
26TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

1

Abstract

In the conceptual design process a designer has
too little resources to encompass all design
options, and tools. A designer loses too much
time in adapting old solutions to encompass for
new requirements. To integrate new solutions a
method should exist that reuses known solutions
and is able to efficiently and effectively
integrate new design options, and tools. The
knowledge based engineering methodology can
support an implementation of such a method. It
captures human repetitive processes in software
primitives. In this paper the development of
design process primitives is discussed that
embodies such a method. An implementation of
generic sizing problem primitives is presented
and tested for a conceptual panel structural
design problem. The primitive approach showed
a high decrease of repetitive work associated
with the conceptual design phase.

Nomenclature

bi: : system behaviour properties
ci : system constraint properties
mi : system model properties
ti : system test case properties
v : Lagrange multiplier estimates
xi : system variable properties
M : penalty weights

1 Introduction

New solutions in engineering design are
required to meet future demands. In 2002 the
Advisory Council for Aeronautics Research in
Europe1 stated that in twenty years the
aeronautic systems will differ from today’s

systems at least as much as today’s systems
differ from those of the 1930s. The aeronautics
community will have to take on such a
challenge and be one of the pioneers of the
European Union knowledge society1,2.

To meet future demands new feasible
solutions must be available to industry. The
attractiveness of a new solution depends on the
associated risk and ‘merit of success’. Risk is
defined as probability of failure times impact,
which can be simplified to invested resources
(at least today). Merit of success is the product
of probability of success and impact, the gained
resources (returns). The attractiveness of a
solution depends on the balance between risk
and merit of success, ideally low risk and high
merit of success. Before companies embrace a
new solution proper insight in the involved risk
and merit of success should be available.
Improving the knowledge on the product design
space will increase this insight. However,
generally this also increases the required
resources. To pass this hurdle an approach is
needed that enables companies to gain product
design space knowledge with a limited amount
of resources.

1.1 Approach
To increase design space knowledge more

design problems must be attacked and the
investigation must be more thorough, both
increasing invested resources. In engineering
design the driving resources are people. A
human is capable to relate different worlds and
to find “outside-the-box” solutions. However, a
computer is never bored and can perform the
same routine “endlessly”. Supporting
engineering by automating repetitive non-
creative processes the design process can be

DEVELOPMENT AND IMPLEMENTATION OF
KNOWLEDGE-BASED DESIGN PROCESS PRIMITIVES

E.J. Schut and M.J.L. van Tooren

Delft University of Technology

Keywords: design process, knowledge based engineering, engineering primitives

E.J. Schut, M.J.L. van Tooren

2

improved, decreasing required resources. This
relieves engineers from non-value adding
activities, making more time available to exploit
their creativity and engineering skills. In order
to pass to this new vision of business,
knowledge should be managed and engineered
as a key business asset2.

This means that the engineering design
process will need to make a paradigm shift. A
technology that can support this shift is
Knowledge Based Engineering3 (KBE).

1.2 Paper objective
This paper focuses on the identification,
capturing, and reusing of design process
knowledge such that the process is separated
from product knowledge. The approach will
identify the interfaces between the different
disciplines (knowledge domains) associated
with the design process, and provide a generic
implementation of these interfaces.

2 Methodology

The basic approach to analyse the problem is to
follow the human engineer. First a brief
overview of an approach to a conceptual design
problem is presented. Secondly the KBE
approach is presented, followed by technologies
that can be used in the implementation.

2.1 Feasilisation
A design problem aims at finding a physical
relation between function, model, and behaviour
(see section 3). However, at the start of a design
problem a designer has no mathematics
available to describe that relation physically.
The feasilisation approach supports a designer
in this phase.

The feasilisation4 methodology
encompasses the approaches of problem
simplification, problem decomposition, and trial
and error methods. This methodology focuses
on how a human solves a problem from the
ground up. However, a human also uses
previously found solutions to shortcut this
elaborate trial and error process and interpolate
(and extrapolate) an ‘in-between’ or ‘based-
upon’ solution (e.g. educated guess). These
methods are solution capturing and solution
inter- and extrapolation. This paper will focus
on the development of a technology that
embodies the feasilisation approach. The focus
of the implementation will be on the
decomposition and trial and error methods. For
completeness these are elaborated in the next
sections. More details on the methodology can
be found in a previous paper by the authors4.

