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Abstract  

A blended-wing-body is an example of an 
aircraft configuration with multiple control 
surfaces. The most effective use of these control 
surfaces, e.g. to minimize cruise drag due to 
pitch trim, or to maximize pitching moment at 
low speed in an engine-out condition, leads to 
optimization problems. The method investigated 
is this paper is applied to multiple control 
surfaces, taking into account their mutual 
interactions and also the influence of shifts of 
center of gravity. It is shown in a particular 
case that it is possible to achieve pitch trim in 
cruise with drag reduction relative to the 
untrimmed case.  

1  Introduction 

Minimizing drag in cruise is most important for 
aircraft emissions and economics since this is 
the longest phase of most flights, and where a 
large proportion of the total fuel is burnt. It is 
therefore desirable to achieve pitch trim at 
cruise with the smallest possible drag penalty 
relative to the untrimmed aircraft; even better 
would be to achieve pitch trim in cruise with a 
drag reduction relative to the untrimmed 
aircraft. There is a limited choice of control 
surfaces in the traditional aircraft configuration, 
with a fuselage to carry payload, a wing to carry 
fuel and provide lift and roll control, and an 
empenage to provide yaw and pitch control. In a 
blended wing body (BWB) configuration, with 
control surfaces both on the centerbody and 
wing, there are multiple control surfaces; thus 
arises the question of which is the best 

combination of all available control surfaces to 
achieve pitch trim with least drag.    

The method to be presented applies to the 
trimming of an aircraft, for any axis and any 
flight phase, when there is a choice of control 
surfaces to be used. It allows distinct control 
surfaces to have different deflections, in order to 
minimize drag, for a given constant control 
moment e.g. in cruise. Conversely, e.g. in a low-
speed engine-out condition, with a given drag, it 
specifies the maximum control moment 
available.  

Among the multitude of optimization 
methods available [1,2], the method of 
Lagrange multipliers was chosen; one of its 
major applications is in the calculus of 
variations [3], and hence in the analytical 
dynamics [4] of mechanical systems with 
multiple degrees-of-freedom subject to various 
types of constraints. The type of constraint in 
the present problem corresponds to 
anholonomic scleronomic in classical 
mechanics [5]. The method of Lagrange 
multipliers has several attractive features in the 
present application: (i) the magnitude of the 
final multiplier indicates how severely the 
constraint of pitch trim or constant lift affects 
cruise drag; (ii) the differences between the 
Lagrange multipliers of distinct control surfaces 
at each iteration indicates how far that particular 
state (or choice of control surface deflections) is 
from the final optimal state. There are other 
methods of optimization applicable to the 
selection of multiple control surfaces [6,7]. 

The comparison of the eight pitch trim 
strategies was initially motivated by (i)  
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reduction of cruise drag, but raises other 
relevant and related issues, e.g.: (ii) if 
unchanged lift is required, to keep the same 
airspeed and altitude as for the untrimmed flight 
condition, can this be achieved with the same 
untrimmed angle-of-attack  or is a higher value 
needed?; (iii) the largest control surface 
deflections required are sufficiently small to 
avoid concerns about adverse aeroelastic [8] or 
aerodynamic [9-13] effects, e.g. loss of control 
effectiveness [14,15] or control inversion, and 
shock wave formation and boundary layer 
separation?; (iv) the angle-of-attack of the 
aircraft and deflections of all control surfaces 
are within the range where linear or weakly 
non-linear methods can be applied with 
confidence? It should be borne in mind that 
there are many approaches to drag reduction 
[16,17], and the optimization of control surface 
deflections is just one of them.  

2  Two reciprocal optimization problems 

Two reciprocal optimization problems in flight 
dynamics are: (i) for a given pitching moment, 
find the control surface deflections which 
minimize drag; (ii) for a given drag, find the 
control surface deflections which give 
maximum pitching moment. These two 
reciprocal problems correspond to: (i) the 
minimum drag due to pitch trim in cruise and 
(ii) the maximum pitching moment in an 
engine-out low-speed condition.  

