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Abstract  

The objective of this paper is to present 

possibilities of transferring to flapping wings 

micro aerial vehicle  (FMAV) flight dynamics 

methods applied to flexible structure control in 

aeronautics. Two important aspects of the 

problem are considered: structure modelling 

and modern control methods. The old Wright 

Brothers’ idea of wing twisting to achieve a 

specified roll rate is examined in a new arena of 

FMAV manoeuvres. Therefore, we present key 

aspects of the active flexible wing technique. 

Equations of motion for flexible FMAV wings, 

coupled to a rigid supported “fuselage” are 

developed, and some results of simulations are 

presented. 

1  Introduction  

The development of small autonomous flying 

vehicles is motivated by a need for intelligent 

reconnaissance robots, capable of discreetly 

penetrating confined spaces and maneuvering in 

them without the assistance of a human 

telepilot.  Without pilot and only equipment on 

board, unmanned aerial vehicles may be much 

smaller then "normal" aircraft. This induces 

interest to the concept of micro air vehicles 

(MAV or µAV or micro-flyer) with wingspan of 

15 cm or less. Such aircraft are considered to be 

efficient and inexpensive tools for collecting 

information in dangerous or hostile 

environments. For instance, equipped with a 

sensory device, such an aircraft could be used to 

detect the presence of poisonous gases in an 

environmental disaster area or if equipped with 

a camera, it could be used in a short endurance 

reconnaissance mission of interest to the 

military. In either case, the focus is on reducing 

the size of such aircraft as much as possible.  

The MAV is of comparable size of birds and 

insects. It stimulates interest of designing the 

flapping wing for MAV as an attractive 

alternative for fixed or rotating wing 

configurations. The current research on animal-

like MAV resulted in the new term animalopter, 

describing similarity of MAV to real animal. An 

animalopter means the animal-like flying 

objects with moving wings. An animal (i.e. bird, 

bat or/and insect) wing is a multifunctional 

device providing lift, propulsion and flight 

control and performing complex motion relative 

to the “aircraft” body, which shows the analogy 

to helicopter rotor [9].  

In the background of preparing this paper lies 

our believe that transferring ideas from the more 

matured disciple like aircraft technology to 

emerging animal technology should be 

beneficial for the later one and  vice-versa. One 

integrated idea, of special interest to both 

disciplines, is the active flexible wing concept.  

This concept represents a return to the Wright 

Brothers’ idea of wing warping or twisting by 

combining wing structures and flight controls to 

perform the desired manoeuvres. 

Whether cruising trough an open field or 

circling garbage, flies impress us with their 

remarkable aerodynamic manoeuvrability. How 

is this sophisticated flight control achieved? 

Like all well-controlled locomotory systems, 

flies must rapidly integrate incoming sensory 

information and appropriately modify their 

motor output.   

It is well known that the dynamics of 

flapping wings MAV over the flight envelope is 

highly nonlinear. The character of the loads 

acting on the vehicle - particularly the 
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aerodynamics - vary substantially over the angle 

of attack operating range (which may nowadays 

include poststall incidences). The control of this 

type of plant can be achieved adequately via a 

variety of approaches, provided that the 

parameters of the controller (the gains in 

particular) are scheduled with flight condition. 

The nonlinearity of the system makes it difficult 

to implement a strategy of interpolating between 

gains derived from a few choice trim points. 

This is because the plant and the controller 

interact such that it is not clear precisely what 

the closed loop trim points are in vide flight 

regions, because aerodynamic loads often 

become asymmetric and where inertial coupling 

is significant. 

The primarily goal of our work is to developed 

the software simulation for flapping wings 

micro aerial vehicle. This simulator is an end-

to-end tool composed from several modular 

blocks, which model: wings aerodynamics, the 

body motion, and control algorithms.  

2  The Main Issues  

2.1 Animal flight vs aircraft flight 

There is some subtle but important difference 

between animal and aircraft models. In 

biological flight the wings not only move 

forward relative to the air, they also flap up and 

down, plunge, and sweep. Conventional 

airplanes with fixed wings are in comparison 

very simple. The forward motion relative to the 

air causes the wings to produce the lift. Animals 

do not, in general, have rotating parts that 

describe a full circular motion. To attain the 

appropriate effective angle of attack throughout 

the entire wing-stroke, the wings must 

constantly twist.  

 

2.2 Mission Performance Constraints 

Results of some optimisation studies show that 

the vehicle size is highly sensitive to the 

minimum required turning radius because 

vehicles that must turn tightly require lower 

wing loading, which implies greater size for a 

fixed total mass.  

The missions requires the vehicle to fly a 

distance of approximately 1000 m from the 

launch site to capture a clear image of a 1.5-m-

size target on the ground, and to deliver that 

image to the launch site in less than 45 min. 

