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ABSTRACT 

A pitch-plunge flutter model-mount was 

designed for active flutter control research. The 

design is considered novel as it is much smaller 

and structurally simpler than existing models on 

which it is based. The mount plunge and pitch 

stiffnesses and the system mass, mass inertia 

and centre of gravity can be adjusted, allowing 

for various test cases. Open-loop test results 

agreed well with theoretical predictions using 

classical flutter theory and gentle, low speed 

flutter was demonstrated. Initial closed-loop 

simulations using LQG control with a trailing 

edge flap show that flutter can successfully be 

suppressed despite the small size of the model 

and limitations of the actuation servo. The LQG 

flutter controller, although designed to be 

optimised for the open-loop flutter speed of the 

model, suppresses flutter significantly above 

this speed. For instance, for one simulated test 

case, flutter was suppressed to 11.1m/s above 

the predicted open-loop flutter speed of 22.3m/s, 

a nominal increase of 50%. However, active 

control wind tunnel testing still has to be done 

to verify the simulations. 

NOMENCLATURE 

ab  
Distance between mid-chord and elastic 

axis 

,  ,  ,  A B C D  State-space matrices 

b  Airfoil half-chord 

c  
Non-dimensional distance between 

airfoil mid-chord and flap hinge line 

C  Structural damping 

( )C k  Theodorsen’s function 

,  δ λ  
Coefficients in rational approximation of 

Wagner function 

E  Elastic modulus 

f  Frequency in hz 

G  Shear modulus  

I  Area/Mass moment of inertia 

I  Identity matrix  

J  Torsional stiffness parameter 

k  Reduced frequency (Strouhal number) 

K  Structural stiffness 

1l , 
2l  1

st
 and 2

nd
 Aerodynamic lag state 

L  Unsteady lift force, Flexure length 

δL , λL  
Matrices of Wagner approximation  

function coefficients 

m  Wing mass 

M  
Unsteady aerodynamic moment, 

Structural Mass 

N  Number of flexures 

Φ  Wagner function 

1Q , 
2Q  

Matrices of terms proportional to 

circulation about the airfoil 

ρ  Air density 

t  Flexure thickness 

T  Control surface position function 

θ  Flexure angle 

u  Control input 

U  Free stream velocity 

w  Flexure width  

ω  Flutter frequency in rad/s 

xα  Non-dimensional distance between 

airfoil pitch axis and airfoil cg 

xβ  Non-dimensional distance between flap 

hinge axis and flap cg 

 
Subscripts: 

 a  Aerodynamic 

α  Pitch 

β  Flap angle 

c  Command 

h  Plunge  

s  Structural 
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1. INTRODUCTION 

Airframe structural design trends have shown an 

increase in flexibility, slenderness ratio and 

maximum operating speeds which combined 

can lead to flutter and the potential destruction 

of the airframe [1]. To increase the flutter 

boundary of an aircraft without modifying its 

mass or structural properties and hence limiting 

its performance, primary flight control surfaces 

and a feedback control system can be used to 

actively suppress flutter and stabilise the aircraft 

above its open-loop flutter speed. As an initial 

step towards developing and testing such active 

flutter suppression control laws, two 

dimensional models representative of a span-

wise section of an aircraft wing are often 

designed and wind tunnel tested. These binary 

flutter models are an attractive means of 

experimentally validating active flutter control 

laws because of their gentle, low speed and well 

defined flutter characteristics. In view of this, a 

small-scale pitch-plunge flutter model was 

designed for active flutter control research to be 

done in the University of the Witwatersrand’s 

low speed continuous wind tunnel [2]. The 

model had to be small in size to suit the small 

elliptical test section of the wind tunnel and to 

minimise cost. It was also required that the 

model have a low flutter speed and gentle flutter 

characteristics. 

2. THEORY 

2.1. Pitch-Plunge Flutter 

Simplified two-dimensional aerodynamic theory  

adequately models the unsteady aerodynamic 

forces and moments acting on an airfoil with 

pitch, plunge and control surface degrees of 

freedom. Various two-dimensional methods 

have been developed to calculate these forces 

and moments [3]. Theodorsen’s method [4] was 

used in this study. This theory is limited to 

airfoils with thin sections of infinite span 

undergoing small oscillations in all vibration 

modes. Flow over the airfoil is assumed to 

remain potential and un-separated and the 

structural equations of the system are linearised 

[5]. The airfoil pitches about its elastic axis. It is 

assumed the control surface is aerodynamically 

balanced and pivots about its leading edge [4]. 

