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 Abstract  

Monitoring the condition of aircraft 
structures is a vital issue and research is 
underway to develop new NDE methods based on 
Vibration-Based Inspection (VBI), offering the 
potential for detecting faults by monitoring the 
dynamic characteristics of the structure under 
test. This article focuses on the possibility to 
apply the so-called negative selection algorithm 
inspired by the human immune response to the 
task of monitoring the integrity of a typical 
aeronautical structure such as a wing even when 
its dynamic characteristics vary continuously due 
to the change in the mass of the fuel system. 

 
1   General Introduction  
In the aerospace industry, one fundamental issue 
that must be addressed concerns monitoring the 
condition of the structure of the aircraft. 
Maintenance checks are expensive and 
inspection for structural damage is usually 
performed at regular intervals following a 
specified number of flight hours with the 
aircraft being taken out of service so that one or 
more non-destructive ground tests can be 
conducted. Correspondingly the monitoring of 
the integrity of the structure is not continuous. 
Clearly, from this point of view, it would be 
extremely advantageous to develop sufficiently 
accurate and reliable techniques which enable 
the structural integrity of the aircraft to be 
monitored continuously in-service when 
operating normally. 

In general, the requirement to develop 
methods for rapid detection of damage in 

aerospace, mechanical and civil structures is 
becoming increasingly important and a variety 
of Non Destructive Evaluation (NDE) methods 
are currently being investigated for the purpose. 
Most of these techniques are capable of 
detecting defects close to the surface of the 
structure and near the sensor positions.  

Of the NDE methods under development, 
those based on Vibration-Based Inspection 
(VBI) are currently receiving significant 
attention, mainly due to the potential for 
detecting faults at unmeasured locations by 
monitoring, during the lifetime, the dynamic 
characteristics of the structure under test. The 
assumption underlying this category of 
techniques is that the analysis of the dynamic 
response and the observation of variations in the 
characteristic dynamic behaviour of the 
structure can reveal important information 
regarding the integrity of the structure, and 
whether or not defects are present and faults are 
arising. 

For the development of VBI methods 
applied to structures, biological systems have 
proved to be a particularly rich source of 
inspiration and have motivated research into the 
development and extension to new areas of 
application of pattern recognition and novelty 
detection algorithms. The most established 
class of such algorithms are methods based 
around the Genetic Algorithm [1]-[3] and 
Neural Network  [4]-[8]. These have been 
joined recently by a host of new approaches 
motivated by, among others, Ant Colony 
Metaphors [9], Swarm Intelligence [10] and 
Immune System Metaphors [11]. In particular, 
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the construction of the novelty detection 
algorithm, which is the focus of this article, is 
based on the ability of the human  immune 
system to discriminate between self and non-
self cells [12]-[13].  

The resulting negative-selection algorithm 
has recently been applied by Surace and 
Worden with the purpose of monitoring a 
system or a structure when the normal condition 
of it may change due to time-varying 
environmental or operational conditions; 
specifically an application of the algorithm has 
been made to data from a numerical model 
simulating the dynamic response of an offshore 
platform with changing mass as a result of 
variations to the oil storage requirements [ 14].  

On the basis of this previous experience, 
the research described in this article focuses on 
the extension of this method to the task of 
monitoring the integrity of aerospace structures. 

As described in this article, one of the 
advantages of this approach with respect to 
other VBI methods lies in the fact that an 
accurate mathematical model of the undamaged 
structure is non required a-priori: this new 
technique relies only on a ‘description of 
normality’ which is defined in terms of features 
measured in operational conditions when the 
structure is known or assumed to be fault-free. 
For this reason, the method can be applied even 
to very complex structures which operate in a 
range of conditions with a corresponding 
variation in the dynamic characteristics of the 
structure. For example, in the case of an aircraft 
in flight, effective mass decreases due to a 
reduction in fuel and a change in the flight 
speed. 

 

 
 

Fig. 1. The wing under study 

To demonstrate the validity of the method 
the dynamic behaviour of the primary structure 
of a typical transport aircraft (Fig. 1) has been 
simulated using a finite element model of the 
wing.  