However, the mission profile includes not only 

cruse to target, and return to launch site, but also 

dive and climb over the target. The MAV in the 

vicinity of the target must make several shallow 

dives and climb to view and transmit a clear 

image of the target before return and landing. 

Therefore the MAV must be able to efficiently 

and safely navigate in 3-dimentional space 

among obstacles (e.g. trees) to a target location. 

2.3 Features of Airfoil for Animals 

The typical airfoils for birds and bats are thin 

and cambered, which means that these generate 

very little leading-edge suction. Cruising birds 

and bats fly with their flapping axes aligned 

close to horizontal. This could produce an 

interesting dilemma for the upstroke. 

Insects have low-aspect-ratio wings, which are 

not suitable for cruising flight. During the 

downstroke, the insect generates mainly a 

vertical force. The acceleration of the insect’s 

body during the first half of the downstroke is 

especially large, and this acceleration is mainly 

caused by a large unsteady pressure drag action 

on the wings. During the upstroke the insect 

generates mainly a horizontal force. The change 

of direction of the forces during the down-and-

up-strokes is controlled by variation in the 

inclination of the stroke plane.   

2.4 Aerodynamic Phenomena 

As the size of an aircraft is reduced the need of 

efficiency in terms of lift and propulsion 

generation becomes more evident. Reducing the 

size of lifting surfaces and keeping the flight 

speed around 15 m/s makes the aerodynamic 

phenomena different from those found in 

normal size aircraft, mainly due to very low 

Reynolds number of the flow. 

Moreover, animalopter maneuvering in this 

regime are subject to nonlinear, unsteady 

aerodynamic loads [2, 12]. The nonlinearities 

and unsteadiness are due manely to the large 
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regions of 3-D separated flow and concentrated 

vortex flows that occur at large angles of attack. 

Accurate prediction of these nonlinear, unsteady 

airloads is of great importance in the analysis of 

an animalopter flight motion and in the design 

of its flight control system.  

Prediction of the unsteady airloads is 

complicated by the fact that the instantaneous 

flowfield surrounding a maneuvering body, and 

thus the loading, is not determined solely by the 

instantaneous values of the motion variables, 

such as the angles of attack and sideslip, and, 

particularly in our study, by the deforming 

flexible wings parameters. In general, the 

instantaneous state of the flowfield depends on 

the time-history of motion, that is, on all the 

states taken by the flowfield during the 

maneuver prior to the instant in question. 

2.5 Beam or Plate Model of Flapping Wings 

During designing of animalopters, various 

configurations must be evaluated to determine 

the characteristics of the configuration that will 

meet all requirements of vehicle performance 

and cost.  

A problem generated by model of a plate arises. 

For plates made from composites, the number of 

layers and the fibber orientation may be 

assumed arbitrary, which vary the amount of 

coupling between and twisting. In classical plate 

theory these significant effects are not 

accounted for either in deflection equations or in 

boundary conditions. 

2.6 Control Problems  

The co-evolution of form and function is the 

way all living organisms evolved in nature. in 

nature’s example is to be followed, the form and 

function of autonomous agents be co-evolved in 

similar manner [1]. 

Design of an animalopter wing requires solving 

various problems: 

1. Controllability of the flight in adverse 

conditions: icing, rain, wind. 

2. How to build simpler control systems using 

"active materials"? 

3. Whether the well-known methods for 

aircraft flight control and stabilisation may 

be adapted to animalopter? 

During flight the aircraft is expected to 

encounter turbulent winds up to 10 m/s, perform 

tight turns near buildings, and climb repeatedly 

to 100 m. The aircraft must be stable enough to 

serve as a live airborne video platform and must 

be easy enough to fly so that an individual with 

minimal training can operate it. 

2.7 How to Describe Animalopter 

Manoeuvres? 

As can be seen in Sec. “Co-ordinate systems”, 

attitude angles, which represent the 

instantaneous flight attitude of an animalopter 

are included. The most common angles are, of 

course, Euler ones. The tree Euler angles Φ, 

Θ  and Φ, used in flight mechanics are called 

“roll angle (bank angle)”, “pitch angle”, and 

“yaw angle (heading angle)”, respectively.  

On the other hand, the terms rolling, 

pitching, and yawing mean the angular motions 

about the animalopter-fixed axes. These 

motions are usually described by the angular 

velocity components P, Q, and R, respectively. 

Then, by how many degrees of angle does a 

manoeuvring animalopter rotate about each axis 

from one moment to another? These rotation 

angles are not equal to the variations of Euler 

angles during that time! In the fact, the Euler 

angles are kinds of rotation angles. However, 

those define a special rotation sequence and not, 

in general, the rotation angles of the actual 

rotation sequence at that time.  