2.1.1 Decomposition
A human uses decomposition to break up a
complex problem into multiple smaller
problems concerning part of the design space.

The decomposition is based on function
(embodied by tasks) and design option, such
that a diagonal or at least sparsely filled N2
diagram is obtained. The component function is
derived from the function and design option of
the product, such that the sum of component
functions is equal to the product function. Since
a component is again a product of its sub-
components this process continues until a
physical relation between function, model and
behaviour is known or can be chosen. For
example, in aircraft structural design these
products are called ‘design values’ (e.g. material
properties), known feasible solutions. Hence the
decomposition process reveals a hierarchical
network of products (see Figure 1). The
decomposition creates a possibility to capture
design knowledge at different abstraction levels,
e.g. from material, to aircraft.

An advantage of the approach is that new
design knowledge (e.g. design options or
analysis tools) or known design solutions can be
captured by the structure without changing it.

Figure 1: Products of a decomposition of an aircraft

3

DEVELOPMENT AND IMPLEMENTATION OF KNOWLEDGE-BASED DESIGN PROCESS PRIMITIVES

2.1.2 Trial and error methods
Through experience a human gains knowledge
and experience is gained by trial and error, a
search process.

Three product design categories can be
identified; routine, innovative, and creative
designs5, illustrated in Figure 2. Routine designs
concern designs that fit within the space of
previous solutions, e.g. redesign of a Boeing
767, innovative designs are based on the same
design options, but have extended parameter
values, e.g. Airbus A380, and creative designs
are based on a different design option, e.g.
‘Blended Wing Body’ instead of a ‘Kansas-city
aircraft’. Typically, a new product design will
encompass all three design categories, spread
across the network of products, e.g. from
material to aircraft.

In case of non-routine designs, the designer
does not have sufficient knowledge to define a
design solution, since a physical relation
between function, model, and behaviour is not
yet established. By using a trial and error
process the designer increases experience via
exploring the new design space for feasible
relations. If sufficient relations are established
the product design problem has become a
routine design problem, which can be solved
based on the known relations between function,
model, and behaviour.

2.2 Knowledge based engineering
La Rocca6 defines KBE as a technology that is
based on the use of dedicated software tools (i.e.
KBE systems) that are able to capture and reuse
product and process engineering knowledge.
The main objective of KBE is reducing time and
cost of product development by means of the
following:
• Automation of repetitive and non-creative

design tasks
• Support of multidisciplinary integration

from the conceptual phase of the design
process

The KBE cornerstones are rule-based

design, object-oriented modelling, and
parametric CAD3. KBE has its roots in
knowledge-based systems (KBS) applied in the
field of engineering, hence the name. KBS is

based on methods and techniques from artificial
intelligence (AI). AI aims at creating intelligent
entities7. KBE focuses on capturing rules of
repetitive, non-creative human processes. KBE
found its first application as follow-up of CAD
to enable designers to reuse models.

A KBE based design environment is in
development to support a Multi-disciplinary
Design and Optimization MDO design
problems, called the Design and Engineering
Engine3,8 (DEE).

2.3 Supporting technologies
The main tools available for application of KBE
are object oriented modelling and programming

Figure 2, Product design categories; routine, innovative,
and creative designs

Figure 3: Traditional design process; requirement
definition, product model definition, product model
testing, and result evaluation.

E.J. Schut, M.J.L. van Tooren

4

languages. Engineers have a product or object-
oriented view of the world, which the object-
oriented approach supports. Useful modelling
languages are UML, SysML9 and more specific
MML10, developed specifically for KBE
purposes.

In the implementation discussed in this
paper the Matlab programming environment is
used, mainly for the integral availability of
search tools (Matlab optimization toolbox) and
a surrogate modelling software tool (Dace11).

3 Design process

The design process aims at finding a set of
‘optimal’ product specifications (model and
behaviour properties) to a certain set of
requirements (functions, performances, and
constraints), see Figure 3. Basically, it tries to
find the physical relations between function,
model, and behaviour12. The term model means
a simplified description of a product. The
difference between model and behaviour is that
the term model refers to the intrinsic properties
of the system, and the term behaviour refers to the extrinsic properties of the product. For

example length is an intrinsic property,
independent of the product environment, and
drag is an extrinsic property, dependent on the
environment.

