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Abstract  

This paper presents some uncertainties 
propagation methods and their use for 
conceptual design. Uncertainties analysis is a 
natural complement to the classical post 
optimal sensitivities analysis of a 
Multidisciplinary Optimization. A methodology 
to deal with uncertainties propagation in the 
case of a multilevel design process is presented, 
including some work currently in progress at 
Dassault-Aviation to deal with uncertainties in 
CFD simulations. An example of design under 
uncertainties is presented. Finally a simple 
method to couple uncertainties analysis and the 
multidisciplinary optimization of an aircraft is 
described.  

1 Introduction 
One of the primary reasons for the rising 

interest in uncertainties management is its 
application in risk-based design methods. At the 
conceptual design stage, the choices of global 
parameters aim to satisfy performance targets. 
The performances predicted suffer from a 
certain level of uncertainties which can be 
related to two major sources: the entire set of 
sizing parameters are not fully determined yet 
and the computational models used during this 
phase can be simplified and thus can only 
approximate the actual physical behaviour. 

To better manage the risks, both technical 
and economical, from the earliest stage of a 
program one can benefit from using a 
probabilistic framework. At Dassault-Aviation, 
the conceptual design is performed using an 
integrated computing platform which performs 
the optimization of selected performance targets 

under the constraints of global specifications. In 
a classical optimization framework, the target 
performances are considered as design 
constraints. To assess the risk related to not 
meeting a given objective, it is necessary to 
replace the usual ‘fixed margin’ approach by 
probabilistic criteria. This allows one to relate 
the objective values to a probability of meeting 
the target. Embedding the multidisciplinary 
optimization process into a probabilistic 
framework is a required step towards robust 
optimization. Robust optimization can thus be 
simply considered as the optimization of global 
parameters for a not-fully-known situation. 

At Dassault-Aviation a typical conceptual 
design is carried out in a two-level framework 
as shown in figure 1. 

 

Figure 1: two-level design process 
 
All the global optimizations, trade off 

studies and uncertainties management with 
respect to the high level specifications are 
carried out at level 1. This level uses low to 
medium fidelity tools and surrogate models 
which are calibrated or constructed using high 
fidelity analysis or optimizations performed at 
level 2. 
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The challenge is thus twofold: first, one 
must be able to gather all the uncertainties 
sources from the lower level and then, one must 
conceive a design that meets the specifications 
with a given probability. 

2. Uncertainties analysis at the global level. 

2.1 Uncertain design parameters 
Two uncertainties propagations methods 

have been developed and implemented in the 
industrial platform that is used for level 1 
analysis and design.. Along with the well known 
Monte Carlo method, methods derived from the 
structural reliability analysis have been 
implemented. The FORM/SORM (First and 
Second Order Reliability Method) rely on a 
local approximation of the limit state surface by 
a hyper plan (First Order Method) or a conic 
surface (Second Order Method). The risk of not 
satisfying a specification can be 
evaluated as a probability which reads 

 where 

0)( >xg

{ FXP ∈ } { }0)(: ≤ℜ∈= xgxF n . This 
probability can be computed by a Monte Carlo 
method with a large number of random samples 
of X . When the computational cost prohibits a 
large number of samples, an approximated 
method such as the FORM/SORM methods 
allow one to estimate the desired probability. In 
this case, after transforming the random 
variables X into normalized variables U , the 
probability  is computed using the reliability 
index β , which is the distance of the origin in 
the space to the boundary of the limit state. 
The mathematical problem then reduces to a 
constraint minimization problem. 

U

In practical applications, the boundary of 
the limit state is not a known function and needs 
to be approximated. We use the DACE [1] 
Matlab toolbox to generate the approximation 
with a Kriging method. 

As a first example we evaluate the 
probability of exceeding a maximum takeoff 
weight assuming that the design parameters are 
random variables. Using the FORM method the 
solution is obtained in 16 iterations of the global 
sizing model. The FORM/SORM methods have 
been compared to the Monte Carlo method. In 

this case, we used 10,000 samples to estimate 
the probability with the Monte Carlo method. 
Since each evaluation of a sampling data 
requires the solution of the global sizing 
problem, the Monte-Carlo simulation is much 
more CPU intensive than the reliability analysis. 

