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Abstract

The model prescribes the meridional loading dis-
tribution over the blade regions. It predicts
the axisymmetric flowfield and related hub-to-tip
streamsurface geometry. The implicit approach is
meant to reach the steady solution more quickly,
but most of all to carry the enforcement of the
mass flowrate at the outlet section. This allows
the numerical procedure to design high camber
turbine blades. The capabilities of the method
in dealing with single strong deflection cascades
and a complete turbine stage are proved.

1 Introduction

Despite the increasing computational resources,
full three-dimensional flow simulations are still
far from being routinely used for the analysis of
complete multistage turbomachinery. Through-
flow models remain essential tools in the aerody-
namic design process, especially from an indus-
trial point of view. Over the past 15 years, several
attempts have been made in order to use CFD-
based methodologies for throughflow computa-
tions. The latest generation throughflow mod-
els replace the classical streamline curvature and
streamfunction methods with time marching so-
lutions of either Euler [1], [2], [3] or Navier-
Stokes [4] axisymmetric equations (eqs.). In
these models, the blades come down to hub-to-tip
streamsurfaces. Their turning effect on the flow
is obtained through a blade force field that acts
normally to the surfaces.

The purpose of the present work is to widen

to turbine design the inverse model addressed by
reference (ref.) [5] for axial compressor design.
The model requires the tangential component of
the blade force field, that is, the blade loading
distribution, as design data. It predicts the ax-
isymmetric flowfield and draws the correspond-
ing hub-to-tip streamsurface geometry from the
surface-flow slip equation. The loading distribu-
tion can be set up through an inverse optimiza-
tion process, with various cost functions, but con-
strained by single stage power.

The extension of the model to high blade
loadings and the typical flow deflections of cur-
rent aeronautical turbines is not straightforward.
Ref. [6] proves that when the Euler eqs. are
solved with conventional boundary conditions,
such as total quantities and flow angle at the in-
let section and static pressure at the outlet section,
the time marching procedure can only lead to low
deflection cascades. The same ref. proposes one
method to overcome the matter, by introducing
a discontinuity surface at the outlet section. On
the other hand, ref. [7] shows that a way to nu-
merically obtain any theoretical inverse solution
of the ideal (i.e., zero thickness and pitch) cas-
cade problem, at least in principle, is to replace
the static pressure with the mass flowrate at the
outlet section. Unfortunately, the reflectiveness
of this boundary condition increases very much
with the Mach number [8] and allows the up-
wind explicit schemes of refs. [6], [9] and [5]
to converge only for moderate camber and load-
ing turbine cascades. In order to partly overcome
the problem, a non-reflective formulation of the
boundary condition can be adopted, which re-
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quires a calibration process [10]. However, the
limits of this approach will be shown by the pa-
per.

Here, keeping the mass flowrate as outlet con-
dition, we prefer to trust the inherent numerical
stability properties of an implicit upwind time
marching procedure. Details on the implicit dis-
cretization of the Euler eqs. and surface-flow slip
eq. are given in sections (secs.) 3 and 4, re-
spectively. Sec. 2 recalls the formulation of our
throughflow model. In secs. 5 and 6, the implicit
scheme is applied to both the one-dimensional
and complete axisymmetric formulations of the
inverse problem, through the design of two infi-
nite span ideal cascades and a turbine stage.

2 The inverse throughflow model

Our Euler throughflow model shares the same
basic idea as classical throughflow calculations,
where the blades come down to hub-to-tip S2
streamsurfaces [11]. Together with the blade
force source term, the axisymmetric Euler eqs.
contain further terms modeling the blade-to-
blade blockage and profile loss effects.

The model is described by a set of eqs.
written in cylindrical coordinates for an inertial
frame. In the rest of the paper, each quantity will
be normalized to conventional reference values.

Surface-flow slip equation During the tran-
sient, this eq. governs the waving motion
of each streamsurface around its leading
edge:

∂ϑ
∂t

+u
∂ϑ
∂x

+ v
∂ϑ
∂r

=
w
r
−ω (1)

The leading edge shape in the tangential
plane, that is, the blade lean, has to be pre-
scribed as a boundary condition.