Figure 2.1 shows a schematic of such an airfoil 

and control surface. The elastic axis and airfoil 

centre of mass positions are measured positive 

aft of the airfoil mid-chord.  

 

Figure 2.1 Flutter Model Notations 

The forces acting on the airfoil are the unsteady 

lift L (assumed to act at the quarter chord 

position), unsteady pitching moment Mα and 

unsteady flap hinge moment Mβ as shown in 

Figure 2.2. Using Lagrange’s method, the 

linearised equations of motion of the system 

depicted in Figure 2.2 are [4]:  

h h
mh mx b mx b C h K h Lα βα β+ + + + =&& &&&& ...................... (2.1) 

 

( ) 2
mx bh I c a b mx I

C K M

α α β β

α α α

α β

α α

 + + − + + 

+ =

&& &&&&

&

.................... (2.2) 

 

( )

( )

2

c

mx bh c a b mx I I

C K M

β β β β

β β β

α β

β β β

 + − + + + 

+ − =

&& &&&&

&
.................... (2.3) 

The unsteady lift, pitching moment and flap 

hinge moment are described in terms of the 

instantaneous configuration of the system 

(position, rate and acceleration of all vibration 

modes). L, Mα  and Mβ  per unit wingspan are 

then given as [3]: 

 

( )
( ) ( )

2

1 4

1 1 1
11 102 2

       2

L b h ba bT U UT

bC k h b a bT U T U
π π

ρ π π α β πα β

πρ α β α β

= − − − + − −

 + − + + + 

&& && &&& &

& &&

........................................................(2.4) 
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( ) ( ){
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&& &&&& &

&& &

&

.................................(2.6) 

where the ‘T ’ terms are a function of the flap 

position and can be found in [4]. C(k) accounts 

for lift due to vortices being shed off the trailing 

edge of the wing because of its motion, and is 

expressed in terms of Bessel (or Hankel) 

functions. 

 

 

Figure 2.2 Schematic of Flutter Model 

 

Some models (see [6], [7] for example) omit the 

effect that these shed vortices (wake circulation) 

have on the flutter speed, and are termed quasi-

steady solutions. However, in this work the 

aerodynamic lag effects have been included. To 

model these effects, a rational approximation to 

Theodorsen’s function is needed. To get this, 

Wagner’s function, which is the inverse Fourier 

transform of Theodorsen’s function divided by 

iω, as shown in Equation (2.7), is approximated 

by the two-term function given in Equation 

(2.8) [8]: 

( )C k

iω
−1
  

Φ =  
  

F ....................................................... (2.7) 

1 2

1 2
1

Ut Ut

b be e

λ λ

δ δ
− −

Φ = − − ............................................ (2.8) 

 

In Equation (2.8) δ1 = 0.165, λ1 = 0.041, δ2 = 

0.335 and λ2 = 0.320 as given in [8]. Equations 

(2.1), (2.2) and (2.3) (structural equations of the 

system) are combined with Equations (2.4), 

(2.5) and (2.6) (generalised aerodynamic forces) 

to form the equations of motion of the system. 

Equation (2.8) is used to approximate the 

circulatory lift contribution to the unsteady 

aerodynamic forces. The combined equations 

(not shown) are written in a state-space form for 

subsequent addition of a control input to 

suppress flutter, as described briefly in §2.2 

below. 

2.2. Active Flutter Control 

Using time domain control theory the state-

space equations of motion of the dynamic 

system are [9]: 

 u

u

= +


= + 

X AX B

Y CX D

&

......................................................... (2.9) 

where u = βc  is the commanded flap angle. 