3.1 KBE-enabled design process
In order to find a feasible relation between
function, model, and behaviour, the designer
iteratively changes the product topology and
dimensions. Topology is used here to
differentiate between discrete changes in
product layout or configuration, e.g. a table can
have 4 or 3 legs, not 3.5. Although the product
is changed, the process itself does not change
significantly, the designer has to perform the
same steps repeatedly. This is a typical process
that can be improved by the use of KBE
technologies. In the KBE-enabled process the
selection of topology and dimensions is
outsourced to a software tool, see Figure 4.

The design process is started by defining
per requirements set one or more topologies
(design option sets), assumed to be able to meet
the requirements. Generally, these topologies
have disconnected design spaces, making it a

Figure 4: KBE-enabled design process. The search
process takes a central position, between the requirements
definition (problem) and the product definition (solution).

Figure 5: General decomposed design problem system
layout

5

DEVELOPMENT AND IMPLEMENTATION OF KNOWLEDGE-BASED DESIGN PROCESS PRIMITIVES

search problem of a discontinuous design space.
If the topology parameters are properly defined
as continuous variables, the search process can
be simplified to a set of continuous search
problems, a sizing problem (a design problem
with fixed topology). In this implementation the
topologies are assumed to be properly defined
and are investigated separately. After each
topology is sized individually, the best
performing topology is obtained by a trade-off.
The trade-off is simplified to a selection based
on objective function value, since this is
identical for every topology.

3.2 Search process
In search for the best feasible product design a
product is modelled as a system, a ‘dynamic’
product able to adapt. In concurrence the term
system is used from this point on.

The search process involves four steps;
problem definition (how are the requirements
translated to a search problem), topology
definition (what are possible model topologies,
parameters), variable definition (what are
possible parameter values), and objective and
constraints evaluation. The objective and
constraints are related to certain performances,
which follow from the performance process, see
section 3.3. Next to that constraints can be
related to model parameter values. The second
step of deliberating between topologies is out-

of-scope for this paper and performed separate
from the search process.

3.2.1 Problem formulations
The selection of the search method depends on
the type of problem structure. A generic layout
of the problem structure is visualised in Figure
5. The decomposition process (introduced in
section 2) can be implemented by a multi-level
formulation. Here the functional view of the
MML is used, relating function, principle of
solution (here system primitive), technical
solution (here topology), and concept structure
(here problem instantiation). In this fashion the
design problem addresses a kind of design
problem tree. Three different types of problems
are identified;
• Mono-level
• Multi-level, fixed sub-system topology
• Multi-level, variable sub-system topology

The mono-level problem is the problem
that is to be solved at the problem tree leafs.
This problem can be addressed by standard
constrained optimisation algorithms. These
problems are generically defined as:

min
x

f (x) = ai ⋅ f i∑ (x)

subject to :
g(x) ≤ 0
h(x) = 0
lb ≤ x ≤ ub

 (1)

In case the multi-level optimisation
addresses a fixed-topology problem, also
referred to as a sizing problem, the system
optimisation can be integrated with the sub-
system optimisations. Because the design vector
of the sub-systems is known, the system level
design vector can be simply extended to
incorporate the sub-systems level design
vectors. To obtain the objective and constraint
functions the sub-systems are called twice; once
for model properties based on design vector,
and once for performance properties based on
the test case, see Figure 6.

In case the sub-systems can assume
multiple topologies, the system is not able to
control the design vector (input) of the sub-
systems anymore. The only control left is output

Figure 6: Multi-level search problem definition for a
fixed topology design. The search algorithm is able to
change input at all levels.

E.J. Schut, M.J.L. van Tooren

6

control of the sub-systems. Multiple
possibilities exist to formulate such a problem.
In this case a constraint relaxation13 formulation
is preferred, because it suits both optimisation
problem and design methodology. The
formulation is illustrated in Figure 7. Another
possibility would be to use e.g. Bi-Level
Integrated System Synthesis14 (BLISS) for the
formulation. An implementation of this
approach is out of scope for this paper.

To get an initial set of parameter value sets
that comply with the shape of the solution
space, Design of Experiments (DoE) is used,
based on Latin Hypercube Sampling The
experiments are analyzed separately. In all three
cases a single level optimiser can be used to
solve the optimisation problem, e.g. Sequential
Quadratic Programming (SQP).