Several mass configurations have been 
analysed,  corresponding to varying amounts of 
fuel, together with different levels and types of  
structural damage. Using the results obtained it 
has been possible to assess the sensitivity of the 
method to structural alterations and analyse the 
influence of measurement noise on its 
effectiveness. 
 
 
2 Negative Selection Algorithm  
 
The human immune system has the ability to 
detect  antigens, i.e. anything which is not part 
of the body itself, including bacteria, viruses 
and suchlike. Correspondingly the task of the 
immune system is to differentiate between 
antigens and the body itself, a process known as 
"self/ non-self discrimination", achieved when 
the invading antigen is ‘‘recognised’’ by a 
specific antibody called a T-cell receptor.  

The T-cell receptors are created by a 
random genetic rearrangement process. Those 
cells that successfully bind with self-cells are 
destroyed in the thymus gland. Only those cells 
that fail to bind to self-cells are allowed to leave 
the thymus and become antibodies of the human 
immune system. Such an antibody-generation-
selection process is called negative selection.  

In a similar way to this negative selection 
process, novelty detection has the fundamental 
objective to distinguish between self 
(corresponding to normal operation of the 
monitored system) and non-self (relative to the 
novel or anomalous states).  For this purpose, 
two sets are considered for the artificial immune 
system, the self-set S for normal data series and 
the antibody set D for novelty detectors.  

In the past, the patterns used by the 
negative selection process have been time-series 
data but, since the method is very general, it can 
be applied to different kinds of feature vectors 
such as signals sampled in the frequency 
domain. In particular in this study, as will be 
illustrated subsequently, the feature vectors 
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chosen for the purpose of damage detection are 
transmissibility functions between two points of 
the monitored structure, measured for each of 
the different normal conditions. 

The self-set data x_si (for=1,…,n)  are 
obtained by collecting n=m x p  feature vectors 
where p is the number of times that the same 
transmissibility function is acquired for each of 
the m normal operational conditions. Each 
vector has dimension l, where l is the number of 
spectral lines. 

The antibody set x_di is built in the 
following way: a l-dimensional candidate vector 
x_c is generated pseudo-randomly. Then the 
distance between the candidate and all the 
vectors in the self-set S is calculated. If the 
minimum value of all the distances is less than 
the threshold rs, then x_c is considered to be a 
normal data segment and is deleted; otherwise 
x_c represents an abnormal data segment. In 
this case  the distance between x_c and  the 
vectors in antibody set D is calculated in order  
to verify if  it is matched by any of the vectors 
in D. The candidate vector belongs to the 
antibody set only if it fails to match either the 
vector in S or the detectors in D. This process is 
repeated for several candidates. Clearly x_c will 
be a new detector without a matching 
calculation if this is the first candidate detector 
for D. 

If any l-dimensional monitored vector 
x_mj  matches one element of the antibody set D 
then it  must be a non-self-vector and can be 
classified as novel or anomalous. 

According to [12], [13] the cosine 
similarity has been chosen to measure the 
distance between two  l-dimensional vectors: 

 

      

∑∑

∑

==

==
l

ì
i

l

i
i

l

i
ii

yx

yx

1

2

1

2

1),sim( yx               (1) 

                                                       
When  two vectors are  alike, the cosine 

similarity approaches unity and so the distance 
defined as: 

 
       ),sim(1),dist( yxyx −=                    (2) 

                                                          

 tends to 0. So, two vectors match when their 
distance is less then the matching threshold. 

For the self-set data S, if λs
i  is the 

minimum distance between vector x_si and the 
other vectors within S and λs is the maximum 
among all λs

i , then the matching  threshold rs 
must be chosen greater than λs, to avoid false 
positives, but not too great to avoid false 
negatives. 

As regards the matching threshold for the 
antibody-set data, each detector x_d i has its 
own matching threshold rd i calculated following 
the approach of  [12], [13]. 

3 Model of the Wing 
The mathematical model of the wing is the one 
presented in [15], [16]. The wing is modelled as 
a one-dimensional structure with composite 
upper and lower panels. 

To build the model, a typical segment of 
the wing eg. from rib to rib has been isolated 
and then trasformed into a wing-box element 
(Fig. 2).  