2.1 Minimum cruise drag due to pitch trim 

 
Denoting by q  the dynamic pressure: 

2

2
1 Vq ρ≡ ,                  (1) 

the pitching moment per unit dynamic pressure 
and mean aerodynamic chord c  is given by: 

( )
1

* /
i

N

i M i
i

M M qc S C δ
=

≡ =∑ ,            (2a) 

where: (i) the sum extends to all N control 
surfaces, Ni ,...,1= , e.g. 1=i  is the elevator, 
and Ni ,...,2=  other surfaces which can be used 
for pitch control; (ii), iS  is the area, 

iMC  the 

pitch control coefficient and iδ  is the deflection 
of the surface i . The trim drag per unit dynamic 
pressure is: 

( )
1

* /
i

N

i D i
i

D D q S C δ
=

≡ =∑ ,              (2b) 

where 
iDC  is the dimensionless drag coefficient. 

The aim is to choose iδ  with Ni ,...,0= , so 
that, for a given pitching moment (2a), the drag 
(2b) is minimum. 

2.2 Maximum pitching moment in engine-out 
condition 

 
The condition of minimum drag (2b) requires 
that  *D  be stationary  

d * 0 :D =   
1

d 0
i

N

i D i
i

S C δ
=

′ =∑ ,             (3a) 

where d / d
i iD D iC C δ′ ≡  and it is assumed that 

iDC  depends only on the deflection of the 
corresponding surface iδ  (this will be 
generalized to coupled control surfaces in §4.1). 
However, the deflections iδ  are not 
independent, because they must keep the 
pitching moment (2a) constant: 

:.* constM =   
1

d 0
i

N

i M i
i

S C δ
=

′ =∑ .             (3b) 

The reciprocal problem, e.g. corresponding to 
an engine-out condition, is for a given drag *D  
to maximize the pitching moment: 
( ) ( )*

max
***

min ,, MconstDconstMD =⇔= ,  (4) 
and it leads to the set of same equations (3a,b). 
Thus both problems have a similar solution, i.e. 
lead to a set of optimal control surface 
deflections, which are determined next by the 
method of Lagrange multipliers. 

2.3 Optimal control surface deflection and 
Lagrange multiplier 

Introducing the Lagrange multiplierλ , the 
equation (3a) is multiplied by λ  and (3b) is 
added: 

( )
1

d 0
N

i D M ii i
i

S C Cλ δ
=

′ ′+ =∑ .              (5a) 
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Now there are 1+N  unknowns: (i) the N  
deflections iδ  of the control surfaces; (ii) the 
multiplierλ . If the deflections are taken as 
independent in (5a) then follow N  optimization 
equations: 

( ) ( ) D i M ii i
C Cλ δ δ′ ′− = ,              (5b) 

where the iδ  appears implicitly in the 
derivatives of the drag 

iDC ′ and moment 
iMC ′  

coefficients; the subsidiary condition is the 
conservation of the pitching moment (3b), and it 
is the ( ) thN −+1  equation. From the 1+N  
equations (5b)+(3b), can be determined the N  
optimal deflections iδ  and the Lagrange 
multiplier λ . Once these are known, the 
minimum trim drag follows from:  

( )*
min

1
i

N

i D i
i

D S C δ
=

=∑ ,                (6)
 

using the optimal deflections iδ . The optimal 
Lagrange multiplier λ  indicates how much the 
constraint of constant pitching moment 

*M penalizes the minimum drag *D , i.e. a large 

λ  indicates a large effect on drag *
minD to 

achieve the required pitching moment *M  and a 

small λ  indicates a small effect on drag.  

3  The method of solution for the optimal 
deflections 

The direct (or minimum drag) and reciprocal (or 
maximum pitching) moment problems, lead to 
distinct optimal deflections (§3.1) because the 
subsidiary condition is different. The 
optimization conditions are the same (§3.2) and 
lend themselves to a similar iterative method of 
solution (§3.3).  

