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Abstract  

This paper describes the possibility of thrust 
vectoring for supersonic business jet (SSBJ) to 
reduce jet noise by making use of its directional 
distribution characteristics. The Noise 
calculations for an arrow wing SSBJ and a 
variable sweep wing SSBJ showed significant 
noise reduction under take-off climb, sideline 
and approach conditions. The effect of the 
thrust vectoring was up to 9dB reduction in 
take-off climb noise and up to 20dB reduction in 
cumulative noise. The variable sweep wing 
configuration with thrust vectoring showed the 
best result of 27dB reduction in cumulative 
noise. 

1. Introduction 
The noise reduction for civil supersonic aircraft 
is a very important design issue. Numerous 
efforts have been made to decrease engine 
exhaust noise, but it still looks difficult for 
supersonic civil airplane to satisfy the current 
airport noise regulation. This paper investigates 
the possibility of the thrust vectoring to decrease 
airplane noise during take-off and landing phase. 
Usually, airplane jet noise has strong directional 
distribution characteristics that forms a highly 
directional lobe directed at approximately 20 
deg. to 40 deg. angle from the centerline of the 
jet exhaust direction. When the jet thrust vector 
is deflected downward, the jet exhaust direction 
moves upward and the noise lobe is pointed 
upward. Consequently, the directional 
distribution of noise toward ground decreases 
(Fig.1). However, the thrust vectoring will 
apparently degrades the airplane climb 
capability, and the airplane altitude over the 

ICAO noise reference point is decreased, and 
the noise level increases on the ground. The 
total result of those two effects is calculated for 
future SSBJ type airplanes [6], and shows that 
the thrust vectoring is effective in the airplane 
noise reduction. It is also expected to be 
applicable for subsonic airplanes to reduce jet 
noise even though jet noise is not so dominant 
compared to supersonic airplanes. 

 
Fig. 1  Concept of the thrust vectoring 

2. Methodologies  
The estimated noise level at the IACO noise 
reference points (Fig.2) for take off climb, 
sideline and landing approach conditions were 
calculated with some simplification. 
 

 
Fig. 2  ICAO noise reference points 
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2.1  Noise Calculation Method   

The noise level was calculated based on the 
noise lobe, angle of noise distribution (Az), 
thrust level, distance and time delay. The 
analyses of this paper were based on the 
nominal distribution assumed as the typical 
distribution characteristics from examples 
shown in Fig.3.  

 
Fig. 3  Noise distribution characteristics  

 
There is a distinctive directional distribution of 
jet exhaust noise, however, typical pattern is 
difficult to be specified because of the 
difference in the noise measurement units or 
conditions; therefore, an average distribution 
was assumed from some experimental data 
normalized to 25m distance and 1ton thrust 
level as a nominal noise distribution in overall 
dB(A) for the calculation of this paper. The 
followings are the correction methods of each 
parameter. 
 

Noise Correction Method 
• Noise level= Nominal Noise 

+ Thrust correction  
+ Distance correction 

• Nominal Noise; Fig.3 and distribution angle  
• Thrust correction; 

∆dB=K1×10·log (thrust ratio) 
K1=1.0 for scaled engine 
K1=1.8 for partial thrust [1] 

• Distance correction; 
∆dB=1.1× 20·log (Distance ratio) 
1.1: assumed for atmospheric attenuation 

• Time delay;  
Time = Elapsed time + Propagation time ∆t 
∆t=(distance/speed of sound) 

2.2  Take-off Climb Noise  
Fig.4 shows the airplane flight path and relative 
position over the ICAO take-off noise point.  

 
Fig. 4  Take-off flight path and noise point 

 
Assumed calculation conditions; 
• Take-off ground run distance: 1500m 
• Vectoring angle: to be set at lift-off 
• Vref: 1.2Vs+10kt 
 
The noise level at the ICAO noise point was 
calculated as the time elapsed from airplane lift-
off. Although the airplane configuration change 
other than the landing gear retraction is not 
permitted during take off 2nd segment climb 
phase until the landing gears are fully retracted 
and airplane reaches 400 feet altitude under 
FAA regulation, the assumption shown above is 
on safety side at the prediction of the effect of 
the thrust vectoring because the airplane height 
over ICAO point decreases by thrust vectoring 
at lift off than vectoring after 2nd segment.  
The take-off climb paths were calculated for the 
SSBJ type airplanes with fixed arrow wing and 
variable sweep wing. Fig.5 shows the 
equilibrium of forces and noise distribution 
angle for the calculation. 
 