In figure 2, we present the limit state 
frontier as determined by the FORM method 
(red curve), the SORM method as the Krigging 
model iterates (black) and Monte-Carlo (blue). 
We can notice that around the critical point 
(point that minimizes the distance of the origin 
to the limit state frontier) the approximate 
methods and Monte-Carlo are in very good 
agreement. 

Figure 2: Limit state frontier  
 
Figure 3 presents the population generated 

by the Monte-Carlo simulation; the points in 
black meet the target (MTOW less than 
specified MTOW) whilst the purple points 
exceed the requirements. 

Figure 3: MC simulation population 
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Finally, the probabilities are compared for 
the different methods: Figure 4 shows the 
probability computed by Monte-Carlo as the 
simulation progresses (black curve) and the 
probability computed with the FORM method 
(red curve). 

 

 
Figure 4: probability (red FORM, black MC) 
 
The reliability method gives a probability 

with a margin of error of compared to 
Monte Carlo. This margin of error is truly 
negligible for our case of interest and allows 
supports the hypothesis that the reliability 
method can be systematically used for robust 
design problems. 

210−

2.2 Uncertainties of models 
The global performances of the aircraft 

depends on the elementary performances of the 
individual disciplines involved in the design. 
For instance, if we consider the Breguet range 
formula: 
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where V is the cruise speed, Cs the fuel 
specific consumption, Cz the lift coefficient, Cx, 
the drag coefficient and Wb and We respectively 
the weight of the aircraft at the beginning and at 
the end of the cruise. If one wants to evaluate 
the uncertainties of the range using this formula, 
the uncertainties on each of the individual terms 
are necessary. One of the most sensitive 
parameters for an aircraft performance is the 
drag coefficient. To derive uncertainties on the 
predicted drag coefficient, a multilevel approach 
is needed. Even at the conceptual stage the 

evaluation of performances critical to the design 
may require high fidelity analysis. We present 
below how the uncertainties for the 
aerodynamic coefficients can be obtained using 
high fidelity CFD analysis. 

3. Uncertainties calculations using CFD. 
Uncertainties is relatively new in the CFD 

community and can probably be explained by 
the relatively new use of CFD in design 
(especially compared to structural design) and 
its computational cost. In the context of CFD, 
the uncertainties are usually separated into two 
sources, uncertainties due to the physical model 
and uncertainties due to the boundary 
conditions, the operating conditions or more 
generally the input of the computation. 

For the first type, the source is usually a 
lack of knowledge of the actual physical 
behaviour. In CFD, the model with the greatest 
amount of uncertainty is most probably the 
turbulence model because turbulence is not a 
fully understood phenomenon leading to models 
which are a drastic simplification of the physics. 
In this case, we are technically dealing with 
“errors” since these uncertainties originate in 
either an acknowledged deliberate 
simplification or an acknowledged lack of 
understanding. However, since the exact 
solution is unknown,  the errors cannot be 
corrected and we have no alternative but to treat 
them in a non-deterministic manner as 
uncertainties. A valid model can also introduce 
uncertainties through the value of its parameters 
which can be either unknown or known only in 
a probabilistic manner. 

Some inputs of the computation can be 
viewed as true aleatoric variables. Among the 
possible variations we can list the actual shape 
of the geometry, the atmospheric conditions 
(temperature, pressure, density, wind,…) and 
the operating conditions. To deal with this kind 
of uncertain parameters we use two methods: 
the method of moments and Monte-Carlo 
simulation using surrogate models. 