3.1 Direct and reciprocal optimization 
problems  

In the case of the reciprocal problem the same 
N+1 unknowns, the N optimal control surface 
deflections iδ  and Lagrange multiplier λ  are 
determined from N+1 conditions: (i) the same N 
optimization conditions (5b); (ii) the condition 

(3a) of constant drag. The maximum pitching 
control moment is given (2a) by: 

( )*
max

1
i

N

i M i
i

M S C δ
=

=∑ .     (7) 

Thus the direct (§2.1) [inverse (§2.2)] problems 
use the same N optimization conditions (5b), 
and a distinct subsidiary condition of constant 
pitching moment (3b) [constant drag (3a)] and 
thus lead to a different set of optimal deflections 
( )ii δδ  and a distinct Lagrange multiplier ( )λλ : 

( ) ( ){ } ( ) ( ){ }5 3 , , 5 3 , ,i ib b b aδ λ δ λ+ ⇔ + (8) 

In what follows the direct problem will be 
considered explicitly; similar reasonings would 
apply to the reciprocal problem. Note that the 
optimization conditions (5b) involve the first 
derivative of the drag 

iDC  and pitch control 

iMC coefficients with regard to the deflections: 
d / dD D ii i

C C δ′ ≡ ,     d / dM M ii i
C C δ′ ≡ ,          (9a,b) 

where it is assumed that the control surfaces are 
independent, i.e. each 

iDC , 
iMC  depends only in 

the corresponding iδ , and it is not affected by 
other jδ  with ji ≠ . This restriction will be 
lifted in §4.1. 

3.2 Iterative method of solution  

The key to the solution of the direct and inverse 
optimization problems is to find the optimal 
deflections iδ  and multiplier λ  which satisfy 
the N  optimization equations (5b) plus the 
subsidiary condition of constant pitching 
moment (3a). This is an implicit system, which 
can be solved iteratively (Figure 1) as follows: 
(i) start with equal deflections for all 
surfaces ( )

0
0 δδ =i , for the given pitching 

moment (2a): 
( )

0
0 δδ =i :  ( )*

0
1

 
N

i Mi
i

M S C δ
=

=∑ ;          (10a) 

(ii) the 1+N  control equations (5b) specify 
1+N  first estimates of the multiplier: 

( ) ( ) ( )00
0 / δδλ DMi CC

i
′′−= ,             (10b) 

(iii) if all ( ) ( )00 λλ ≡i  are equal, we have the 

optimal solution 00 δδ =i , ( )0λλ = , which 
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Figure 1 

Block diagram of iterative method of solution of optimization problem using Lagrange multipliers. 
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satisfies all 1+N  equations (2a,5b), implying 
that the minimum drag would occur for equal 
deflections of all control surfaces; (iv) most 
likely this is not the case, so if the ( )0

iλ  are not 
all equal, their arithmetic mean is taken as the 
next iteration: 

( ) ( )1 0

1

1 N

i
iN

λ λ
=

= ∑ ;                         (11) 

(v) substituting ( )1λ  in the N  optimization 
equations (5b), gives the next iteration for the 
deflections ( )1

iδ , which are generally distinct; 
(vi) substituting the ( )1

iδ  in the pitching moment 
(2a) leads to a value ( )1M , which is the 
optimum if  ( )

*
1 MM =  has the required value 

*M ; (vii) if not ( )1λ  is modified to ( )2λ  and the 

process continued until ( )
*MM n → . The 

modification process for the Lagrange multiplier 
at the iteration 1n +  could be as in (11) the 
arithmetic mean of the preceding thn  iteration.  

3.3 Linear and non-linear optimization 
equations 

 
The critical step in iterative method of solution 
is to solve the optimization equation (5b) for the 
deflections iδ . This is analyzed next. If the drag 

iDC  and control 
iMC coefficients are linear in 

the deflections iδ , then (9a,b) are constants, and 
generally there is not a single value λ  of the 
Lagrange multiplier which will satisfy all N 
relations (5b). Thus there is no optimum. It 
follows that optimal deflections exist only if the 
drag or control coefficients are non-linear 
functions of the control surface deflections, e.g.: 

( ) ( )0 0 0

21
2i i i iD i D D i i DC C C Cδ δ δ′ ′′= + + ,       (12a) 

( ) ( )0 0 0

21
2i i i iM i M M i i MC C C Cδ δ δ′ ′′= + + ,    (12b) 

 
in a quadratic case. In this case the optimization 
conditions are specified substituting (12a,b) in 
(5b): 

( )0 0 0 0
,

i i i iD i D M i MC C C Cλ δ δ′ ′′ ′ ′′− + = +            (13a) 
and can be solved for the deflections: 

ii

ii

DM

DM
i CC

CC

00

00

′′+′′

′+′
=−

λ
λ

δ ;             (13b) 

thus the optimum exists, as specified by (13b). 