 
 

 
 
 

Fig. 2. The wing-box element 
 
 
 Subsequently this element has been 

considered as a beam, with a cross section that 
has variations from one end to the other  such as 
in the geometrical properties of the stringers and 
the skins. The built-up structure consists of a 
curved bottom and laminated skins, four webs 
and eight stringers as in Fig. 2. In accordance 
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with the classical empirical rules of aeronautical 
engineering, webs are assumed to support only 
shear stresses, while skins are only subjected to 
axial stresses. Following the Timoshenko 
theory, both transverse shear and a correction 
factor which takes into account the warping 
restraints induced by the boundary conditions, 
are included in the formulation.  Morover the 
properties of members which are not present in 
the lay-up, eg. webs or stringers, can be set to 
zero. 

The wing model considered in this article 
has the following geometrical characteristics 
and mechanical properties: 
 

• Wing span of 26.6 m; 
• Chord of 5.223 m at root and 1.272 m at 

tip; 
• Sweep angle of –24o  (backward); 
• Two webs; 
• Eight stringers; 
• Alluminium as a material for all the 

elements of the structure; 
• One engine with mass ME= 2000kg 

located in the middle of the wing. 
 

4 Normal Conditions and Damage Cases  
To simulate real operational conditions, the 
change in the fuel mass stored in the wing is 
assumed to be a variable parameter such that it 
introduces a variation in the dynamic behaviour 
of the wing i.e. different operational 
configurations.  In particular, 10 different 
configurations were considered: in the first 
configuration a fuel mass of 4111.1 kg is stored 
in the wing, while in the tenth configuration the 
fuel mass is equal to 4384.0 kg. Consequently 
the difference in mass between two adjacent 
configurations is of 0.62%, referred to 4384.00 
kg, which is sufficiently low to consider these 
ten configurations as a continuous variation in 
the mass of the structure. 

The wing is discretised with eight 
elements, as shown in Fig.3, and the fuel mass 
is introduced as concentrated masses without 
rotational inertia at nodes no. 2, 3 and 4 with a 
value of 5/12 Mf, 1/4 Mf and 1/12 Mf 
respectively, where Mf is the mass of the fuel. 

Using the finite element method, the equation of 
motion of the structure can be written as: 
 
              1+ i ) η + fK( y M(M ) y = F&&               (3) 
 

 
 

Fig. 3. Positions of concentrated masses and 
sensors on the model of the wing 

 
where η=0.02 is the structural damping. The 
equation highlights that the dynamic behaviour 
of the structure is function of the fuel mass Mf. 

The variation in natural frequencies of the 
wing due to the change of the mass fuel during 
the flight is shown in Table 1. 

 
 f1 

[Hz] 
f2 

[Hz] 
f3 [Hz] f4 [Hz]

1 2.353 8.833 19.428 33.365
2 2.353 8.825 19.397 33.308
3 2.353 8.816 19.366 33.252
4 2.353 8.807 19.335 33.197
5 2.353 8.798 19.305 33.142
6 2.353 8.790 19.275 33.088
7 2.353 8.781 19.245 33.034
8 2.353 8.772 19.215 32.981
9 2.353 8.764 19.186 32.929

C
on

fig
ur

at
io

n 
n°

 

10 2.353 8.755 19.157 32.877
 

Table 1. First four natural frequencies of the 
wing for the different configurations 

 
 It is evident that the first natural frequency 

does not change with the variation due to the 
fuel mass, while the other frequencies have a 
variation that is 1.4%, 2.2% and 2.3% for the 
second, the third and the fourth mode, 
respectively. As a consequence, the 
modification in the dynamic behaviour of the 
structure can be approximated by a continuous 
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variation, as previously described for the mass 
variation. 

In order to investigate the effect of 
different types of damage on the dynamic 
behaviour of the structure under test, two kinds 
of faults have been considered: 

1) reduction of the stiffness of one web of 
the element nearest to the clamped end 
of the wing. 

2) Reduction of the stringer 1 (see Fig. 2) 
for the element nearest to the clamped 
end of the wing (this case is equivalent 
to decrease the stiffness of the spar- 
flange). 