3.3 Performance process
The performance process is responsible for
finding the performance values required to
define the objective and constraint functions.

The performance process features three
steps; performance definition (what
performances are required to define the
objective and constraints), test process
definition (which tests are required to obtain
certain performances), and a model process
definition (which model properties are required
for certain performances, and which system
descriptions are necessary to perform certain
tests).

The performance process is often referred
to as analysis. Analysis is a decomposition of
the system properties, generating a number of
sub-systems (discipline specific, e.g. structural
model or aerodynamic model) contemplating a
sub-set of properties. Here the subdivision is
made between model and test processes to
differentiate between model and behaviour

properties relating to the design. The relations
between the model, test, performance, objective,
and constraint properties can be illustrated with
a set of simple formulae, see equation 2.

3.3.1 Test process
The model process defines all required
behaviour (extrinsic) properties. The required
performances are obtained by applying criteria
to behaviour. Thus the required behaviour
properties follow from the required
performances. Every type of behaviour is
associated with one (or multiple) test cases,
relating to the system tasks (and functions). The
system behaviour is obtained by determining the
impact of the environment on the system in a
certain condition, defined by a test case, through
model based behaviour calculation. The
remaining required properties to construct the
system and environment models are delivered
by the model process. These properties depend
on the view of specific discipline on the system.

Figure 7: Multi-level search problem definition for a
variable topology design. The search algorithm is not
able to change input.

()
()
()
()
()
()se,variableperformancconstraint

eperformancobjective
ehaviourcriteria,beperformanc

modelbehaviour
modelcriteria
variablesmodel

6

5

4

3

2

1

f
f
f
f
f
f

=
=
=
=
=
=

(2)

7

DEVELOPMENT AND IMPLEMENTATION OF KNOWLEDGE-BASED DESIGN PROCESS PRIMITIVES

3.3.2 Model process
The model process defines all required model
(intrinsic) properties. As seems logical, before
the analysis is started first a generic system
model3 should be defined, to ensure (e.g.
geometry) model consistency in the test phase.
Based on this model the discipline specific
model views can be derived to ensure a
consistent test process. This view is often
limited to geometry properties of the system,
but surely not always (e.g. cost modelling).

4 Engineering primitives

The described process is implemented in a
knowledge-based software tool. The repetitive
character of the design process is used to
identify multiple system primitives, used as
building blocks to reconstruct the complete
design problem. These primitives belong to the
set of engineering primitives and focus on
capturing knowledge related to search
processes. Other engineering primitives are
constructed for knowledge related to
transformation processes and properties15.
However an elaboration on these primitives is
out of scope for this paper.

This paper focuses on the development of
system primitives capturing the first two
problem formulations, mono-level, and multi-
level with fixed topology.

4.1 Primitive concept
The basic idea behind the primitive
development is the reuse of system related
knowledge. The term reuse implies that after
storage something can be used again. If
knowledge is to be reused it must be both stored
(static) and used (dynamic). Consistently, for
every type of knowledge, both a generic static
data format, and a set of dynamic software
objects are defined. The generic data format is
used to instantiate the software objects, which in
turn are able to translate its structure back into
the same generic data format.

Which types of knowledge are used
depends on the analysis. In this work knowledge
is divided into information, skill, and
understanding, relating to properties, processes,
and systems. The last one is elaborated in this

paper. For more information see a previous
paper15 by the authors.

In this specific implementation XML is
used as generic data format and specially
developed Matlab classes are used to generate
dynamic objects.

4.2 System primitives
The system primitives capture knowledge
related to search processes. Each primitive
represents a different type of search process.
The system primitive data format of the multi-
level system with fixed-topology is presented in
Figure 8.

A system is composed of two main bodies;
properties, and core. The properties are
generically defined and identical (in format) for
all systems. Generically a search process is
defined by an objective, constraints, and

Figure 8: Example the system primitive, specifically for the
multi-level fixed topology

E.J. Schut, M.J.L. van Tooren

8

variable/fixed properties. To support the nature
of the design process the variable/fixed
properties are split into model and test
properties.