4  Extension to coupled surfaces and 
additional constraints 

The preceding method is extended in two ways: 
(i) to coupled control surfaces (§4.1), such that 
the drag 

iDC  and control 
iMC  coefficients of 

surface i depend on the defections jδ  of other 
surfaces; (ii) to additional constraints (§4.2), 
e.g., a condition of constant lift. The two 
generalizations can be taken together, and it is 
important to note that the optimization problem 
depends on the position of c.g., allowing an 
approximation for (§4.3) small deviation. 

4.1 Optimization condition for the coupled 
control surfaces 

In the case of coupled control surfaces the drag 
coefficient 

iDC  of surface i depend on the 
defections jδ  of all control surfaces: 

( )*
1

i

N

D j i
i

D C Sδ
=

=∑ ,             (14a) 

and the condition of minimum (or constant) 
drag:  

*
, 1

0 d d
N

D i jij
i j

D C S δ
=

′= =∑ ,            (14b) 

involves a matrix of first-order derivatives 
(15a): 

jDD iij
CC δ∂∂≡′ / ,     jMM iij

CC δ∂∂≡′ /      (15a,b) 
and likewise for the pitching moment (15b). If 
follows that the optimization conditions (5b) are 
now: 

( )* *
0 1

0 d d d
N N

i M D jij ij
i j

M D S C Cλ λ δ
= =

′ ′= + = +∑ ∑ ;(16a) 

since the variations of the deflections cannot be 
all zero, the determinant must vanish: 
( ) ( )1 2d ,d ,...,d 0,0,...,0Nδ δ δ ≠ : ( )det 0M Dij ij

C Cλ′ ′+ = . 

        (16b) 
Thus minus the Lagrange multiplier -λ is an 
eigenvalue of the pair of matrices 

ijMC ′  and 
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ijDC′ . If the eigenvalues are distinct then the 
eigenvectors are orthogonal. In this orthogonal 
frame, with indices a,b, the matrices became 
diagonal: 

abMM ICC
aab

′=′ ,     abDD ICC
aab
′=′ ,        (17a,b) 

where Iab is the identity matrix; thus (16a) show 
that: 

( )∑
=

′+′=+=
N

a
DMaa aa

CCdSdDdM
1

**0 λδλ ; (18)    (1

the controls are now decoupled as in (5b). 
Hence the analysis of (§3.3) applies again, to 
show that an optimum exists for non-linear 
controls, e.g. (13b) in the quadratic case (12a,b). 

4.2 Flight at varying speed/altitude or 
constant lift 

The lift per unit dynamic pressure induced by 
the control surfaces is given by: 

1
* /

i

N

L i
i

L L q C S
=

= =∑ ,              (19) 

where 
iLC  is the lift coefficient of control 

surface i. In the preceding optimization 
problem, the optimal deflections iδ  would 
generally lead to a change in lift to *L , 
implying flight at a different dynamic pressure 
(1), i.e. either speed or altitude or both will 
change, viz.: (i) if lift was increased ** LL > , 
then the aircraft would descend to a lower 
altitude, corresponding to a larger atmospheric 
mass density ρ , or fly faster, leading to a 
combination such that lift equals weight again; 
(ii) if lift was decreased, then the aircraft would 
fly at higher altitude, or slower. 

If it is required to keep flight altitude and 
speed, then the constraint of constant lift can be 
introduced via an additional Lagrange multiplier 
µ relative to (16a), viz.:  

* * *0 d d dM D Lλ µ= + + ,                            (20a) 
and the optimization condition (5b) would be 
replaced by: 

iii LDM CCC ′+′+′= µλ0 ,                       (20b) 
for decoupled control surfaces (§3.3). In the 
case of coupled control surfaces (§4.1) the 
relations (20b) would hold after diagonalization, 
similar to (17a,b) also for 

abLC′ . The iterative 

method of solution (§3.2) would again apply, 
with two multipliers µλ, . Any additional 
constraint, would add another multiplier. 