3.1 Method of moments 
The method of moments for uncertainties 

propagation has been used for a long time in the 
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risk management community. This method is 
very attractive for CFD applications since it 
only needs one deterministic nonlinear 
computation, which is the CPU intensive part, to 
estimate the mean and the standard deviation of 
the output. The major impediment in its 
practical use was that it requires the derivatives 
(Jacobian or Hessian matrix) of the output with 
respect to the fluctuating parameters. The 
advances in Automatic Differentiation enable 
one to easily calculate the needed derivatives 
and the moments method is becoming feasible 
for CFD applications (see references [2], [3] and 
[4] for example). 

The method of moments is based on a 
Taylor expansion of the response around the 
mean of the input parameters. Let )(xfy =  
denote the random output of a deterministic 
process with random inputs . 
The Taylor expansion can be either a first order 
expansion (First order method) or a second 
order expansion (Second order method). A 
second order Taylor expansion of the output 

around the expected value of 
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This Taylor expansion is used to compute the 
expected value and variance of the random 
variable .  y

For the first order method the expected 
value of is the value given by the 
deterministic computation  and 
its variance reads: 

y
))(()( xEfyE =

),cov()var(
1 1

j

n

i

n

j
i

ji

xx
x
f

x
fy ∑∑

= = ∂
∂

∂
∂

= . 

The covariance of the random variables 
and  is defined as ix jx
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The second order method uses the 

curvature of to correct the expected value and 
the variance of 

f
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The second order approximation is much 
richer. For instance, if x derives from an 
optimization problem and is a free optimum, the 
first order method does not give any information 

about the variance since 0=
∂
∂

ix
f .  

The practical implementation of the 
method of moments in Dassault-Aviation 
Reynolds Averaged Navier-Stokes solver is 
presented in details in [5]. 

The major benefit of the method of 
moments arises from its moderate computat-
ional overhead. The real limitation of this 
approach is that it only estimates the moments 
which may not provide enough information to 
compute a probability or estimate a distribution, 
should the output distribution depart from a 
normal distribution. 

3.2 Monte Carlo using surrogate models 
A Monte Carlo simulation would provide, 

in theory at least, an estimate of the probability 
density function of the outputs. The major 
drawback of Monte Carlo is the computational 
effort required. In the CFD context, each sample 
requires the solution of a non linear problem 
and the number of samples can be high since the 
convergence rate of the Monte Carlo method 
scales only as the reciprocal of the square root 
of the number of samples. 

Surrogate models appear to be an elegant 
manner to overcome the computing time 
associated with Monte-Carlo simulations. The 
idea is extremely simple and consists of using 
an approximation of the expansive non linear 
problem for the Monte Carlo simulation. The 
computational advantage is evident since an 
evaluation of the surrogate model is performed 
at a negligible cost, the CPU intensive part 
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being the construction of the model which is 
done once and for all. 

Surrogate models can be constructed using 
a wide variety of techniques. Here we 
investigate three different surrogate models that 
can be separated into local and global models. 

Local surrogate models are based on a 
Taylor expansion. The derivatives computed for 
the method of moments can be used to directly 
compute the terms of the Taylor expansion of 
the output functions. A local surrogate model is 
thus a direct byproduct of the method of 
moments. 

The construction of a global model can be 
computationally expansive for a large number 
of parameters. Radial Basis Functions, thanks to 
their ability to incorporate derivatives 
information to improve the accuracy of the 
model (see reference [6]).are attractive to 
construct surrogate models. Kriging methods 
are an alternate approach for the construction of 
global surrogate models. By definition, Kriging 
methods can provide an estimate of the 
surrogate model error [7] which can be used 
both during the construction of the model and 
later in its exploitation phase. 

3.3 Comparison of the methods 
The methods described above are applied 

to the evaluation of the impact on the drag 
coefficient of a geometrical deformation close to 
the leading edge on the suction side of an 
airfoil. A parametric CAD definition of the 
airfoil is used to generate the new geometries. In 
Fig. 4 we present the reference airfoil in red and 
the extremes of the deformation in blue and 
green.. The airfoil considered here is a 
RAE2822 at a transonic Mach number. The 
calculations are performed using a 

ε−k turbulence model. The drag coefficient for 
the reference point is Cx=0.0131. 