 
 

Fig. 5  Equilibrium of forces 
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(3)              δ -   α - γ - ψ = AZ 

(2)      Wsinγ = D - ) Tcos( 

(1)      ) Tsin( L = Wcos γ 
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+ 

++ 

 
Fig.6 shows the effects of the thrust vectoring 
on climb path angle derived from the equations 
shown above and the airplane angle of attack 
was kept constant against vectoring angle. 

 
Fig. 6  Climb path and vectoring angle 

 
The maximum path angle corresponds 
approximately to the vectoring angle that make 
the thrust line is aligned to the direction of 
speed vector. 

2.3  Take off Sideline Noise  

The ICAO measurement point is on the line 
450m aside from runway center, and the 
downrange position is the point where the noise 
reaches the maximum. To simplify the 
calculation, the sideline noise was calculated at 
the point 500m downrange from airplane lift off 
point where the sideline noise generally reaches 
the maximum level in this analysis. The airplane 
altitude where the noise reaches the maximum 
level is between 300 and 400m. The noise 
correction methods used are the same as the 
ones used in sec.2.2. 

2.4  Landing Approach Noise  
Figure 7 shows the flight path and the relative 
position of the airplane to the ICAO noise point 
in the landing approach phase.  
 
Assumed calculation conditions; 

• Touchdown point: 300m from threshold 
• Vectoring angle: fixed until touchdown 
• Vref: 1.3Vs+10kt 

 

 
 

Fig. 7  Approach flight path and noise point 
 
The approach noise was calculated at 2000m 
from the threshold for the airplane approaching 
on the 3deg. glide slope and touching down 
300m beyond threshold.  When the thrust 
vectoring was applied during approach phase, 
the thrust component along flight path decreases 
and vertical component increases downward; 
therefore the required thrust should be increased 
to maintain the glide slope angle.  Fig.8 shows 
the required thrust level to maintain 3 deg. glide 
slope against the thrust vectoring angle.  
 

 
Fig. 8  Thrust level to keep 3deg glide slope 
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supersonic airplane which has a very low L/D in 
the approach configuration due to it’s slender 
airplane geometry, the thrust level required to 
maintain 3 deg. glide slope angle is unusually 
high. In addition to this, the altitude over the 
ICAO measurement point is very low compared 
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to the takeoff climb case. Therefore, a reduction 
in jet noise during landing approach is important 
for supersonic airplanes. In this case also, the 
thrust vectoring effectively decreased the jet 
noise on account of the directional distribution 
effect, even though the thrust level required to 
maintain the glide path angle increased. The 
noise correction for partial thrust was calculated 
by multiplying 1.8 to 10·log (thrust ratio) due to 
jet velocity change [1]. 

2.5  Airplane Configuration 
The reference airplane configuration was based 
on the SSBJ type airplane shown in Table 1 and 
Figure 9.  The SSBJs with arrow wing and 
variable sweep wing were configured for the 
same mission requirement composed of 2+8 
passenger, cruise speed of Mach 1.8, and 
3500nm range, etc. [5], [6]. 
 

Table 1  SSBJ specification 
 

 
 

 
Fig. 9  SSBJ plan form 

3.  Results 

 3.1  SSBJ with Arrow wing configuration 

3.1.1  Take off climb noise  
Figure 10 shows the result of thrust vectoring of 
-30deg. downward thrust case. X-axis shows the 
elapsed time from airplane lift off, and Y-axis 
shows the noise level calculated at the ICAO 
measurement point. The peak noise decrease of 
-7.4dB was obtained in this case. 
Figure 11 shows the noise distribution angle 
(Az) change according to the airplane position 
downrange from the lift off point.  When the 
noise reached the maximum level, the 
distribution angle for the non-vectoring case 
was about 20 degrees, and it was about 40 
degrees in case of -30deg. vectoring. The noise 
distribution characteristics shown in Figure 3 
can be effectively utilized for noise reduction.  
When the noise reaches the maximum level, the 
airplane already passes over the ICAO reference 
point, and the elevation angle looking up the 
airplane from the point becomes about 60 to 70 
degrees behind. 