Euler equations These are expressed in the con-
servative form

∂{W}
∂t

+
∂{F}

∂x
+

∂{G}
∂r

=

{Q0}+{Qb}+{Qh}+{Qv} (2)

where the conservative variable vector, the
convective flux vectors and the inertial
source term keep the usual expressions:

{W}= ρ
(
1 u v w E0)T

{F}= ρu
(

1
p

ρu
+u v w H0

)T

{G}= ρv
(

1 u
p

ρv
+ v w H0

)T

{Q0}=−ρv
r

(
1 u v− w2

v
2w H0

)T

The present flow model is actually marked
by the other three source terms, that in-
clude the blade force field, the blockage
model and the viscous force field:

{Qb}=
(

0 fbx fbr fbϑ ~fb ·~V
)T

{Qh}=−ρu
h

∂h
∂x

(
1 u v w H0)T

{Qv}= (0 fvx fvr fvϑ fvϑ ωr)T

where the free passage per unit tangential
length, h = 1− nδϑ(x,r)

2π , is prescribed as de-
sign data. The viscous force field ~fv is op-
posite the direction of the relative flow mo-
tion. Through the distributed loss model, it
is meant to enforce the profile loss drop of
relative total pressure along the meridional
streamlines [12].

Blade force equation This enforces the orthog-
onality between the blade force field and
the streamsurface ϑ:

~fb = fbϑ

(
−r

∂ϑ
∂x

~i− r
∂ϑ
∂r

~j +~k
)

(3)

Since the vector eq. (3) gives rise to only
two scalar eqs., one among the nine quantities
ϑ, ρ , p , ~V , ~fb must be given in order to close
the axisymmetric problem. In the direct/analysis
formulations this is obviously the streamsurface
ϑ(x,r), which on the contrary becomes an out-
come for any inverse/design formulation. Inverse
throughflow models allow the designer to select a
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design requirement to be fulfilled by the stream-
surface geometry. Our model prescribes the tan-
gential blade force distribution fbϑ(x,r). By def-
inition of a blade force, this involves the merid-
ional shaft power distribution over the rotor re-
gions and, more generally, the meridional shaft
torque distribution over any blade region.

3 The implicit upwind scheme

Our finite volume implicit scheme is based on a
Newton linearization of the numerical flux vec-
tors [13]. When the linearization is applied to
the conservation laws (2) for the i j-th cell of the
phisyical plane xr, it leads us to write

[
Ci, j−1

]{∆Wi, j−1}+
[
Ci−1, j

]{∆Wi−1, j}
+

[
Ci j

]{∆Wi, j}
+

[
Ci+1, j

]{∆Wi+1, j}+
[
Ci, j+1

]{∆Wi, j+1}=
−∆`i+ 1

2 , j{Fi+ 1
2 , j}+∆`i− 1

2 , j{Fi− 1
2 , j}

−∆`i, j+ 1
2
{Fi, j+ 1

2
}+∆`i, j− 1

2
{Fi, j− 1

2
}

+∆σi j
({Q0,i j}+{Qb,i j}+{Qh,i j}+{Qv,i j}

)
(4)

where

[
Ci, j−1

]
=−∆`i, j− 1

2

[
∂Fi, j− 1

2

∂Wi, j−1

]

[
Ci, j−1

]
=−∆`i− 1

2 , j

[
∂Fi− 1

2 , j

∂Wi−1, j

]

[
Ci j

]
=

∆σi j

∆ti j
[I]

−∆`i, j− 1
2

[
∂Fi, j− 1

2

∂Wi j

]
−∆`i− 1

2 , j

[
∂Fi− 1

2 , j

∂Wi j

]

+∆`i+ 1
2 , j

[
∂Fi+ 1

2 , j

∂Wi j

]
+∆`i, j+ 1

2

[
∂Fi, j+ 1

2

∂Wi j

]

[
Ci+1, j

]
= ∆`i+ 1

2 , j

[
∂Fi+ 1

2 , j

∂Wi+1, j

]

[
Ci, j+1

]
= ∆`i, j+ 1

2

[
∂Fi, j+ 1

2

∂Wi, j+1

]

It should be noted that a variable time step is
adopted over the domain, in order to speed up the

convergence of the scheme to the steady solution
[14].