The uncertainties propagation methods 
used here are the first order moments method, 
the second order moments method, Monte Carlo 
simulation using a first order Taylor expansion, 
Monte Carlo simulation using a second order 
expansion, Monte Carlo simulation using the 
RBF model and finally Monte Carlo simulation 
using the Kriging model. All the Monte Carlo 

simulations are performed using 10,000 
samples. The geometrical parameter is assumed 
to follow a normal distribution with a standard 
deviation of 0.02. 

 

 
Figure 5: Geometrical deformation (green reference) 

 
The table below summarizes the results for 

the predicted means and variances. 
 

 Mean Std deviation 
First order 130.94e-4 1.55e-4 
Second order 134.00e-4 4.60e-4 
MC Taylor 1 130.95e-4 1.55e-4 
MC Taylor 2 134.02e-4 4.52e-4 
MC RBF 133.97e-4 4.81e-4 
MC Kriging 134.04e-4 4.95e-4 

 
The results clearly show two types of 

behavior. On the one hand the linear methods, 
first order method and Monte Carlo using a first 
order Taylor expansion, and the non linear 
method on the other hand. The two linear 
methods give, as expected, the same results. It is 
worth noting that in this example, the 
deterministic value of the drag coefficient does 
not correspond to the expected value of the drag 
coefficient considered as a random variable; 
there is a difference greater than 3 drag counts 
between the linear methods and the non linear 
methods. The non linear methods give the same 
results for the mean value, the predictions of the 
standard deviation are more scattered. 

4. Sizing under uncertainties 
To assess the probability of success is a 

nice feature to have but is clearly not sufficient. 
The next step forward is to generate a design 
that meets the requirements in a probabilistic 
sense. In the case considered here, we are 
interested in designing a Supersonic Business 
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Jet such that the aircraft will have a 95% 
probability to meet the required range. The 
uncertain parameters are in this case the drag 
coefficient, the fuel specific consumption and 
the aircraft empty weight. A two level approach 
is used: the aircraft is sized using detailed 
models, then a surrogate model is calibrated and 
used to determine the probability of meeting the 
specification. The probability is computed using 
Monte Carlo with the surrogate model. Figure 6 
presents a sketch of the process. 

 

 
Figure 6: sizing under uncertainties process 
 
The histogram of the range distribution for 

the selected aircraft is presented in figure 7 
below. 

 

 
Figure 7: range distribution  

 

6. Robust optimization. 

Our multi-level design process is actually a 
multi-level MDO process and the objective is to 
take into account uncertainties in the MDO 
procedure. We want to be able to treat 

instance that the final design must have a 90% 
probability to exceed a target range. 

The method relies only on d

constraints described in terms of probability, for 

eterministic 
optim

 
he way the constraints are shifted is 

prese

The Monte Carlo simulation performed 
after

izations, the target value of the constraints 
are adjusted in order to meet the required 
probability. Figure 8 presents the overall 
process: first a standard deterministic MDO 
problem is solved, then using Monte Carlo 
simulation around the optimal solution we 
compute the probabilities, if the probabilities are 
met we have a final robust optimal design, 
otherwise the constraints of the optimization 
problem are shifted and a new optimization 
cycle is performed. 

 

A/C sizing to
meet a given range 

Calibration of 
a surrogate model 

Compute
Proba(R>Rtarget) 

A/C within
specification 

Multidisciplinary  
Optimization 

Monte Carlo 
Simulation 

Probabilities 
Evaluation 

Updated 
Constraints 

 
Figure 8: robust optimization process 

Optimal 
Design 

T
nted first for the special case of a single 

constraint. Let assume that the constraint reads: 
9.0)Pr( ≥≤ TPX  

 the optimization step allows one to 
construct the empirical cumulative distribution 
of the random variable X presented in figure 9. 
From the cumulative distribution we can 
compute P90 such that 9.0)Pr( 90 =≤ PX . If 

TPP ≤90 the constraint is sa  we 
e a new target for the optimizer based 

on a simple shift between TP and 90P . If the 
distribution is not to far from a normal 
distribution, defining the new target 

tisfied, otherwise
determin

95% of A/C will have a range 
greater than target 

distribution of range 

6 



 UNCERTAINTIES AT THE CONCEPTUAL STAGE

as  with a relaxation 
parameter

)( 90 TT
N

T PPPP −−= α
8.07.0 −≈α  works well. 