 
Fig. 10  Noise time history at ICAO take off point 

 

Fig. 11  Noise distribution angle time history  
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Fig. 12  Component of take off noise reduction  
 

Figure 12 shows the breakdown of the noise 
decrease. The noise decreased by -8.5dB due to 
distribution angle and increased by +1.1dB due 
to degraded climb performance. In total, the 
noise decrease of -7.4dB was obtained. 

3.1.2  Take off sideline noise  
The effect of the thrust vectoring on sideline 
noise was not so effective as the takeoff climb 
noise as it is easily imagined. But the effect still 
exists in this case. 
 

 
Fig. 13  Noise time history at ICAO sideline point 

 
Figure 13 shows the effect of the -30deg. thrust 
vectoring. The peak noise decrease of -3.1dB 
was obtained in this case. 
 

3.1.3  Landing approach noise  
Figure 14 shows the result of thrust vectoring of 
-30deg. downward case. X-axis shows the time 
to airplane touch down and Y-axis shows noise 
at ICAO measurement point. The peak noise 
decrease of -4.9dB was obtained in this case. 
The airplane altitude over the ICAO approach 

point was only 120m compared to over 1000m 
of takeoff climb case, therefore, the noise level 
was still high even though the engine power was 
reduced to about 30% of takeoff thrust. 

 
Fig. 14  Noise time history at ICAO approach point 

 

Fig. 15  Component of approach noise reduction 
 
Figure 15 shows the breakdown of the noise 
decrease. The noise decreased by -3.9dB due to 
distribution angle, increased by +1.1dB due to 
thrust increase, decreased by -2.0dB due to 
distance increase from ICAO point, and in total, 
the noise decrease of -4.9dB was obtained.  

3.2  SSBJ with variable sweep wing 
configuration 
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itself is quieter, and also has smaller angle of 
attack due to the large aspect ratio of the main 
wing at its low speed position that will enhance 
the vectoring effect. Figure 16 shows the 
comparison of the arrow wing without vectoring, 
variable sweep wing without vectoring and 
variable sweep wing with -30deg. vectoring.  
The peak noise decreased by -2.0dB due to the 
variable sweep wing effect, decreased by -8.7dB 
due to the thrust vectoring, and in total, the 
noise decrease of -10.7dB was obtained. 
 

 
Fig. 16 Take off noise reduction by Variable sweep wing 
 

3.2.2  Take off sideline noise  
 
Figure 17 shows the comparison of the same 
cases for sideline noise.  

 
Fig. 17 Sideline noise reduction by Variable sweep wing  

 
The peak noise decreased by -1.4dB due to 
variable sweep wing, decreased by -4.4dB due 
to thrust vectoring, and in total, the noise 
decrease of -5.8dB was obtained. 
 

3.2.3  Landing approach noise  
Figure 18 shows the comparison of the same 
cases for approach noise.  The peak noise 
decreased by -3.3dB due to variable sweep wing, 
decreased by -7.1dB due to thrust vectoring, and 
in total, the noise decrease of -10.4dB was 
obtained. 
 

 
Fig. 18 Approach noise reduction by Variable sweep wing  

3.3  Summary of effect of thrust vectoring  
Table 2 shows the summary of the thrust 
vectoring effects for the ICAO noise conditions 
for the arrow wing and variable sweep wing 
SSBJs in the case of -30deg. downward thrust 
vectoring condition. The total noise reductions 
for three conditions were -15 to -20dB for those 
airplanes, and the variable sweep SSBJ with -
30deg. vectoring was quieter by -27dB than the 
arrow wing SSBJ without vectoring. 
 