3.1 First-order space accurate scheme

We start from the right hand side of eq. (4). In
order to compute, for instance, the numerical flux
{Fi+ 1

2 , j}, a one-dimensional Riemann problem
(or shock tube problem) is approximately solved
in the direction normal to the interface i + 1

2 , j.
Let ϕ be the angle between this direction and the
x axis, so that

cosφ =
ri j− ri, j−1

∆`i+ 1
2 , j

sinφ =
xi, j−1− xi j

∆`i+ 1
2 , j

If {U} denotes the primitive variable vector
(a u v w S)T , for first-order space accu-
racy, i.e. {U} = const in each cell, the initial
states of the Riemann problem will be

{U ′
i j}=

[
Ri+ 1

2 , j

]
{Ui j}

{U ′
i+1, j}=

[
Ri+ 1

2 , j

]
{Ui+1, j}

where
[
Ri+ 1

2 , j

]
=

[
∂U ′

i j

∂Ui j

]
=

[
∂U ′

i+1, j

∂Ui+1, j

]
=




1 0 0 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ 0 0
0 0 0 1 0
0 0 0 0 1




Suppose for the moment that the Riemann
problem has already been solved. Consistently
with the Osher’s flux difference splitting method
[15], the numerical flux on the interface i + 1

2 , j
involves the fluxes in each of the six regions de-
fined by the solution:

{Fi+ 1
2 , j}=

1
2

({Fi j}+{Fi+1, j}
)

− 1
2

∫ i+1

i

[
V−1]([

Λ+]− [
Λ−

])
[V ]d{W} '

1
2

({Fi j}+{Fi+1, j}
)

− 1
2

(
5

∑
k=1

sgnλk

(
{Fi+ k

5 , j}−{Fi+ k−1
5 , j}

))
(5)
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where [Λ−], [Λ+] and [V ] are the negative eigen-
values, positive eigenvalues and right eigen-
vectors matrices of the jacobian matrix (j.m.)
[∂F /∂W ]. Denoted by {U ′} the primitive vari-
able vector in a generic region, to compute the
corresponding flux vector the rotation [Ri+ 1

2 , j]
−1

has to be applied, which gives

{F }=




ρ′u′
p′ cosϕ+ρ′u′ (cosϕu′− sinϕv′)
p′ sinϕ+ρ′u′ (sinϕu′+ cosϕv′)

ρ′u′w′

ρ′u′
(

a′
γ−1 + u′2+v′2+w′2

2

)




(6)
Extending these concepts to the implicit part

of the scheme (4) is straightforward. The j.m.
[∂Fi, j+ 1

2
/∂Wi j], for instance, can be obtained

from expression (5) through derivation. To eval-
uate the j.m. in each region, we break it up into
four j.ms. involving elementary transformations:

[
∂Fi+ k

5 , j

∂Wi j

]
=


∂Fi+ k

5 , j

∂U ′
i+ k

5 , j







∂U ′
i+ k

5 , j

∂U ′
i j




·
[
Ri+ 1

2 , j

][
∂Ui j

∂Wi j

]
(7)

The first j.m. is obtained from derivation of the
expression (6) whereas the last simply represents
a variable change in the i j-th cell. The second
j.m. accounts for the Riemann problem solu-
tion, expressed through the primitive variables.
Its structure relates to the approximated method
which is chosen to solve the Riemann problem at
the interface i+ 1

2 , j.
The other flux vectors that appear in the

scheme (4) and their j.ms. are computed in a sim-
ilar way.

3.2 Approximate solution of the Riemann
problem

Several methods have been proposed to obtain an
accurate and efficient approximation of the Rie-
mann problem solution at the interface between
two contiguous cells. We adopted the approach
of ref. [16]. Here, the indexes k = 2 and k = 3 de-
note the two regions divided by a contact surface

(u′ wave family) whereas k = 1 and k = 4 denote
the two sonic regions associated with the u′− a′
and u′+ a′ acoustic wave families, respectively.
Therefore, for the coefficients of the splitting (5)
we have

λ1 = u′i−a′i λ2 = u′i+ 1
5
−a′i+ 1

5

λ3 = u′i+ 2
5
= u′i+ 3

5

λ4 = u′i+ 4
5
+a′i+ 4

5
λ5 = u′i+1 +a′i+1

The parallel and tangential speed components
v′ and w′ are supposed to keep along the con-
tact surface, together with entropy. It is easy
to show, in fact, that u′ = cosϕu + sinϕv
is a 3-multiplicity eigenvalue of the matrix
cosϕ[∂F/∂W ] + sinϕ[∂G/∂W ] [17], associated
with the Riemann variables S′ = S (as in the
one-dimensional Euler eqs.), w′ = w and v′ =
−sinϕu + cosϕv. We point out that, because of
the source terms in eqs. (2), these variables can-
not be actually considered as Riemann invariants
for the u′ waves.