For another problem, when we consider two 

flight attitudes that are described by Euler 

angles Φ, Θ and Ψ, how do we compare the two 

attitudes? Are those attitudes near or far? How 

is the relative attitude viewed from one attitude 

to another? These questions may occur to 

anyone who tries to treat large maneuvers more 

precisely. But the problem with angles is not as 

easy to handle as problems with other physical 

quantities [3, 5]. 

2.8 Degrees of freedom 

Not only at first sight, the study of animalopter 

flight dynamics and control may seem very 

complicated, since each wing possesses degrees 

of freedom in addition to those of the 
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“fuselage”. Detailed analyses of kinematics are 

central to an integrated understanding of animal 

flight. Four degrees of freedom in each wing are 

used to achieve flight in the Nature: flapping, 

lagging, feathering, and spanning.  

Flapping is a rotation of animal wing about 

longitudinal axis of the animal body (this axis 

lies in the direction of flight velocity), i.e. this is 

"up and down" motion. Lagging is a rotation 

about a "vertical" axis; this is the "forward and 

backward" wing motion backward parallel to 

the body. Feathering is an angular movement 

about the wing longitudinal axis (which may 

pass through the wing centre of gravity) which 

tilts the wing to change its angle of attack. 

Spanning is an expanding and contracting of the 

wingspan. Not all flying animals perform all of 

these motions. For instance insects with low 

wing flap frequencies about 20 Hz (17…25 Hz) 

generally have very restricted lagging 

capabilities. Unlike birds, most insects do not 

use the spanning technique. 

Insects such as alderfly (Apatele alni) and 

mayfly (Ephemera) have fixed stroke planes 

with respect to their bodies. Thus, flapping 

flight is possible with only two degrees of 

freedom: flapping and feathering. In the 

simplest physical models heaving and pitching 

represent these degrees of freedom. 

The motion of each bird wing may be 

decomposed into flapping, lagging, feathering 

(the rigid body motions) and also into more 

complex deflections of the surface from the base 

shape (vibration modes). 

3 Description of Control Problem 

3.1 Aeroelastic Nature of Control Problem 

Very recently, it has been recognised that 

flapping wing propulsion can be more efficient 

than conventional propellers if applied to 

MAVs, because of the very low Reynolds 

numbers encountered on such vehicles. 

Flapping flight is more complicated than flight 

with fixed or rotating wings. The key to 

understand the mechanisms of flapping flight is 

the adequate physical and mathematical 

modeling.  

The wing shape can be controlled by the 

deflection of the piezo-ceramic bender the 

applied DC voltage. Simultaneously, the 

flexible wing exposed to the airflow will also 

deform under the resultant aerodynamic force 

acting on its upper and lower surfaces. The 

wings can therefore be modelled as a uniform 

cantilever composite beam subjected to two 

types of loads: aerodynamic pressure, and 

bending moment generated by piezo-electric 

action. The problem is thus “aero-elastic” in 

nature (Fig. 1).  

From the point of view of mechanical 

phenomena involved, loads causing motion of 

the structure are: aerodynamic (A), inertial (I) 

(gravity included), and elastic (E) (Fig. 2 left). 

These loads act on both aeronautical and 

animalopter structures, so mathematical models 

considered in both fields may be similar. The 

interaction between an aircraft’s structural 

dynamics, aerodynamics, and automatic flight 

control system has emerged as an important 

design consideration. This interaction is called 

aeroservoelasticity and is illustrated by Fig. 1 

right (from Ref. [7]). 

 
Fig. 1 Aeroelastic phenomena (left) and 

aeroservoelastic tetrahedron (right) 

 

Both branches of knowledge (aeronautics and 

zoology) have been developing separately, with 

almost no information transfer between them. 

As there are some points of common interest 

(structure modelling, loads, methods of control) 

it seems useful to look at modelling of 

animalopter dynamics from the point of view of 

aeronautics to define places, where “technology 

transfer” is possible.  

This is for instance an aeroelastic tailoring, 

which, with structure optimisation, develops 

recently very intensively. The active methods, 

which emerged recently, are based on 

application of integrated active/sensor “smart” 

elements [8]. 
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This calls for the use of MDO (multidisciplinary 

design optimisation) methodology, which takes 

advantage of the synergism among various 

disciplines in a complex system in order to 

arrive at an optimal design. In applying MDO to 

aircraft design, aerodynamics structures, flight 

mechanics, and propulsion are some of the 

disciplines commonly considered. 
 

3.2  Biological Inspiration of MAV Design 

Before dealing with the flight dynamics and the 

control problem analytically, let us consider the 

physical effects of wing motions on the 

animalopter. 

To investigate how birds with different 

morphology change their wing and body 

movements while flying at a range of speeds. , 

Tobalske and Dial [13] analysed high-speed 

video tapes of black-billed magpies (Pica pica) 

flying at speeds of 4 – 14 m/s and pigeons 

(Columba livia) flying at 6 – 20 m/s in a wind 

tunnel. 