, , , A B C D  are given in Appendix A. The 

system consists of eight states viz. the plunge 

deflection, pitch angle, flap angle, their 

respective rates and two aerodynamic lag states, 

since a two-term approximation to the Wagner 

function is used. In vector notation: 

 

1 2

T

h hα β α β =  X & && l l ................... (2.10) 

The initial simulations assume that pitch rate, 

plunge rate and flap angle are measured and the 

remaining five states are estimated. Linear 

Quadratic Regulator (LQR) control is used to 

calculate feedback gains and a Kalman filter is 

used to estimate unmeasured states. An example 

of results obtained from initial simulations, 

using this Linear Quadratic Gaussian (LQG) 

controller is given in §4.2. 
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3. MODEL DESIGN 

3.1. Model Mount 

Two common pitch-plunge flutter model design 

approaches are reported in the literature. One 

approach employs flexures, whilst the second 

uses coil springs to achieve desired pitch and 

plunge modal frequencies. 

 

Farmer [10] describes the design of a large 

pitch-plunge flutter model in which a rigid wing 

is attached to a splitter plate mounted on four 

circular rods and a central horizontal rectangular 

drag strut, all cantilevered from the sidewall of a 

wind tunnel. A cross-section through this mount 

is shown in Figure 3.1.  

 

Figure 3.1 Flexure Pitch-Plunge Mount [10] 

The function of the drag strut is to make the in-

plane stiffness of the mount significantly higher 

than its transverse stiffness, whilst contributing 

minimally to its torsional stiffness. The rods are 

fixed and constrained by plates at either end, so 

the deflection slopes there are zero as the 

splitter plate moves, resulting in simple pitch-

plunge movement. Another advantage of flexure 

constrained flutter models is that structural 

damping is very low (can be considered 

negligible) and remains constant as loads on the 

model vary. Thus aerodynamic damping is 

essentially the only damping influencing the 

motion of the wing. This enables investigation 

of changes in aerodynamic damping with air 

flow over the wing [10]. Dansberry et al [11] 

improved Farmer’s mount [10] by reducing the 

size of the splitter plate and using it only as a 

means to mount the flexures to the wing. A 

second splitter plate, un-connected to the model, 

was used to separate the airflow over the model 

and the mount. The advantage of this system is 

that mechanical stops can be mounted on the 

second splitter plate to arrest flutter should the 

amplitude of the oscillation grow too large. 

 

The alternative approach to the design of a 

pitch-plunge flutter model, using an 

arrangement of coil springs to constrain the 

motion of a rigid wing, is described in [12], 

[13]. This system allows pitch and plunge 

stiffnesses to be varied independently and can 

be used to investigate the effect of a non-linear 

restoring force on the flutter characteristics of a 

rigid wing [12]. The main disadvantages of the 

spring system are the introduction of significant 

structural damping into the flutter model and the 

relatively high cost [12]. 

 

In this work [2] a new design was developed 

based on [10], but using rectangular flexures. 

This eliminated the need for the central drag 

strut and made the small-size mount feasible. A 

cross-section through the new mount design is 

shown in Figure 3.2. This design is thought to 

be novel as no similar implementation could be 

found in the literature. An interesting feature of 

this design is that the flexures can be rotated to 

a position where pitch, plunge and in-plane 

bending frequencies will occur in a similar   

range. Inclusion of the additional degree of 

freedom (in-plane bending) could be a topic for 

future research. 

 

Figure 3.2 New Flexure Mount [2] 
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The stiffness of the plunge degree of freedom of 

the mount is given by Equation (3.1) and that of 

the pitch degree of freedom by Equation (3.2), 

taken from [14]: 

3

12
xx

h

EI
K

L
= .............................................................. (3.1) 

3

12
OA

EIGJ
K N

L L
α = + .................................................(3.2) 

The torsional stiffness parameter J in Equation 

(3.2) is given by [14]: 

4

3 1 1
0.21 1

3 12

t t
J wt

w w

     
 = − −           

....................... (3.3) 

and the area moments Ixx, Iyy and IOA by [14]: 

( ) ( )
2 2

sin cos
12

xx

wt
I w tθ θ = +

 
............................... (3.4) 

( ) ( ){ }2 2

sin 90 cos 90
12

yy

wt
I w tθ θ   = − + −   

o o ....... (3.5) 

( ) ( ){ }2 2

sin 45 cos 45
12

OA

wt
I w tθ θ   = − + −   

o o ......(3.6) 

Pitch and plunge frequencies of the mount are 

then given by Equations (3.7) and (3.8), as in 

[10]: 