3.3 Boundary conditions

Our scheme allows a simple enforcement of
physical boundary conditions consistently with
its upwind spirit. At the boundary interfaces, a
partial Riemann problem has to be solved, where
some regions disappear and one condition car-
ried by each incoming wave replaces informa-
tion from the missing cell. For subsonic ax-
isymmetric flow, only one condition is needed
along the outlet section whereas four conditions
are needed along the inlet section. As we previ-
ously explained, in our model the former is the
unit mass flowrate ρu (prescribed in the general
reflective formulation), whereas the latter are two
total quantities and the ramp and blade-to-blade
flow angles. For the endwall interfaces we pre-
scribe the slip condition v′ = 0.

The j.ms. [∂U ′/∂U ′] in the product (7) are
modified to account for the partial Riemann prob-
lem solution at the boundary interfaces. Since the
derivation process requires this solution to be ex-
pressed in closed form, we adopt space linearized
boundary conditions whenever it is necessary.
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3.4 Second-order space accurate scheme

To make the scheme second-order space accurate
is straightforward. A linear variation of the prim-
itive variables in both the grid directions is as-
sumed over each cell, then a high order solution
of the Riemann problem is evaluated. At the in-
terface i + 1

2 , j, the initial states of the problem
will become {U ′

i j}+ 0.5{∆iU ′
i j} and {U ′

i+1, j}−
0.5{∆iU ′

i+1, j}, where {∆iUi j} is defined through
a minmod limiter:

{∆iUi j}= minmod
({Ui j}−{Ui−1, j},

{Ui+1, j}−{Ui j}
)

For the boundary cells, we replace missing in-
formation with the primitive variable values that
were predicted by the latest solution of the Rie-
mann problem on the boundary interface.

Since we are not interested in the tran-
sient solution, we accepted the approximation
0.5|[∂∆iUi j/∂Ui j]| << [I], that is, we left the
product (7) formally unchanged. An investiga-
tion should be made, in order to verify that such
simplification does not affect the TVD and ENO
properties owned by the predictor-corrector ex-
plicit scheme of ref. [5]. These properties are
proved in ref. [18].

4 Update of the blade geometry

Once the new flowfield has been predicted by
the finite volume scheme, the blade geometry is
updated through integration of eq. (1). Since
this does not have a corresponding conservation
law, it requires a finite difference discretization in
the computational plane ξη, with the grid nodes
placed in the cell centers. Therefore we have

∂ϑ
∂t

+ ũ
∂ϑ
∂ξ

+ ṽ
∂ϑ
∂η

=
w
r
−ω (8)

where

ũ = u
∂ξ
∂x

+ v
∂ξ
∂r

ṽ = u
∂η
∂x

+ v
∂η
∂r

In order to carry the high CFL values al-
lowed by the Euler solver, eq. (8) is integrated in

time through an implicit upwind finite difference
scheme. No boundary condition is required at
each blade exit whereas blade lean is prescribed
along the leading edges. For the cells contiguous
to the endwalls, the normal derivative ∂ϑ/∂η is
computed from the interior of the domain. We
notice that a discretization of eq. (8) in the cell
apexes, instead of their centers, would allow us to
remove such derivative from the endwalls nodes.
In these, in fact, it would be possible to enforce
the characteristic condition ṽ = 0, which is equiv-
alent to the slip condition v/u = dr/dx. However,
we believe that, for both the explicit and implicit
time marching procedures, the loss of upwind
spirit for the endwall cells can cause further nu-
merical instability at high flow deflections. One
method to overcome the problem lies in adopt-
ing a finite difference discretization also for Eu-
ler eqs. (2), with the cell apexes as grid nodes.
The finite difference formulation of our implicit
upwind scheme is proposed in ref. [13].

After the new solution of eq. (8) has been
computed, the same upwind discretization of the
derivatives ∂ϑ/∂ξ and ∂ϑ/∂η is used to update
the axial and radial components of the blade force
field from the vector eq. (3). Our procedure
shares this passage with the explicit procedure of
ref. [5].

α out

F
b
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0.35
pexh = 0.9 (stable)

pexh = 0.9 (unstable)

ρu = 0.397

ρu = 0.276

B

A

L

Fig. 1 Theoretical solution for the cascades B, A
and L
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5 The ideal cascade inverse problem

Besides the complete axisymmetric formula-
tion of the inverse problem, a simpler one-
dimensional formulation exists, which is meant
to design an infinite span, zero thickness and
pitch cascade. Now, eqs. (1)-(3) are written in
cartesian coordinates but any derivative along the
spanwise coordinate y must be suppressed. For a
stator cascade we have

∂z
∂t

+u
∂z
∂x

= w

∂{W}
∂t

+
∂{F}

∂x
= {Qb}+{Qh}+{Qv}

~fb = fbz

(
−∂z

∂x
~i+~k

)
(9)

where

{W}= ρ
(
1 u w E0)T

{F}= ρu
(

1
p

ρu
+u w H0

)T

{Qb}=
(

0 fbx fbz ~fb ·~V
)T

{Qh}=−ρu
h

dh
dx

(
1 u w H0)T

{Qv}= (0 fvx fvz 0)T

The free passage per unit tangential length h is
defined as 1− σxδz(x)

cx
.