Many flying machines from self-inflating 

parawings to birds are using lifting surfaces that 

significantly deform. With the right choice of 

materials, prestress, and unstrained shape, an 

aerodynamically effective equilibrium 

configuration can often be achieved to improve 

the flight performance.  

Wings of insects may have various shapes, but 

their internal structure is similar for the majority 

of species. Usually the insect wing is composed 

of two membranes. It is a sandwich structure 

with two layers made from chitin of the 

thickness of micrometer order. The fibres going 

along the span fold the surface. These fibres, 

concentrated mainly in the vicinity of leading 

edge, act as stiffening elements and may form 

various patterns. For instance the fibres in 

dragonfly wing go mainly along the span and 

are inter-connected with small cross-fibres 

(similar to ribs in aircraft structure). These ribs 

are more densely grouped close to wing leading 

edge (Fig.3). 

The stiffness and the shape of an insect wing are 

variable and may be controlled. At the rest the 

wing is flat, but it changes the shape during 

flight.  

The insect body has the muscles providing the 

forces to power the wings and performing 

variation of wing shape. The skin of the body 

forms a closed box, within which the "bearings" 

for wing roots are placed. 
 

 
Fig. 1 The structure of an insects wings. Veins are drawn at 

actual thickness; wings are not shown to scale. Genus and 

species names (when known) are shown under each wing, and 

orders are listed at their branching points 

(cf. Combes & Daniel [13]) 
 

The fields of Biology that use principles of 

Structural Engineering and Fluid Mechanics to 

draw structure - function relationships are 

Functional Morphology or Biomechanics. These 

disciplines are of particular use to Bionics 

engineers, because the behavior and 

performance of natural structures can be 

characterized with methods and units that are 

directly applicable to mechanical analogs. The 

result of precise spatial and temporal regulation 

is a complex exoskeleton that is tagmatized into 

functional zones. Limbs consist of tough, rigid 

tubes made of molecular plywood, connected by 

complex joints made of hard junctures separated 

by rubbery membrane. The most elaborate 

example of an arthropod joint is the wing hinge, 
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the morphological centerpiece of flight behavior 

(see fig. 3). 

Fig. 3 shows hinges system of flying insects. 

The horizontal hinge � occurs near the base of 

the wing next to the first axillary sclerite. This 

hinge allow the wing to flap up and down. The 

vertical hinge � is located at the base of the 

radial vein near the second axillary sclerite 

(2AX), and is responsible for the lagging 

motions of wing. The torsional hinge � appear 

to be more complicated interaction of sclerite 

and deformable folds. 

 
Fig. 4 Insect Axillary Apparatus. Region at the base of the wing 

containing all the intricate mechanical components. First 

axillary sclerite (1AX), articulates with the anterior notal 

process and forms the horizontal hinge. Second axillary sclerite 

(2AX) articulates with an extension of the thoracic wall. The 

2AX is responsible for the pleural wing process (PWP), and 

support the radial vein, (main mechanical axis for the wing). 

Third axillary sclerite (3AX) is responsible fopr wing flexing, 

and play role of the vertical hinge. 

 

The hinge consists of a complex interconnected 

tangle of five hard scleratized elements, 

imbedded within thinner, more elastic cuticle, 

and bordered by the thick side walls of the 

thorax. In most insects, the muscles that actually 

power the wings are not attached to the hinge. 

Instead, flight muscles cause small strains 

within the walls of the thorax, which the hinge 

then amplifies into large oscillations of the 

wing. Small control muscles attached directly to 

the hinge enable the insect to alter wing motion 

during steering maneuvers. The indirect muscles 

do not directly effect wing. They are attach to 

the tergum, and distort the thoracic box when 

contracted. This  distortion transmits forces to 

the wing. There are two bundles of indirect 

muscles: dorsolongitudinal (DLM), and 

dorsoventral (DVM). The dorsolongitudinal 

muscles span the length of the tergum, the 

dorsoventral muscles extend from the tergum to 

the sternum. The direct muscles connect directly 

from the pleuron (thoracic wall) to individual 

sclerites located at the base of the wing. The 

subalar and basalar muscles have ligament 

attachments to the subalar and basalar sclerites. 

Resilin is a highly elastic material and forms the 

ligaments connecting flight muscles to wing 

apparatus, and it is 100 times greater energy 

storage capabilities than muscle. There are other 

muscles that are directly inserted into the first 

and third axillary sclerite (see fig. 5) 

Although the material properties of the elements 

within the hinge are indeed remarkable, it is the 

structural complexity as much as the material 

properties that endow the wing hinge with its 

astonishing characteristics. Sometimes it is not 

the actual morphology that endows a biological 

structure with its functional properties, but the 

intelligence with which it is used. Intelligence 

does not necessarily imply cognition; it may 

simply reflect the ability to use a structure in an 

efficient and flexible manner. 

