at ( ar ≤≤0 , lz = ). This is due to 
the approximation made for the shear stress in 
region II at ar = . It must be noted that the area 
under the shear stress curve could be interpreted 
as the average axial stress at the fiber end (i.e. 

lz
f

z =
σ ). 

2.6 Verification of the displacement rates
In the current study, according to Eq. (41), the 
composite creep rate )( cε&  could be found using 

bu&  without having access to lw ′& . Therefore, as a 
check point for validity of cε& , the distribution of 
radial and axial displacement rates in region I 
are verified by the FEM results. Fig. 8 illustrates 
the radial displacement rate distribution in 
domain bra ≤≤  for both FEM and the 
analytical method. 
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Since u& is independent of z  along the 
fiber length, only the graph for one of the 
locations is presented here. As it is seen, an 
excellent correlation exists between the results. 
Also, Fig. 8 shows both FEM and the analytical 
calculations of the w&  distribution in bra ≤≤
at 2/lz = . As the figure shows, the shear strain 
rate values, i.e. rzγ& , obtained by both methods 
coincide well at ar =  and br = . This is also 
backed by the w&  values at br =  along the fiber 
length as shown in Fig. 9. 
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Fig. 9. Analytical and FEM results of axial and radial 
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However, the small difference in w&  along 
the radial direction, as the results show, has no 
effect on the prediction of global behavior of the 
composite. Also, as it is seen in Fig. 9, the 
calculated u&  coincides well with the FEM 
results. 

2.7 Verification of the composite creep 
strain rate
Now, the calculated composite creep strain rate 
by the present method is compared with the 
FEM results and the analytical results obtained 
by Taya-Lilholt [4] under different applied 
loads 0σ . Table 1 presents the creep strain rate 

)( cε&  for the three aforementioned studies. 

Table 1. Analytical and FEM values of creep strain 
rate of the composite )MPa80( 0 =σ

FEM Analytical Taya-Lilholt 
[4] 

cε& 91004.1 −× 91094.0 −× 91027.31 −×

As it is clear, the results in reference [4] 
are very far from the other two methods. 
Furthermore, the Taya-Lilholt analytical method 
is not capable of analyzing the stress and 
displacement rate fields in the composite as 
functions of r and z coordinates. The proposed 
equation by Taya-Lilholt [4] for cε&  of the 
composite is expressed as 









+

−
−=

fs
CBAfc 5.01

/
exp)1( 0σ

ε& (49)

where C  in the above equation is given by 
[ ]193.1lnln5.0 −+= ηsfsC (50)

and η  is defined as 

1)(
1

3
4

3/1 −
= −kf

η (51)

Now a comparison of the creep results 
obtained under different applied load 0σ  using 
the presented analytical method and FEM can 
show the superiority of the analytical method, 
further. As Fig. 10 shows, the results obtained 
match well with the FEM results. 
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Fig. 10. Comparison of analytical and FEM models 
prediction with composite creep data for a 

6061Al/15%SiC at 573 K, [4]

However, in comparison to the available 
experimental results of the composite, a big 
discrepancy is detected between the calculated 
results and the measurement data specifically at 
higher applied stresses. As for the reasoning, 
one is referred to the assumption made by the 
analytical and numerical methods. Note that the 
perfect bond at the fiber/matrix interface is not 
consistent with the microstructure and creep 
behavior of discontinuous SiC-Al composites at 
high external applied loads. This has been 
shown both analytically and numerically [4,7] 
that with introducing fiber/matrix debonding, 
the creep prediction by the modeling methods 
will highly improve. However, since the 
primary goal here is the development of the 
analytical approach, this effect is not discussed 
in the present work.

5 Conclusions
In the present work, a new analytical model for 
stress analysis and calculation of the steady state 
creep behavior of short fiber composites 
subjected to an applied axial load was 
developed. The analytical model is based on the 
shear-lag theory with assuming perfect bond at 
the fiber/matrix interface. 
Based on the results obtained so far, it could be 
concluded that: 

1 The matrix stress and displacement rate 
field components obtained from the 
proposed analytical solution satisfies the 
equilibrium and constitutive creep 
equations. Also, the obtained results 
satisfy well the overall boundary 
conditions including the surface 
conditions, the interface continuity 
conditions, the axial force equilibrium 
conditions, and are in a good agreement 
with the FEM results. 

2 The assumption made for the rzγ&
distribution in Eq. (23) has no effect on 
the prediction of the stress and 
displacement rate components of the 
short fiber composite. 

3 Due to the assumption made for the 
effective stress and strain rate the 
proposed method is independent of the 
chosen creep law.

4 The main advantage of the present 
method relative to the previous 
analytical methods like Taya-Lilholt is 
in its capability of predicting the stress 
fields and the displacement rate 
components in the composite and 
compatibility of the obtained results with 
the FEM predictions.
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