When ~fv = 0, the theoretical steady solution
of eqs. (9) can be computed, although not in
closed form. However, ref. [6] proves that the
time marching procedure is able to re-obtain only
the solutions that obey the stability condition

∂Fb

∂αout
< 0 (10)

where Fb =−∫ xte
xle

fbz(x)h(x)dx is the blade load-
ing. Figure (fig.) 1 shows three Fb-αout diagrams
computed for αinl = 20o, T 0

inl = 1 and p0
inl = 1.

In view of the condition (10), the low deflection
cascade B can be numerically obtained by pre-
scribing either p = 0.9 or ρu = 0.397 at the outlet
section; the high deflection cascade A and, even
more so, the limit loading (i.e., sonic outlet) cas-
cade L can be only re-obtained by prescribing

ρu = 0.276. As proved in ref. [6], the explicit
procedure, with the static pressure as outlet con-
dition, efficiently reaches the cascade B.

CPU time (P2 350 MHz)
R

M
S

(∂
z

/∂
t)

0 10 20 30 40
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

A explicit + NRBC

A implicit

L explicit + NRBC (no convergence)

L implicit

Fig. 2 Convergence history for the cascades A and L

Whenever we replace the static pressure with
the mass flowrate, some trick has to be introduced
into the explicit procedure in order to ensure its
numerical stability. We compared our implicit
scheme to the explicit scheme of ref. [5], but cou-
pled to a partially non-reflective formulation of
the outlet condition, in the spirit of ref. [10]. The
explicit scheme works with CFL=2 [18], whereas
the implicit scheme works with CFL=300. Fig. 2
shows the convergence histories to the cascades
A and L of fig. 1. The explicit scheme does not
converge to the limit loading solution, since the
non-reflective outlet condition is only efficient
for low Mach numbers (Mout,A = Mout,B ' 0.4).
However, even when both the schemes are sta-
ble, the implicit procedure allows us to gain one
order in convergence time and level. We no-
tice that the implicit discretization of the first
and second eqs. (9) gives rise to tridiagonal
matrix systems, which can be efficiently solved
by the Thomas algorithm. For two-dimensional
flow, these matrices become pentadiagonal, and
in principle could be treated by approximate fac-
torization methods, that involve 10-15 maximum
CFL values. Unfortunately, near the limit load-
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ings the implicit scheme has resulted to be un-
stable under CFL'100. Most likely, this lower
bound relates to the need of jumping over the
strong transients that arise when we realize very
high flow deflections.

x

z

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

A theoretical

A explicit + NRBC

A implicit

L theoretical

L explicit + NRBC

L implicit

Fig. 3 Streamline geometry the for cascades A and L
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M
a

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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0.4

0.6

0.8
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1.2
A theoretical

A explicit + NRBC

A implicit

L theoretical

L explicit + NRBC

L implicit

Fig. 4 Mach number for the cascades A and L

Fig. 3 and 4 display the streamline geome-
tries and Mach number profiles. The explicit
L solution has no physical meaning. In both
tests the blade loading distribution − fbz(x), with

xle = 0.2 and xte = 1.2, was similar to that used
in ref. [6]. The blockage was neglected, h = 1.

6 Turbine stage design

This is just an example that proves the capa-
bilities of the implicit approach in dealing with
high loaded and cambered blade geometries. The
flowpath of the turbine stage and the tangential
blade force distribution over the stator and rotor
regions are shown in fig. 5. The function Fb(η)
for the rotor, with ηhub = 0 and ηtip = 1, is meant
to produce radially constant specific work, pro-
vided that the unit mass flowrate does not approx-
imately vary across the average rotor section [5].
Therefore, we prescribed ρu(η) = const = 0.220
along the outlet section. Along the inlet sec-
tion, we prescribed T 0 = const = 1, p0 = const =
1, α = const = 0o (meridional inlet flow) and
β(η) = ηβtip +(1−η)βhub. The rotational speed
is 0.014. For sake of simplicity, we fastened both
the rotor and stator streamsurfaces to meridional
leading edges with no lean. The blockage and
profile loss effects were neglected.