4.3 Effect on the optimization of large and 
small c.g. shifts 

 
The preceding calculations involve the c.g. 
position in two ways: (i) the moment arm iL  
can be calculated for il  a given c.g. position 
(e.g. 25% of mean aerodynamic chord) and then 
corrected for the c.g. deviation cgx∆  from this 
position (27a): 

cgii xlL ∆−=  ;     ( ) ( )2 2

cg ix l∆ ;   (21a,b) 
(ii) if the c.g. position shift is small (21b) 
relative to the moment arm, then the 
aerodynamic coefficients are not affected. The 
pitching moment (2a) is now taken for unit 
dynamic pressure: 

( )iMiii

N

i
CSLqM δ∑

=

=
1

** / ,                       (22) 

and the moment arms Li introduced instead of 
the mean aerodynamic chord c ; note that this 
changes the value of the pitching moment 
coefficient to MiC . Using (13b) with 0M iC  
replaced by Li 0M iC ,leads to: 

iii

iii

McgDMi

McgDMi
i CxCCl

CxCCl

000

000

"""
''

−+

−′+
=−

λ
λ

δ ,           (23) 

where the aerodynamic coefficient may depend 
on the c.g. position. For small c.g. deviations 
(21b), the optimal deflections (23) linearize:   

0 0

0 0

0 0

0 0 0 0

'
"

" '
1

" "

i i

i i

i i

i i i i

i M D
i

i M D

M M
cg

i M D i M D

l C C
l C C

C C
x

l C C l C C

λ
δ

λ

λ λ

′+
− = ×

′′+

⎧ ⎫⎡ ⎤⎪ ⎪× + −⎢ ⎥⎨ ⎬′′ ′+ +⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

(24) 

where the aerodynamic coefficients are 
calculated for the reference c.g. position 

0=cgx .   
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List 1 – Pitch trim strategies 
 
I – Collective: Deflect all trailing edge control 
surfaces by the same amount:  
non-optimal, cruise drag increase. 
II – Elevator: Deflection of elevator alone: non-
optimal, best cruise drag reduction, but large 
deflection.  
III – Inboard: Preferential deflection of inboard 
control surfaces, up to a given limit: non-
optimal, cruise drag increase for 7.5º limit. 
IV – Equidistribution: Equal contribution to lift 
from each control surface:  
non-optimal, cruise drag increase. 
V – Optimal: Deflection of each control surface 
to minimize cruise drag: does not achieve 
optimum for small number of iterations, when it 
depends on initial condition:  
IVA: Drag reduction starting with strategy II; 
IVB: Drag increase starting with strategy I .  
- Compatible with cruise equilibrium by two 
alternative approaches: 
IVa: Extension to two Lagrange multipliers; 
IVb: Iteration using angle-of-attack equal to 
mean values of angles-of-attack for (i) constant 
lift and (ii) zero pitching moment. 
VI – Scaling: Optimal deflections multiplied by 
scale factor to achieve cruise equilibrium: sub-
optimal, cruise drag increase and increased 
angle-of-attack. 
VII – Split: Split the control surfaces into two 
groups to minimize drag: (i) those with positive 
drag slope deflect downward; (ii) those with 
negative drag slope deflect upward. The 
deflections of each group are determined by lift 
equilibrium and pitch trim: increases angle-of-
attack and also cruise drag. 
VIII – Selective: Select the best control surface 
from each group (i) and (ii) in strategy VII, 
using as criteria largest (a) modulus of slope of 
drag coefficient, (b) slope of pitching moment 
coefficient or (c) product of the two: second 
best cruise drag reduction at low unchanged 
angle-of-attack, with small deflections, for 
linear aerodynamics with minimum risk of 
aeroelastic effects: the best strategy.  
 
 

5  Results 

The optimization procedure is iterative, and 
needs an initial condition to start. In order to 
give a choice of starting values for the 
optimization procedure, three initial conditions 
are considered: equal deflection and all control 
surfaces, which gives moderate deflections, but 
uses some control surfaces less effective than 
the elevator; deflecting the elevator alone, uses 
only the most effective control surface, but can 
lead to a large deflection; limiting the maximum 
deflection, implies using, in addition to the 
elevator, some more, possibly not all, control 
surfaces. It may be advisable to limit control 
surface deflections on cruise for at least two 
reasons: (i) a large deflection of an inboard 
control surface, say a centerbody elevator, could 
lead to shock formation and boundary layer 
separation; (ii) a large deflection of an outboard 
control surface, say an aileron, could cause 
aeroelastic effects, like loss of control 
effectiveness or even control inversion.  