The core holds search specific information
and is tailored to encompass the search process.
Since both examples address the design process,
the core features model, test, and search
processes. The multi-system also encompasses
the sub-systems and is equipped with model and
test processes to enable the multi-level
formulation.

The system processes are executed based
on the formulation defined in section 3. These
processes are defined by the user and depend on
the problem to be solved.

5 Implementation

These system primitives are used as building
blocks for specific design problems. Following
the feasilization methodology, multiple product
levels can be identified. All these levels can be
captured by a single system primitive,

encapsulating design knowledge associated with
that specific level. The actual decomposition
depends on the user.

In this paper the primitives are used to
capture the multiple levels associated with panel
design; panel, plate, layer, and material. See
section 6 for more details.

5.1 Application
The technology is tested for a panel structural
design problem. The panel design problem
example is described in detail in a previous
paper16 by the authors. For completeness a short
elaboration is presented here.

The panel design problem is designed for
an in-plane load case for minimum weight and
constrained by strength and stability. The
topology is defined at each level. Each panel
can have a certain fixed length and width, and
can have multiple topologies; for example a
panel can be hat-stiffened, I-stiffened, a plate
can have multiple stacking sequences, and a
layer can be a composite of multiple materials.

Figure 9: On the left, the windows file structure used to assemble all relevant design information. On the right, an
example xml file (automatically defined based on the file structure) for the application of the system primitive definitions
to model a multi-level panel sizing problem

9

DEVELOPMENT AND IMPLEMENTATION OF KNOWLEDGE-BASED DESIGN PROCESS PRIMITIVES

As an initial test case a single topology is
used, a hat-stiffened panel with a global plate
stacking of [45,0,45] of a carbon fibre
composite material.

5.2 Topology user interface
A difficulty occurs in addressing the

multitude of topologies. The nature of the fixed
topology approach necessitates that all
topologies must be investigated separately. Thus
per design problem all relevant topologies must
be reinvestigated. For each problem the designer
must assemble and integrate the systems
required to solve the specific problem.

This process is highly iterative and not
creative. In the current application a file
structure lay-out is used that is comparable with
the xml structure, see Figure 9. In this file
structure the user has to assemble all relevant
systems. Per system the generic operations
relating to modelling, testing, and search are
added. Specific information on the (to be
assessed) topologies are all included, thus
multiple topologies can be defined for a system.
A program is developed based on the primitives
described in section 4 that automatically
encapsulates all the information, e.g. a Matlab
function is translated to a XML structure by
using in-file documentation statements.

These objects are the basis for the
generation of all required fixed topology design
problems. Recursively all the system topologies
are combined to a fixed topology problem, and
added to a list. The end result is a list of XML
structures, each representing a fixed topology
design problem.

5.3 Engineering primitives
One of the fixed topology design problem is
used to assess the performance of the automated
design process.

As mentioned in section 2.3 the
implementation is performed in the Matlab
programming environment, using specially
developed Matlab classes. The mono-level and
multi-level sizing problems are implemented in
two different classes, but inherit generic
functionalities from a system super class.

The XML file is translated into the Matlab
environment using the Docoment Object Model

(DOM) structure. This structure is the input for
the primitive classes, which are instantiated.
The instantiation process first the information is
assembled then the process is validated. If a
design problem is stated the objects update to
match the problem, which means that a search is
performed based on the stated variable (model),
test, objective, and constraint properties.

On user demand the object is able to
translate itself to a DOM structure, which can be
translated to a XML file using standard
functions. The amount of information captured
during this process can be illustrated by
comparing the input and output XML file size.
The input size of a single panel problem is 100
KB, after sizing the output XML has increased
in size by a factor of eight to about 800 KB.

6 Discussion

The implementation showed that it is possible to
generically describe a fixed-topology design
process. The search process primitives are
implemented for a structural design test problem
using the Matlab programming environment.
Although the environment is selected based on
available technologies concessions are made
regarding the capabilities of the programming
language. The performance of the application
would be better in a more suitable object-
oriented software environment, such as Java or
Python.

The performance of the complete process
depends highly on the used search routines,
functions, and surrogate modelling tools. The
performance of the current implementation is
low, since these technologies require specialist
attention. However this also addresses the main
benefit of this approach since specialists are
enabled to work on their specific problem,
without (in principle) addressing other specialist
fields. Secondly the performance depends on the
complexity of the design problem. In general,
for a single run, a generic implementation will
always require more resources then specific
implementations. The generic implementation
trade-off will outperform when repetitiveness
becomes an issue.