 
Fig. 5 The direct flight mucles within the wing bearing segment: 

(a) lateral view; (b) crosssectional view. 

 

Although most biological structures are not 

intelligent by human standards, they 

nevertheless outperform most bricks and I - 

beams. A good example is the insect wing (fig. 

6). The wing is the structure with membranous 

cuticle stretched between veins in the wing. 

Unlike an aircraft wing, it is neither streamlined 

nor smooth.  Folds facilitate deformation during 

flight. Veins increase the mechanical rigidity of 

the wing (alternate in concave and convex 
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patterns). Radial vein is the longitudinal 

rotational axis of the wing, about which occur 

pronation and supination. 

Engineers and biologists have long struggled to 

explain how a bumblebee (or any insect) 

remains in the air by flapping its wings. 

Conventional steady-state aerodynamic theory 

is based on rigid wings moving at a uniform 

speed. Such theory cannot account for the force 

required to keep an insect in the air. The 

solution to this paradox resides not in the 

intrinsic properties of wings, but rather in the 

way that insects use them. By flapping the 

wings back and forth, insects take advantage of 

the unsteady mechanisms that produce forces 

above and beyond those possible under steady-

state conditions. Several research groups are 

actively attempting to construct miniature flying 

devices patterned after insects. Their challenge 

is not simply to replicate an insect wing, but to 

create a mechanism that flaps it just as 

effectively. Intelligent structures do not always 

function the same way; they adapt to local 

functional requirements. Even the simplest 

plants and animals sense their world, integrate 

information, and act accordingly. Feedback-

control mechanisms are extremely important 

features that endow organisms with flexibility 

and robustness. Even plants, which lack a 

nervous system, can nevertheless grow leaves 

and branches toward light, roots toward water, 

or spatially regulate growth so as to minimize 

mechanical stress. The functions of biological 

structures cannot be fully understood or 

accurately mimicked without taking this 

complex dynamic feedback into account. Of all 

the properties of biological entities (with the 

possible exception of self-replication), it is their 

intelligence and flexibility that is perhaps the 

most difficult to duplicate in an artificial device. 

The next decade should be exciting for the field 

of Bionics. Just as biologists are discovering the 

structural and physiological mechanisms that 

underlie the functional properties of plants and 

animals, engineers are beginning to develop a 

fabrication tool kit that is sophisticated enough 

to capture their salient features. As the 

performance gap between biological structures 

and our mechanical analogs shortens, engineers 

may feel increasingly encouraged to seek and 

adopt design concepts from Nature. Although 

the devices they construct may at first appear 

alien, their origins in the organic world may 

endow them with an odd familiarity. 

 
Fig. 6 The insect wing layout 

 

Flying insects use flapping wings to attain 

amazing capabilities for hovering and 

maneuvering. Most of the recent work on 

Biological Micro Aerial Vehicles (BMAVs) bas 

been on the scale of avian flight which is quite 

different from insect flight. Notable examples in 

this list include the Caltech RTCLA Omithopter 

(Pornsin-Sirirak et al [30]), the Delf University 

of Technology (R. Ruijsink) [www.delffly.nl], 

the Georgia Tech Entomopter (Michelson) [23, 

24], the Arizona University (Shkakaryev) [18], 

the France ROBUR project [6, 19] . The UC 

Berkeley developed the Micromechanical 

Flying Insect (MFI) project. This BMAV 

distinguishes itself with a wingspan of only 25 

mm, almost an order of magnitude smaller than 

all the others (this translates into roughly three 

orders of magnitude difference in mass). The 

work on the MFI has been documented in a 

number of areas including design and 

fabrication, actuator development, thorax 

dynamics, sensing, and aerodynamic simulation 

[13, 32, 33, 34, 46, 47]. 

The success of insect-scale BMAVs depends on 

exploitation of unsteady aerodynamic 

mechanisms (in particular, delayed stall, 

rotational lift, and wake capture) which have 

only recently been elucidated by Dickinson et al 

[7, 8]. There has been some success with 

computational methods to estimate forces 

generated by flapping wings [9, 10, 29, 32, 36] 

but both the models and algorithms need to be 

improved in order to get better agreement with 

experimental values. The only reliable means to 
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determine the forces generated by the flapping 

wing is to measure them directly. 

We can stated, that wings of an animalopter are 

a multifunctional devicesd, which create not 

only the aerodynamic lift, but also thrust, and, 

last but not least, can control the flight. Because 

of the complex equipment mounted on the 

animalopter, we can be stated, that the 

animalopter is a flying micro-electro-

mechanical robot. We are dealing with an 

entomopter, if it is an artificial insect, or an 

ornitopter, if we are dealing with an artificial 

bird. 