Table 2  Summary of vectoring effect 
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airplanes. The noise regulation for supersonic 
civil airplanes has not yet been decided, but it is 
said that supersonic airplanes would be required 
to satisfy the Chapter 4, and preferably the same 
level of margin of current subsonic airplane as 
well.  

 
Fig. 19  Noise margin to ICAO chapter 3 for current 

subsonic business jet 
 
The SSBJ shown in Table 1 is configured for 
the mission requirement of 3500nm range and 
low bypass ratio engines with mixer-ejector 
nozzle and extended noise-absorbing duct.  
The estimated noise level of the airplane 
marginally satisfies Chapter 3 [5], and it is 
expected that when the effectiveness of the 
thrust vectoring is realized, those airplanes will 
satisfy Chapter 4 regulation hopefully.  
 
• Noise distribution characteristics  
The noise directional distribution was assumed 
in this paper to be the one shown in Figure 3. 
The distribution characteristics affect the 
effectiveness of the thrust vectoring, therefore it 
is important to investigate the characteristics of 
the future candidate engines for supersonic civil 
airplane.  
 
• EPNdB  
The ICAO regulation is specified in EPNdB of 
noise level taking into account duration time 
and tone correction. In this paper the noise value 
was calculated simply as overall dB (A), or SPL 
for an initial analysis of the effectiveness of the 
thrust vectoring. When the thrust vectoring is 

applied, the effectiveness before and after that 
of the peak noise reduction tend not so effective 
than at the peak value (Fig.10), therefore, it is 
necessary to discount the effects a little when 
evaluated in EPNdB.  
 
• Nozzle Concept 
When applying vectoring nozzle to actual 
airplane and engine, it is necessary to have three 
basic modes of cruise, reverse and vectoring as 
shown in Fig.20. To change the nozzle 
geometry, actuator/guide-rail system would be 
applicable.  Other possibilities are to tilt the 
nacelle itself according to flight conditions, or 
to install vectoring flap just behind the nozzle 
exit. 

 
Fig. 20  Vectoring nozzle concept 

 
• Others 
There are many other noise sources beside the 
jet exhaust noise such as shock-associate noise, 
airframe noise, fan noise, etc. but airframe parts 
such as wing and fuselage could shield the noise 
from the intake. The shock noise from the 
exhaust nozzle may possible to be shielded with 
the rear fuselage and vertical fin. The 
configuration study in JAXA about SSBJ and 
small SST (Fig. 21) will include and continue to 
analyze such effects.  

5. Conclusions 
This paper has described the effectiveness of 
thrust vectoring for noise reduction during take 
off and landing by calculations. 
The effect is derived from the directional 
distribution characteristics of jet exhaust noise, 
and the thrust vectoring deflects the peak noise 
distribution away from the ground. Although the 
thrust vectoring degrades the airplane climb 
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capability or approach glide performance, total 
result of those two effects will effectively 
decrease the airplane noise consequently. 
 
The cumulative noise reductions for three 
conditions are -15 to -20dB for the SSBJ type 
airplanes, and the variable sweep wing SSBJ 
with -30deg. vectoring is quieter by -27dB than 
the arrow wing SSBJ without vectoring. 

 
The maximum vectoring angle will be about 30 
degrees downward when considering the one 
engine inoperative case and keeping altitude 
without changing thrust vectoring angle on the 
other engine similar to the thrust cut-back 
operation.  

 
The effectiveness shown here would be that the  
future SSBJ and small SST could hopefully 
satisfy ICAO Chapter 4 regulation. Also, the 
concept of this effect will be applicable to 
subsonic airplanes. 
 
The analysis in this paper is simple and 
preliminary, but shows a significant possibility 
in noise reduction of supersonic airplane; 
therefore, the further studies as shown below are 
necessary and will be continued.  
 
･ Evaluation in EPNdB 
･ Proof test with real engine or simulated jet  
･ Analysis about secondary noise due to 

vectoring devices 
･ Effect of aerodynamic noise 
･ Influence of Doppler effect 
･ Application to subsonic airplane 
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Fig. 21  Conceptual study about SSBJ and SST in JAXA. 
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