x

r

8 9 10 11 12 13
18

19

20

21

22

23 0.24
0.18
0.12
0.06
0.00

-0.06
-0.12
-0.18
-0.24
-0.30

Fig. 5 Tangential blade force distribution

Fig. 6 shows the predicted three-dimensional
geometry of the stator (red) and rotor (green)
cambersurfaces. Fig. 7 displays the spanwise dis-
tribution of the relative blade-to-blade flow angle
for the inlet and outlet sections of each blade row.
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Finally figure 8 maps the predicted static pressure
over the full flowpath. The radial variation of
this quantity along the outlet section is negative
because of the prescribed mass flowrate distribu-
tion. The enforcement of the mass flowrate, in
fact, does not allow us to update the outlet pres-
sure from the simple radial equilibrium eq., con-
sistently with the constant work assumption. To
avoid this drawback, we should prescribe a more
realistic distribution of the mass flowrate along
the outlet radius, with ∂ρu/∂η < 0. However,
as previously stated, the present test case is only
meant to provide a simple demonstration.

X

Y
Z

Fig. 6 Blade cambersurface geometry

The flow deflections proved in figs. 6 and 7
give an idea of the maximum camber levels cur-
rently achieved by the two-dimensional implicit
scheme, 60o to 90o. For higher deflections, this
meets numerical instabilities most likely due to
the non-upwind treatment of the endwalls by eq.
(8). On a two-dimensional cartesian grid, the
scheme carries the limit loading levels only when
spanwise periodical boundary conditions are pre-
scribed, that is, when we suppress the wall effects
and the cascades regain an infinite span. How-
ever, as pointed out in sec. 4, the ambiguity in the
wall treatment does not relate to the adopted time
marching procedure, but rather to the space dis-
cretization of the flowpath. Finally, we solved the

linear systems that arise from the discretization
of eqs. (2) and (8) by exact gaussian methods.
This was done in order to use sufficiently high
CFL values and avoid the further transient in-
stability detected from the one-dimensional tests.
To reach convergence on a 32x5 meridional grid,
a P2 processor working at 350 MHz needed about
7 minutes CPU time.
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Fig. 7 Relative blade-to-blade flow angle

7 Concluding remarks

Thanks to the implicit upwind discretization of
the Euler eqs. and streamsurface-flow slip eq.,
our numerical procedure succeeds in efficiently
re-obtaining any theoretical inverse solution of
the ideal cascade problem. This is possible even
when the limit blade loadings are prescribed,
which involve a sonic outlet flow at the max-
imum angle consistent with the enforced mass
flowrate. However, even for moderately loaded
and cambered turbine cascades, that could be
provided by the explicit time marching procedure
through non-reflective outlet conditions, the im-
plicit procedure gains one order in convergence
time and levels. Unfortunately, when we move to
the complete throughflow formulation of the in-
verse problem, at very high flow deflections, the
scheme does not keep the same numerical prop-
erties. We relate the matter to the adopted space
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discretization, rather than the time marching pro-
cedure. On a finite volume grid, the scheme can-
not identify the endwalls as characteristic lines
for the surface-flow slip eq. The numerical in-
stabilities that still arise above 90o flow deflec-
tions must be mainly due to such loss of upwind
spirit along the endwalls. The discretization of
the Euler eqs. through a finite difference implicit
scheme will be dealt with by a subsequent paper.
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Appendix: list of symbols

x, r axial, radial coordinate
ϑ, z tangential coordinate
ξ, η geometrical coordinates
~i, ~j,~k axial, radial, tangential unit vector
t time
~V speed vector
u, v, w axial, radial, tangential speed
ũ, ṽ covariant speed components
α, β blade-to-blade, ramp flow angle
λ wave speed
Ma, a Mach number, sound speed
ρ, p, T density, pressure, temperature
E, H, S internal energy, enthalpy, entropy
~fb, ~fv blade force, viscous force vector
Fb blade loading
ω rotational speed
h tangential unit free passage
c, δ blade chord, blade thickness
n, σ blade number, cascade solidity
∆σ, ∆` cell area, cell side

Subscripts and superscripts

x, r axial, radial component
ϑ, z tangential component
exh exhaust
inl, out inlet, outlet section
le, te leading edge, trailing edge section
hub, tip hub, tip
rel relative quantities
0 total quantities
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