 

Figure 9: CdF of performance 
 
The case with more than one constraint is 

more complex since it involves determining a 
conditional probability. The method that can be 
used for any number of constraints, is detailed 
for the case with two constraints for the sake of 
clarity. In this case the problem reads: 

9.0)Pr( 2211 ≥≥  ≥ TT XXandXX  
We first transform the random variables 

and  to their reduced centred form : 1X 2X

iX

ii
i

XEX
X

σ
)(~ −

=  

We now work in the reduced space in 
which the results of the Monte-Carlo simulation 
are plotted (see figure 10).  

 

Figure 10: target selection in reduced space 

As can be seen in figure 10 we define a 
box that is moved along the diagonal of the 
reduced axis until it captures 90% of the 
sampled points. The intercepts of the box edges 
with the axis defines the values of 90~

iX  such that  
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9.0)~~~~Pr( 90
22

90
11 =≥  ≥ XXandXX  

The values of are then computed and 
using the cumulative distribution functions for 

 we apply the same type of shift as the one 
constraint case for both of the constraints. 

90
iX

iX

It is worth noting that in the case of 
independent random variables and  this 
method leads to 

1X 2X
9.0)~~Pr( 90 = ≥ ii XX . Since in 

the case of independent variables  

)~~Pr()~~Pr(

)~~~~Pr(
90
22

90
11

90
22

90
11

XXXX

XXandXX

≥ ≥

=≥  ≥
 

the two constraints share equally the 
"burden" of meeting the global specification. 

The correlation between the random 
variables and  are taken into account. 
Figure 10 presents the case of two variables 
with a positive correlation, whilst figure 11 
shows the case of two variables with a negative 
correlation.  

1X 2X

 

Figure 11: impact of negative correlations 
 
The negative correlation indicates that the 

two constraints cannot be reached at the same 
time and this shows up clearly on the width of 
the box that contains 90% of the samples which 
is much larger in this case. 
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7. Conclusion 
Uncertainties propagation needs to be 

considered in the multi-level paradigm to fully 
tackle the source of uncertainties and build a 
hierarchy with respect to their impact on the 
probability of success of the global 
specification. The estimation of uncertainties in 
crucial disciplines such as aerodynamics are 
thus of paramount importance. The uncertainties 
propagation through a CFD simulation is still in 
its infancy and results available today show the 
advantage of considering a second order method 
and justify the extra work that is involved for 
the computation of the second order derivatives. 
It is, once again, important to stress that the 
method of moment is one amongst a large panel 
and that it has some shortcomings. For instance 
the information about the first two moments 
does not suffice to determine a confidence 
interval if the output distribution departs too 
much from a normal distribution, whilst the 
empirical distribution obtained with Monte-
Carlo will allow one to estimate the confidence 
interval. In this case it will then be necessary to 
assess the statistical error between the actual 
model (Navier-Stokes) and the surrogate model. 
It is also important to keep in mind that the 
difficulty and the computing cost of building a 
surrogate model grows exponentially with the 
number of parameters. It is thus necessary to 
build an "uncertainties" toolbox for 
aerodynamics and the methods presented in this 
paper are the first candidates. 

Uncertainties propagation at the global 
aircraft level is a necessary post processing after 
a multidisciplinary optimization and 
complements the usual post optimal sensitivities 
analysis; it can even be integrated within an 
optimization loop with minor modifications. 
Some of the necessary ingredients for a robust 
multi-level multi-disciplinary optimization are 
now available and are being integrated into our 
design process to eventually allow to perform 
Optimization Under Uncertainties which is the 
actual goal. 
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