Animalopter is of dimensions similar to the 

dimensions of a small bird (or a bat) and a large 

insect. The thing that distinguishes animalopter 

from an ordinary radio-controlled small 

aeroplane are air operations, usually beyond the 

operator’s sight range and on small Reynolds 

numbers (of the order of ten to a hundred 

thousand). The data of how the motion of wings 

and the body change during flight is interesting 

not only per se, but also in order to understand 

the mechanisms, which take place during flight 

and their mathematical modelling. 

If one wanted to search for analogies with 

artificial objects, then because of the complex 

motion in relation to the body, animalopter is 

more similar to a helicopter that to an aeroplane. 

Therefore many concepts stemming from 

helicopter flight mechanics found use in flight 

biomechanics, of course after taking into 

account animalopters’ specificity. 

Bird’s wing anatomy is quite well known and 

described. Feathers create a lifting surface with 

a highly complex structure and shape, which 

causes the entire wing to become a lifting 

surface of elastic and permeable profile, with 

numerous vortex diffusers, such as down and 

elastic feather radiuses. Moreover appropriate 

motions of the wings enable a change of their 

span, lift and sweep during flight, and motions 

of muscles and tendons inside the wings enable 

among others a change of camber of a wing 

profile. Analogously to insects, birds are also 

able to actively control the flight. Thanks to 

appropriate wing motions and arrangement of 

feathers they control the flow around the wings. 

The aim of this action, as in the case of insects, 

is minimalising of power needed for flight, 

reaching maximal velocity or maneouvrability, 

or fulfilling the requirements of flight in special 

conditions. 

3.3 Flapping Wings Degrees of Freedom 

Insect wing motion appear to be not simply up 

and down. It is much more complex (see fig. 7). 

Fig. 7 shows insect’s wing tip trajectory. Such 

complex motion can be considered as being 

composed of three different rotations: flapping, 

lagging, feathering, and spanning. Flapping is a 

rotary motion of the wing around the 

longitudinal axis of the animalopter (this axis 

overlaps with the direction of flight velocity). 

Thus “up and down” motion is realised. 

Lagging is a rotary wing motion around the 

“vertical” axis, i.e. it describes “forward and 

backward” motion. Feathering is a rotary 

motion around longitudinal wing axis. During 

that motion changes of attack angle of the wing 

occur. 

 
Fig. 7 Wingtip trajectories 

 

Detailed analyses of kinematics are central to an 

integrated understanding of animal flight [1, 2, 
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8, 9, 10, 17, 20, 21, 25, 26, 27, 28, 32, 35, 37, 

38, 39, 40]. Concluding, four degrees of 

freedom in each wing are used to achieve flight 

in the Nature: flapping, lagging, feathering, and 

spanning. This requires a universal joint similar 

the shoulder in a human. A good model of such 

joint is the articulated rotor hub (Fig. 8). 

Flapping is a rotation of a wing about 

longitudinal axis of the body (this axis lies in 

the direction of flight velocity), i.e.  "up and 

down" motion. Lagging is a rotation about a 

"vertical" axis, this is the "forward and 

backward" wing motion. Feathering is an 

angular movement about the wing longitudinal 

axis (which may pass through the wing centre of 

gravity). During the feathering motion the wing 

changes its angle of attack. 

Similar to insets, the motion of a bird wing may 

be decomposed into: flapping, lagging, 

feathering (the rigid body motions) and also into 

more complex deflections of the surface from 

the base shape (vibration modes) (see Fig. 7). 
 

 
Fig. 7  Bird wing hinges anatomy, and wing folding 

 

Insects with wing beat frequencies about 20 Hz 

generally have very restricted lagging 

capabilities. Insects such as alderfly (Apatele 

alni) and mayfly (Ephemera) have fixed stroke 

planes with respect to their bodies. Thus, 

flapping flight is possible with only two degrees 

of freedom: flapping and feathering. In the 

simplest physical models heaving and pitching 

represent these degrees of freedom. Spanning is 

an expanding and contracting of the wingspan. 

Not all flying animals implement all of these 

motions. Unlike birds, most insects do not use 

the spanning technique. 

 
Fig. 8 Articulated joints of a helicopter main rotor hub 

 

Spanning is a motion, which causes changes of 

wing aspect ratio. Not all animalopters use these 

motions. Unlike the birds, most insects do not 

use this technique. A significant question arises: 

which of these motions should be taken into 

account to obtain adequate description? 

During level flight a bird has to flap its wings to 

generate aerodynamic lift and thrust to 

overcome terrestrial gravity force and drag. 