1

2

h

h

K
f

mπ
= ............................................................ (3.7) 

1

2

K
f

I

α
α

απ
= ........................................................... (3.8) 
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Figure 3.3 Effect of Flexure Width and Thickness on Pitch and Plunge Frequencies 

Using AISI-01 tool steel for the flexures, and 

for a given wing mass and mass inertia, 

parametric studies were done to establish the 

effect of w, t, L, θ, R and N on the structural 

properties of the model, hence its flutter 

characteristics. A sample parametric contour 

plot is shown in Figure 3.3 (for N = 4). This 

analysis enabled a flutter model to be designed 

that was suitable for testing within the 

geometric and operational constraints of the 

University of the Witwatersrand’s low speed 

wind tunnel. For a fixed elastic axis position the 

pitch and plunge stiffnesses can be varied by 

changing the orientation θ of the flexures. The 

model was designed to allow each flexure to be 

aligned at four different, fixed angles, locked in 

place with a steel dowel pin. A simple fairing 

was fitted ahead of the flexures so that they did 

not generate any aerodynamic forces themselves 

which would change the flutter characteristics 

of the wing. A rigid wing comprising an 

aluminium framework and balsa wood inserts, 

with a chord of 120mm, span of 360mm and a 

NACA0012 profile was attached to the mount. 

Model mass, mass inertia and centre of gravity 

were varied independently using sliding ballast 

masses. Two CTC-AC140-1A accelerometers 

located at the wing root were used to measure 
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the dynamic response of the wing. Mechanical 

stops were incorporated in the model mount to 

prevent excessive motion, and hence damage, as 

flutter was encountered. The complete model, as 

mounted in the University of the 

Witwatersrand’s wind tunnel, is shown in 

Figure 3.4. 

 

 

Figure 3.4 Flutter Model Mounted in the University of the Witwatersrand’s Low Speed Continuous 

Wind Tunnel 

 

3.2. Active Control Wing 

A second wing model incorporating a trailing 

edge flap was designed for active flutter control 

research with the existing flexible mount. This 

model is shown in Figure 3.5. The additional 

control surface degree of freedom will be 

actively controlled to suppress flutter. The 

internal structure of the wing comprises 

aluminium and carbon fibre ribs and carbon 

fibre spars. A carbon fibre skin slides over the 

whole framework and is pinned in several 

places to the ribs, to provide additional stiffness 

and the aerodynamic shape. A novel feature of 

this active control wing is that the flap is 

controlled through a torsion flexure, designed to 

ensure the flap rotation frequency is higher than 

the pitch and plunge frequencies of the wing. 

The actuator used to drive the flap is a Hitec
®

 

HS-5125MG model aircraft servo. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Active Control Wing 

(a) Splitter Plate and Fairing Removed (b) Complete Model-Mount as Tested 

Servo 

Encoder 

Flap Ballast PCB Accelerometer 

Carbon Fibre Spar 

Aluminium Rib 

Carbon Fibre Rib 

Carbon Fibre Skin 

Torsion Spring 
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This servo was selected because of its small 

size, relatively high speed and good torque 

characteristics. The servo is a digital type, 

requiring only a single pulse width modulated 

(PWM) signal for actuation. Because of this, it 

has a smaller dead-band and better position 

resolution than similar analogue servos. A 

Contelec Vert-X 13 contactless encoder, located 

at the wing root, is used to measure flap angle. 

Two PCB type 333B32 accelerometers, located 

inside the wing, are used to measure its dynamic 

response. A National Instruments NI USB-6211 

multifunction data acquisition (DAQ) card is 

used to acquire data and control the servo. The 

DAQ card is controlled by software written in 

C# and Matlab
®
 (using the data acquisition 

toolbox) via a computer in the loop. 