The minimization of cruise drag with pitch 
trim and unchanged lift is considered for a 
flying-wing configuration, using eight 
strategies. Of the four non-optimal strategies, 
only strategy II of using the centerbody elevator 
alone leads to drag reduction, albeit with a large 
deflection and increased angle-of-attack. There 
is drag increase for the strategies: (I) of equal 
deflection of all control surfaces; (III) 
preferential deflection of inner control surfaces 
with an aeroelastic limit of 7.5º; (IV) equal 
contribution to lift for all control surfaces. The 
two optimal strategies V using Lagrange 
multipliers after a few interactions give: (VA) a 
drag reduction for a good initial condition like 
strategy II; (VB) a drag increase for a poor 
initial condition like strategy I. A sub-optimal 
strategy VI of using multiples of optimal 
deflections, with a multiplication factor 
determined by lift equilibrium, requires a larger 
angle-of-attack, and thereby increases drag. The 
strategy VII of deflecting all control surfaces in 
two groups to minimize trim drag, leads to a 
larger angle-of-attack, and thereby increases 
drag. The strategy VIII of using the two most 
effective control surfaces with opposite drag 
slopes gives the best compromise: (i) lift 



balance with unchanged angle-of-attack; (ii) 
second best drag reduction with small control 
deflections. The eight strategies I to VII, and 
twelve sub-strategies (A and B for VII and 
A,B,a,b for V) are summarized in List I. Since 
the deflection of control surfaces upwards 
(51b) decreases lift, the angle-of-attack is 
increased (51a), and hence also the drag, as 
shown on Table VIII. In the case of the strategy 
I of equal deflection of all control surfaces, the 
condition of cruise lift equilibration increases 
the trim drag penalty from 89 to 197 drag 
counts. The opposite will be shown next for the 
strategy II of elevator deflection only, when the 
cruise lift equilibration condition improves the 
pitch trim drag benefit from 16 to 18 counts, as 
shown next.  

It is seen from Table 2 that the sub-optimal 
strategy VI, of non-optimal use of optimal  

deflections from strategy VB, improves over 
strategy VB, but not over the better initial 
condition in strategy VA. This result is not 
surprising, since it has been shown that pitch 
trim is compatible with cruise drag reduction. 
The optimal strategy V may not be the best in 
practice, if parameter limitations prevent from 
reaching the optimum; in the present case the 
deflections are limited to small values and the 
aerodynamic coefficients, and their first-and 
second-order derivatives, have a limited range 
of variation.   The best results obtained so far 
were for a simpler non-optimal strategy of 
elevator deflection only. This result could be 
due to the linearized aerodynamic data used. In 
general, a simple non-optimal strategy can give 
good results if it incorporates the lessons 
learned from optimal strategies, as suggested 
by strategy VI, which is further improved next. 

 
 

 
 

 
Table 1 - Effect of lift equilibrium on pitch trim strategies 

 
 

 

 
 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

Strategy I II IV 
Concept Equal deflection of all control 

surfaces 
Deflection of elevator only Equal contribution to 

lift from each control 
surface 

Cruise lift 
equilibrium 

 
No 

 
Yes 

 
No 

 
Yes 

 
Yes 

CL 
α 

CM (δ=0º) 

0.10588 
0.71789º 
0.02441 

0.10588 
1.8406º 
0.04971 

0.10588 
0.71789º 
0.02441 

0.10588 
2.0727º 
0.05601 

0.10588 
2.27940º 
0.05968 

δ1 
δ2 
δ3 
δ4 
δ5 

4.46780º 
4.46780º 
4.46780º 
4.46780º 
4.46780º 

1.7200º 
1.7200º 
1.7200º 
1.7200º 
1.7200º 

8.7977º 
0.0º 
0.0º 
0.0º 
0.0º 

10.367º 
0.0º 
0.0º 
0.0º 
0.0º 

6.6990º 
7.6277º 
2.7478º 
14.971º 
5.3920º 

CD 
∆CD 

∆CD/CD (%) 

0.00659 
+89 

+15.6 

0.00766 
+197 
+34.5 

0.00553 
-16 
-2.8 

0.00551 
-18 
-3.2 

0.01089 
+520 
+91.4 
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Table 2 - Optimal, sub-optimal and non-optimal pitch trim strategies 
 