Each damage is induced by directly 
reducing the elemental Young’s moduli by an 
appropriate percentage. Furthermore damage of  
varying extent is introduced into the web and 
the stringer, as shown in Table 2: 
 
Damage in the web Damage in the spar-flange

A B C D E F 
10% 20% 30% 10% 20% 30% 

 
Table 2. Stiffness reduction for the different 

damage cases 
 

Damage 
cases 

f1 
[Hz] 

f2 
[Hz] 

f3 [Hz] f4 [Hz]

2.353 8.832 19.413 33.326
2.353 8.831 19.397 33.287
2.353 8.830 19.382 33.246
2.351 8.810 19.403 33.342
2.348 8.784 19.376 33.317

A 
B 
C 
D 
E 
F 2.344 8.755 19.346 33.289

 
Table 3. First four natural frequencies of the 

wing in  configurations 1 for the different 
damage cases 

 
In Table 3 the first four natural frequencies of 
the wing in configuration 1, i.e. with the 
minimum quantity of fuel and damaged 
according to Table 2, are presented. The 
maximum variation of natural frequencies is 
equal to –0.883% in the case of mode 3 and 
damage case F. This variation is very low and 
can be confused with the variation due to a 
change in the mass of fuel. 

 

5 Application of the algorithm and results 
 
In order to detect damage, the response 
transmissibility functions in terms of transverse 
displacement were calculated for different 
locations along the structure with respect to 
excitation applied at node 9, for all ten 
operational conditions. 

It is evident that damage should influence 
the functions measured at each of the response 
locations in a different way. Therefore, in order 
to illustrate the general applicability of the 
technique, the  transmissibility function between 
the two measurement points which are the 
furthest apart on the structure (sensors 2 and 9) 
has been selected to apply the damage detection 
method, in order to encompass the dynamics of 
the entire beam. 

The self-set  x_si  is a collection of  3000 
feature vectors  obtained by making 300 
identical copies of the transmissibility functions 
between points 9 and 2 corresponding to the 
undamaged structure for each of the ten 
operational conditions. Then each of these 
functions has been polluted differently with 1% 
additive Gaussian noise. 

An antibody set of 30 detectors x_dj has 
been determined, using the self-set constructed 
by the negative selection algorithm. 

The monitored set x_mi  is a collection of  
3300 feature vectors, the first 3000 are relative 
to the four normal conditions  and the last 300  
are polluted copies of the transmissibility 
functions between points 9 and 2 relative to  the 
damaged structure. 

The affinity between the x_m  and x_d is 
evaluated calculating the Novelty Index NI in 
the following way: 
 
        [ ]j

d
ji riNI −= ),dist(min)( x_dx_m         (4) 

 
For a negative value of NI  the 

corresponding data segment is novel or 
anomalous. 
In figures from 4 to 9, the Novelty Index is 
plotted for the different cases of damage. The 
first 3000 points represent the index for the ten 
different normal condition and it possible to see 
that   the   index   is   positive  meaning  that  the  
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Fig. 4. Novelty index for damage case A 
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Fig. 5. Novelty index for damage case B 
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Fig. 6. Novelty index for damage case C 
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Fig. 7. Novelty index for damage case D 
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Fig. 8. Novelty index for damage case E 
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Fig. 9. Novelty index for damage case F 
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algorithm correctly does not find any segment 
as anomalous. The green stars on the data from 
3001 to 3300 represent values of negative NI.  

 
6 Discussion and Conclusions 
 
The results of this study show that the negative 
selection algorithm is capable of distinguishing 
various damage conditions in a model structure, 
from a number of inequivalent normal 
conditions induced by time-varying fuel storage. 
On the contrary, the changes in natural 
frequency as a result of taking on fuel can be 
mistaken with the changes due to damage. This 
marks the algorithm as one of the more versatile 
of the novelty detection class, able to deal with 
non- Gaussian clusters of normal condition data. 
A simple but important aspect of this paper is 
the use of general feature vectors as opposed to 
the windowed time-series data used in previous 
studies with the immune system metaphor. 
Again, the algorithm has no difficulty with the 
extension. It remains to be seen how the 
algorithm will perform in severely non-
Gaussian situations, i.e. disconnected normal 
condition sets; however, the geometry of the 
method suggests that it will be able to cope and 
this will be the subject of further work. 
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