4. RESULTS 

4.1. Open-Loop Results 

Open-loop flutter testing was carried out in the 

University of the Witwatersrand’s low speed 

continuous wind tunnel, with θ = 2.5º, 3.5º and 

4.5º. The configuration with θ = 5.5º was not 

tested because of limited time
1
 and wind tunnel 

schedule. For each configuration, testing began 

at wind speeds much lower than the predicted 

flutter speed. As the model has no in-built 

excitation, and tunnel turbulence is low, the 

model was excited by giving it an initial 

displacement  and  then  allowing  it  to oscillate  

Table 4.1 Open-Loop Model Parameters 

Parameter Units Value 

a  / -0.20 

b  m  0.06 

m  kg  1.58 

Iα  2kgm  0.0355 

fα  hz  6.66 

h
f  hz  6.02 

Wingspan m  0.35 

ρ  3/kg m  1.0062 

 

                                                 
1
 8 weeks to complete the research and submit the final 

dissertation, including design & manufacture of the 

model. 
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Figure 4.1 Wind off Time Series 
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Figure 4.2 Simplified Zimmerman Flutter 

Margins 

freely whilst recording the data. Recorded data 

was read into Matlab
®

 and smoothed with a 

standard smoothing algorithm. A Hamming 

window function [15] was applied to the 

smoothed data and a Fast Fourier Transform 

(FFT) performed to establish the modal 

frequencies (Figure 4.1). Once the pitch and 

plunge frequencies of the model had been 

established, the simplified Zimmerman flutter-

margin criterion [16] was used to calculate the 

flutter margin of the model for the given wind 

tunnel speed. The wind tunnel speed was then 

increased, and the above process repeated, 

whilst the simplified Zimmerman flutter margin 

was tracked to predict the onset of flutter 

(Figure 4.2). Testing of the first two 

configurations (θ = 2.5º, 3.5º) was intentionally 

stopped before their respective flutter speeds 

were reached, to allow the structural and 

aerodynamic properties of the mount to be 

accurately characterised. The model was then 
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allowed to flutter in the third configuration (θ = 

4.5º). This was achieved by slowly approaching 

flutter, based on a flutter speed predicted by 

extrapolating a curve fit of calculated 

Zimmerman flutter margins from the lower test 

speeds (Figure 4.2). Gentle, low speed flutter 

was demonstrated and the model behaved as 

anticipated. Test results were in excellent 

agreement with the prediction. With the flexures 

set to θ = 4.5º the still air plunge frequency was 

6.02hz and the pitch frequency 6.66hz (Figure 

4.1). Flutter occurred at 6.36hz at a speed of 

20.79m/s, compared with the theoretical 

prediction of 6.54hz at a speed of 20.81m/s. A 

single flutter cycle, photographed during this 

test, is shown in Figure 4.3. This flutter was 

demonstrated repeatedly and consistently 

without damage to the model. 

 

 

Figure 4.3 Single Flutter Cycle at 6.36Hz 

 

4.2. Closed Loop Simulations 

Initial simulations using LQR control and a 

Kalman filter (i.e. LQG control) indicate that 

despite the small scale of the model and 

limitations of the servo used to actuate the flap, 

flutter can be suppressed to a good margin 

above the open-loop flutter speed. Two 

approaches were used to investigate the 

effectiveness of the flutter controller. The first 

approach used a state-space model of the 

complete system, and was developed in 

Matlab
®
. The second approach used a 

Simulink
®
 model. Both simulations gave the 

same result, but the Simulink
®
 model is 

preferable since the control input (flap angle) 

can be position and rate limited, and dead-band 

easily added, to better model the flap actuator 

(servo). The natural frequencies of the mount 

were calculated from Equations (3.7) and (3.8). 

The mass and mass inertia of the new wing were 

estimated from CAD drawings of the model 

after assigning material properties to each 

component. For an anticipated wing mass of 

1.80kg, mass inertia of 0.0382kgm
2
 and  other 

parameters similar to those listed in Table 4.1, 

open-loop flutter was predicted to occur at 

22.28m/s. A flap hinged at 75% of the wing 

chord, controlled with a flutter controller 

optimised for the predicted open-loop flutter 

speed, effectively suppresses flutter up to a 

velocity of 33.42m/s, a nominal increase of 50% 

in the flutter speed of the model. Figure 4.4 

shows the closed-loop control of predicted and 

Kalman estimated pitch, plunge and flap angle 

states at the open-loop flutter speed. It is 

apparent that the flutter controller is able to 

suppress flutter within 5.0s. At the time of 

writing, wind tunnel tests still have to be 

performed to verify these predictions. 
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Figure 4.4 Closed-Loop Simulation 
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5. CONCLUSIONS 

A novel small-scale, low cost pitch-plunge 

flutter model was successfully designed and 

wind tunnel tested. The model is capable of 

exhibiting classical pitch-plunge flutter without 

sustaining damage. Experimental results agree 

well with predictions from classical flutter 

theory. Due to the success of the initial phase of 

this project, work has proceeded on the addition 

of a control surface (trailing edge flap) and 

digital control system for research into active 

flutter control. Initial closed-loop simulations 

using Matlab
®

 and Simulink
®
 predict that flutter 

can be suppressed adequately using LQR 

control and a Kalman filter, despite the small 

size of the model and limitations of the servo. 