Instantaneous forces on the wings change 

during the cycle because of the changes of wing 

shape, deformability of joints, attack angle, 

turning of the wings, rotary velocity of the 

wings, elastic properties, flight velocity etc. A 

key issue here is the understanding of how 

complex motions of so complicated object 

generate aerodynamic forces. No wonder, that 

aerodynamics of flapping wings is thought to be 

the most difficult field of aeroplane and 

helicopter aerodynamics. The issue is further 

complicated by the fact, that this is an 

aerodynamics of small Reynolds numbers. It 

also needs to be emphasized, that conventional 

flight mechanics can only be a guide and not an 

authority while analysing animalopter’s flight 

dynamics. It is enough to realise, that the 

moments of inertia of movable parts change, 

and, moreover, the changes are different on each 

wing. Geometric parameters also undergo 

changes, e.g. wing aspect ratio. Stabilization of 

motion is a serious problem. A way to 

understand animalopters’ motion is a thorough 

kinematic, which is connected with the choice 

of levels of freedom. An extremely serious 
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problem is controlling such an object. This is 

caused by the fact, that wings do not have 

typical control surfaces, like ailerons (not to be 

confused with a kind of feathers!). Influencing 

the motion is possible only by changes of 

amplitudes and frequencies of flapping and 

turning the wings. It has been observed, though, 

that anima lots are capable of performing 

incredible acrobatic manoeuvres, which would 

not be possible without appropriate “control 

devices”. Knowledge on this topic is in the 

process of being gathered. 

Insects fly by oscillating (plunging) and rotating 

(pitching) their wings through large angles, 

while sweeping them forwards and backwards. 

The wingbeat cycle (typical frequency range: 5 -

200 Hz) can be divided into two phases: 

downstroke and upstroke (see Fig. 9a). 
 

 
Fig. 9 Generic kinematics of insect in hover: the wing tip traces 

a ‘figure-of eight’, when seen from the insect side. The angle 

between the insect body axis (green) and the stroke plane (red) 

is constant. Typically, (a) the angle is steep; (b) one extreme: the 

angle is π/2; (c) the other extreme: the angle is zero 

(see Żbikowski and Galiński [48]). 

 

At the beginning of downstroke, the wing (as 

seen from the front of the insect) is in the 

uppermost and rearmost position with the 

leading edge pointing forward. The wing is then 

pushed downwards (plunged) and forwards 

(swept) continuously and rotated (pitched) at the 

end of the downstroke, when the wing is twisted 

rapidly, so that the leading edge points 

backwards, and the upstroke begins. During the 

upstroke, the wing is pushed upwards and 

backwards and at the highest point the wing is 

twisted again, so that the leading edge points 

forward and the next downstroke begins. 

Insect wing flapping occurs in a stroke plane 

that generally remains at the same orientation to 

the body. The actual angle corresponding to the 

orientation is an interesting design parameter, 

(see Fig. 9b, and 9c). 

In hover the downstroke and upstroke are equal, 

resulting in the wing tip approximately tracing a 

figure-of-eight (as seen from the insect's side). 

However, the figure-of-eight is not necessarily 

generic, as other, less regular, closed curves 

with more than one or no self-intersections are 

also observed [48]. For two-winged flies 

(Diptera) a ‘banana’ shape seems to be 

common. However, even for Diptera the 

kinematics in hover can be more complicated, 

so we settled on the figure-of-eight as 

‘commonly occurring’ for reference purposes. 

Since each half-cycle starts from rest and comes 

to a stop, the velocity distribution of the 

flapping is non-uniform, making the resulting 

airflow complex. It is also unsteady, i.e. the 

aerodynamic force varies in amplitude and 

direction during each wingbeat cycle. The 

variability of the force is compounded by the 

strong influence of the viscosity of air (owing to 

the small scale) and significant interaction of the 

wing with its wake (owing to hover). Finally, it 

is worth mentioning that the thorax–wing 

system in true flies (Diptera) is resonant, which 

contributes to the efficiency of propulsion. This 

feature was not implemented in the presented 

mechanism, but it is considered for a future 

design in the form of electro-mechanical 

resonance. 

Insect wing kinematics are essentially spherical, 

while the trace of the wing tip is usually 

photographed from the insect's side. The result 

is an orthogonal projection of the spherical trace 

on to the plane of the animal's longitudinal 

symmetry. The resulting planar figure for a 

hovering insect's wing is always closed. As far 

as can be discerned from the available (noisy) 

data, e.g. for flies, the actual shape may be a 

figure-of-eight or a banana shape, but can be 

irregular and sometimes the trace has no self-

intersections. Owing to the inherent 

experimental difficulties, the kinematic and 

aerodynamic data from free-flying insects are 

sparse and uncertain, and it is not clear what 

aerodynamic consequences different wing 

motions have, despite notable progress (e.g. 

Dickinson et all. 1998; Lehmann & Dickinson 
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1998; Lehmann 2004). Since acquiring the 

necessary kinematic and dynamic data remains 

a challenge, a synthetic, controlled study of 

insect-like flapping is not only of engineering 

value, but also of biological relevance. 