Strategy VA VB VI VII VIII 
Type Optimal Optimal Sub-

Optimal 
Non-Optimal Non-

Optimal 
 

Concept 
Optimal deflections 
to minimize drag; 

initial elevator 
deflection only 

Idem; initial equal 
deflections 

Multiples 
of optimal 
deflections 

Direction of 
deflection opposite to 

drag slope 

Selection 
of most 
effective 
control 
surfaces 

Constant lift No No Yes Yes Yes 
Deflections Initial Final Initial Final  VIIA VIIB  

δ1 
δ1 
δ1 
δ1 
δ1 

8.9798º 
0.0º 
0.0º 
0.0º 
0.0º 

7.4047º 
7.5882º 
-0.6048º 
-1.4860º 
-7.2529º 

4.4080º 
4.4080º 
4.4080º 
4.4080º 
4.4080º 

4.125º 
0.02º 
1.68º 
0.01º 

-3.685º 

17.912º 
0.0868º 
8.1637º 
0.0434º 
-16.002º 

-2.8825º 
-2.8825º 
-2.8825º 
-2.8825º 
24.77º 

2.8588º 
2.8588º 
2.8588º 
2.8588º 

0.0º 

3.7402º 
0.0º 
0.0º 
0.0º 

-8.6295º 
α 

CD 
∆CD (counts) 
∆CD/CD (%) 

0.71789º 
0.00561 

-8 
-1.4 

0.71789º 
0.00770 

+201 
+35.3 

3.1267º 
0.00635 

+66 
+11.6 

0.71789º 
0.00651 

+82 
+14.4 

2.1313º 
0.00787 

+218 
+38.3 

0.71789º 
0.00554 

-15 
-2.6 

 
 

 
 

Table 3- Ranking of Desirable features of pitch trim strategies. 

 
 

Strategy Concept 
Cruise drag 

counts 
(Lowest) 

Angle-of-attack 
(Lowest) 

Central surface  
deflections 

(lowest average of module) 

Linear aero-
dynamics 

(Lowest α and 
lowest δ) 

Simplicity 

I Equal deflections 766 (+97) 
(7th) 

1.8406º 
(2nd) 

1.7200º 
(2nd) 6th 1st 

II Deflection of 
elevator only 

551 (-18) 
(1st) 

2.0727º 
(3rd) 

10.367º 
(7th) 7th 2nd 

III 
Preferential inboard 
surfaces with 7.5º 

limit 

659 (+100) 
(untrimmed) 

(6th) 

0.71789º 
(1st) 

8.9798º 
(6th) 4th 7th 

IV 
Equal lift 

contributions from 
each surface 

1089 (+420) 
(9th) 

2.2794º 
(5th) 

2.7478º to 14.971º 
(7th) 9th 6th 

A: good start 
561 (-8) 

(untrimmed) 
(3rd) 

0.71789º 
(1st) 

-7.2529º to +7.4047º 
(5th) 3rd 9th  

V 
Optimal 
Deflectio

n 
B: bad start 

 

635 (+66) 
(untrimmed) 

(4th) 

0.71789º 
(1st) 

-3.685º to + 4.125º 
(3rd) 1st 10th 

VI Multiples of optimal 
deflection 

635 (+66) 
(4th) 

3.1267º 
(6th) 

-16.002º to + 17.912º 
(9th) 10th 8th 

651 (+82) 
(5th) 

0.71789º 
(1st) 

-2.8825º to + 24.727º 
(10th) 5th 4th  

VII 

Direction of 
deflection opposite 

to drag slope 787 (+218) 
(8th) 

2.1313º 
(4th) 

0.0º to + 2.8588º 
(1st) 8th 5th 

VIII 
Selection of most 
effective control 

surfaces (1st) 

554 (-15) 
(2nd) 

0.71789º 
(1st) 

-8.6295º to + 3.7402º 
(4th) 