The other main benefit of the approach is
the decomposition of product and process. A

E.J. Schut, M.J.L. van Tooren

10

designer only has to compose the design
problem based on building blocks created by
specialists, highly decreasing the effort
associated with assembly and integration of a
design problem. This modular approach will
support the capturing and reuse of design
knowledge.

6.1 Future work
The next step is to use this technology in a more
extensive design problem, incorporating also
aerodynamics discipline. Thereafter the
implementation of the variable topology system
primitives will be addressed, to enable the
designer to really integrate topology trade-offs
in the design process. Instead of performing
fixed-topology designs separately, the topology
trade-off is integrated in the process itself.

References
[1] Advisory Council for Aeronautics Research in

Europe (ACARE), “Strategic research agenda”, Vol.
1+2 and executive summary, 2002, URL:
http://www.acare4europe.com

[2] Drucker, P., “Management challenges for the 21st
century”, Harper Business, 2001

[3] La Rocca, G., and van Tooren, M.J.L., “Enabling
distributed multi-disciplinary design of complex
products: a knowledge based engineering approach”,
J. Design Research, Vol. 5, No. 3, pp.333-352

[4] Schut, E.J., and M.J.L. van Tooren, “Design
‘feasilization’ using Knowledge Based Engineering
and Optimization techniques”, Journal of Aircraft,
Vol. 44, No 6, 2007, pp 1776-1786

[5] Gero, J.S., Maher, M.L., “Modelling creativity and
Knowledge-Based Creative design”, Lawrence
Erlbaum Associates, 1993

[6] La Rocca, G., PhD. thesis, Delft University of
Technology, Delft, Netherlands (to be published)

[7] S. Russel, P. Norvig, “Artificial intelligence: a
modern approach”, second edition, Prentice Hall,
2003

[8] La Rocca, G., and van Tooren, M.J.L.,
“Development of Design and Engineering Engines
to Support Multidisciplinary Design and Analysis of
Aircraft,” Delft Science in Design - A congress on
Interdisciplinary Design, Faculty of Architecture,
ISBN 90-5269-327-7, Delft, NL, 2005

[9] OMG Systems Modeling Language (OMG
SysMLTM), URL: http://www.sysml.org

[10] MML Working Group, “MOKA User Guide”, URL:

http://www.kbe.coventry.ac.uk/moka/Documents/co
nsortium/mig_def.pdf

[11] Nielsen, H.B., S.N.Lophaven, and J.Søndergaard
‘DACE: Design and Analysis of Computer
Experiments’. URL:
http://www2.imm.dtu.dk/~hbn/dace/

[12] Gero, J.S., Maher, M.L., “Modelling creativity and
Knowledge-Based Creative design”, Lawrence
Erlbaum Associates, 1993

[13] S. Tosserams, L. Etman and J. Rooda, “Performance
Evaluation of Augmented Lagrangian Coordination
for Distributed Multidisciplinary Design
Optimization”, 49th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials
Conference, AIAA-2008-1805, Schaumburg, IL,
USA, 2008

[14] Sobieszczanski-Sobieski, J., J.S. Agte, and R.
Sandusky Jr., “Bi-Level Integrated System Synthesis
(BLISS)”, NASA, TM-1998-208715, 1998

[15] Schut E.J., M.J.L. van Tooren, “Engineering
Primitives to Reuse Design Process Knowledge”,
49th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, 4th
AIAA Multidisciplinary Design Optimization
Specialist Conference, AIAA-2008-1804,
Schaumburg, IL, USA, 2008

[16] Schut, E.J., M.J.L. van Tooren and J.P.T.J. Berends,
“Feasilization of a Structural Wing Design
Problem”, 49th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials
Conference, AIAA-2008-2263, Schaumburg, IL,
USA, 2008

Copyright Statement
The authors confirm that they, and/or their company or
institution, hold copyright on all of the original material
included in their paper. They also confirm they have
obtained permission, from the copyright holder of any
third party material included in their paper, to publish it as
part of their paper. The authors grant full permission for
the publication and distribution of their paper as part of
the ICAS2008 proceedings or as individual off-prints
from the proceedings.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