Given the small scale and low cost of the model, 

it is an ideal testbed for research into active 

flutter control, in particular to quickly test and 

verify different control algorithms. At the time 

of writing, closed-loop wind tunnel tests still 

have to be done. 
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APPENDIX A 

The state-space matrices given in §2.2 are listed below for convenience. The system matrix of the 

3DOF flutter system is: 

1 1 1

3 3 3 3 3 2

11 1

11 2 1

11 1

11 2 1

δ

δ
λ

δ

− − −

× × ×

−− −

−− −

 
 − − −
 
 
 =
 
 

−− + − 
+ 

−− + −  

M C M K M

A I 0 0

Q MQ M C Q Q M K

Q MQ M C Q Q M K

L

L
L

L

..................................................... (A1) 

and the input matrix is: 

1

5 1

Kβ
−

×

 −
=  
 

M
B

0
........................................................................................................................... (A2) 

The measurement matrix is: 

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

 
 =  
  

C ................................................................................................ (A3) 

and the feed-through matrix is: 

3 1×=D 0 ....................................................................................................................................... (A4) 

since no feed-forward control is used. The mass, damping and stiffness matrices given in Equation 

(A1) are: 

s a

s a

s a

= −


= − 


= − 

M M M

C C C

K K K

........................................................................................................................... (A5) 

The structural matrices in Equation (A5) are: 

( )
( )

2

2

s

m mx b mx b

mx b I c a b mx I

mx b c a b mx I I

α β

α α β β

β β β β

 
 

= − + 
 − + 

M .............................................................. (A6) 

0 0

0 0

0 0

h

s

C

C

C

α

β

 
 

=  
 
 

C ................................................................................................................... (A7) 

0 0

0 0

0 0

h

s

K

K

K

α

β

 
 

=  
 
 

K ................................................................................................................. (A8) 
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and the “aerodynamic” matrices in Equation (A5) are
4
: 

( ) ( )

1

3 21
7 18

1 13 3

1
2

a

a T
b

b a b a b T c a T

T bT bT

π
π

ρ π π

π

 
− 
 

= − + + −   
 
 −  

M .................................................................... (A9) 

( )

( ) ( ) ( )

( ) ( ) ( )

4 11

2 1 1
8 1 4 112 2

1
12 9 1 4 12 11 4 122

2
2 1

2 2

1
2

2

a

a T T
b

b U a ba a b T T c a T aT

T b T T T T a bT T T

π
π

ρ π π

π

 
− − − − 

 
= + − − + − +   

 
  − + + − − −   

C .......... (A10) 

( )

( )

10

2 2 1
10 42

12 5 10 4 12

22
0

0 2 2

1
0

a

T

b b

b U a aT T

T T T T T

π

ρ π

π

 
− − 

 
= + − 

 
 − − − −  
 

K ............................................................. (A11) 

The matrices in Equation (A1) that account for aerodynamic lag are: 

( )1 1
1 112 2

1 b a bT
π

 = − Q ...................................................................................................... (A12) 

1
2 10

0 U T
π

=   Q .................................................................................................................. (A13) 

( ) ( )

1 2

2 1 1
1 22 2

12 1 12 2

2 2

2 2

b b

b U a a

T T

δ

πδ πδ

ρ π δ π δ

δ δ

 
 
 

= − + − + 
 
 
 

L ............................................................................. (A14) 

1

2

0

0

U

b

U

b

λ

λ

λ

 
− 

=  
 −  

L .............................................................................................................. (A15) 

 

 

                                                 
4
 It is shown in [4] that ( )1

13 7 12
T T c a T= − + −   , thus the aerodynamic mass matrix is symmetric as required. 