 
2nd 3rd 



The Table 3  ranks the strategies according to 
the most desirable features, viz.: (i) lowest 
cruise drag; (ii) smallest angle-of-attack; (iii) 
smallest control deflections in the sense of 
smallest average of modulus of largest and 
smallest deflection ( ) ;2/maxmin δδδ +≡  (iv) 
linear aerodynamics works best for smallest 
angle-of-attack α and smallest mean deflection 
δ ; (v) simplicity of the computational 
algorithm, viz. least number of variables and 
least iterations. The strategy VIII has been 
shown to have five relative advantages: (i) it has 
the second lowest trimmed cruise drag of all 
eight strategies and twelve sub-strategies 
considered: (ii) the trimmed angle-of-attack is 
unchanged from the untrimmed value, and 
hence is the lowest and small; (iii) the pitching 
moment is thus small, and leads to moderate (5th 
smallest) control surface deflections; (iv) the 
small angle-of-attack and control surface 
deflections imply that linear aerodynamics can 
give reliable results (3rd best); (V) the strategy is 
easy to apply (3rd best). The other pitch trim 
strategies considered in Table 3 do not have one 
or more of these attributes. The deflections of 
five sets of central surfaces, and their effects on 
angle-of-attack, pitching moment, lift and drag 
are shown in Tables 1 and 2 for the eight 
distinct strategies. The comparison of the 8 
pitch trim strategies in Table 3 shows that the 
most complex or demanding is not necessary the 
best; it is possible to find a relatively simple 
strategy VIII, which achieves pitch trim drag 
reduction relative to the untrimmed flight 
condition, while also keeping the low 
untrimmed angle-of-attack and using moderate 
deflections of only the two most effective 
control surfaces.   

6  Discussion 

In a conventional aircraft configuration the 
elevator or all-flying tail is the only effective 
pitch control surface. The elevator must be large 
enough to provide adequate pitch control 
authority at low speed, when large deflections 
are possible. At high speed, when aerodynamic 
and/or aeroelastic effects may limit deflections, 

the higher dynamic pressure may compensate, 
and not be a “sizing” criterion requiring large 
area, with aerodynamic, aeroelastic, weight or 
actuator problems. In any case the compromise 
in elevator sizing is straightforward, once the 
required pitching moment and possible lever 
arm are known. The BWB or flywing wing 
configuration has the potential to provide pitch 
trim with several combinations of control 
surface deflections. There are simple choices 
with obvious consequences but it is not clear 
what is the best compromise, e.g.: (i) the 
strategy II of deflecting the centerbody elevator 
only can lead to a large deflection; (ii) using all 
control surfaces with the same deflection 
(strategy I) or same lift (strategy IV) does not 
exploit the most effective controls; (iii) 
deflecting preferentially the inner control 
surfaces with an aeroelastic limit (strategy III) 
may not be the best compromise among the 
preceding choices.  

The optimization methods may or may 
not do better than the simples non-optimal 
strategies depending on whether the drag has a 
single global minimum or several local minima. 
If there are several local minima convergence 
will occur to that closest to the initial condition. 
The influence of the initial condition on the 
result of the optimization may not be obvious. It 
may be difficult to know if a local minimum is 
lower that neighbouring ones or is the global 
minimum. Also the optimization algorithm may 
require data, like second-order control 
derivatives which is not accurate, leading to a 
possible dilemma: (i) too few iterations do not 
converge closely enough to the optimum; (ii) 
too many iterations accumulate too large an 
error around the optimum. It may also occur that 
the local minimum is outside the acceptable 
range of control deflections, and the optimum is 
not a local minimum but rather the best value on 
a boundary. Thus optimal methods have 
strengths and weakness which may be different 
from simple methods and a combination of the 
two may be more effective than either of them. 

A careful examination of control 
derivatives is essential to understand how an 
optimization procedure is going to work, or 
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what are the consequences of a simple strategy. 
In the case of pitch trim for cruise the starting 
ideas seems to be to select the most effective 
control surfaces, in the sense of combining the 
largest possible pitching moment and drag 
reduction with small deflections; it is also 
important to achieve lift balance, so that it is not 
necessary to increase the angle-of-attack for 
trimming purposes. A larger angle-of-attack 
increases drag, may require a larger pitching 
moment, and thus works against having selected 
trim with  the “most effective” control surfaces; 
thus the most effective control surfaces should 
be chosen to (i) provide pitching moment, (ii) 
reduce drag and (iii) balance lift. In the present 
example it was possible to achieve pitch trim 
while reducing drag relative to an untrimmed 
flight condition, also not changing angle-of-
attack; the latter contributes to smaller control 
deflections, avoiding undesirable aeroelastic 
effects, and staying within the limits of linear or 
weakly non-linear aerodynamics and control 
methods.  
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