There are two phases in each half-cycle of the 

wing beat: translational (wing moving forwards 

or backwards) and rotational (at the end of each 

stroke). In order to clearly investigate the 

distinct aerodynamic contributions of each 

phase, the angle of attack should be constant 

during translation and rotate through at least 90° 

during the flip-over. Thus, theoretically 

attractive kinematics should entail an 

intermittent rotational motion with reversal. A 

more subtle aspect is the plunging (up–down) 

component of flapping. Every time a hovering 

wing starts (or stops) it sheds a starting 

(stopping) vortex (Wagner 1925; Żbikowski 

2002b) which is then convected according to the 

airflow evolution. Despite the convection, such 

a vortex may persist in the vicinity of its 

original shedding point when the wing revisits 

that point in the next half-cycle. Then the wing 

and the vortex will collide and the flow 

structure is impaired. However, if the wing 

plunges up and down while moving forwards 

and backwards, it may be able to avoid hitting 

the vortex when revisiting the shedding point. In 

other words, figure-of-eight kinematics with the 

width of the ‘eight’ corresponding to the extent 

of plunging can plausibly be advantageous for 

aerodynamic reasons. Hence the focus of this 

work has been idealized wing tip kinematics of 

that type, so that the results are practical to 

implement, but scientifically relevant both for 

engineers and biologists. 

4 Presentation of Key Aspects of Controller 

Design 

4.1 Model of Slender Body for Shape Control 

Aeronautical and animalopter structures are 

continuous systems with spatially distributed 

dynamic properties. General mathematical 

model of such structures has the form of 

boundary value problem: 

,Aw F w= ∈Ω  
(1) 

, 1,...,j jB w g j s
∂Ω

= =  (2) 

where: A – nonlinear, nonsteady differential 

operator, w – state variable; F – external loads, 

jB  – boundary value operator; jg  –functions 

defining the boundary conditions.  

Such a general description is useful for problem 

formulation but it must be precised and 

simplified for obtaining useful results. 

The standard model for elongated structures 

(such as airplane or animal wings) is a one 

dimension beam, described in the lack of 

damping by partial differential equation: 

2 2 2

2 2 2
( ) ( ) ( , )z

w w
x EI x P x t

t x x
µµµµ

 ∂ ∂ ∂
+ = 

∂ ∂ ∂ 

 (3) 

where ( , )w x t  - beam deflection; µ - mass 

distribution along the span, ( )EI x  - bending 

stiffness distribution along the beam span, 

( , )zP x t - external load distribution, t - time, x - 

spatial variable. 

To complete the model the boundary conditions 

must be added to (3). For a cantilever model 

they take the form: 

(0, )
(0, ) 0,   0

w t
w t

x

∂
= =

∂
 

2 3

2 3

( , ) ( , )
0, 0

w l t w l t

x x

∂ ∂
= =

∂ ∂

 

(4) 

where l is the beam length. 

As the control theory for continuous systems is 

not sufficiently developed for direct 

applications, a discretization for continuous 

models is applied, usually by using the Galerkin 

method. In this method, the resulting aeroelastic 

displacements at any time are expressed as a 

function of a finite set of selected modes: 

1

( , ) ( ) ( )
N

i i

i

w x t x q tϕϕϕϕ
=

=∑  (5) 

where: ( )i xϕϕϕϕ  - coupled mode shapes for all 

deformations beam eigenmodes; ( )iq t  - normal 

coordinates.  
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After discretization the final matrix form of the 

aeroelastic equations of motion is  

 

( )t+ =M q K q F��
 

(6) 

where: M - matrix of generalised masses: 

2

0

l

j jM dxϕ µϕ µϕ µϕ µ= ∫
 

(7) 

K - matrix of generalised stiffness: 

2

j j jK M ωωωω=  (8) 

and F - vector of generalised forces 

0

( ) ( , )

l

j z jF t P x t dxϕϕϕϕ= ∫
 (9) 

This technique may be applied to more complex 

systems 

4.2 Control system design 

The active control approach in this study is 

based on the deterministic linear optimal 

regulator problem. Results for this full state 

feedback controller are used as baseline against 

which other controllers are evaluated [11].  

We present first the standard feedback design 

methodology. For control application the system 

(4) is transformed to a system of linear, first 

order differential equations in state and control 

variables: 

= +x Ax Bu�
 (10) 

=y Cx
 (11) 

where ( 1)n×x  - vector of state variables, 

( 1)r ×u  - vector of control variables, ( 1)m×y - 

the vector of system  outputs,  and A, B and C 

are state, control and outputs constant matrices 

of appropriate dimensions.  

The objective is now to find control vector u  

that is the  control input to the FMAV wings. 

Control system design is described as 

minimisation of performance index (called 

sometimes  the quadratic cost function) in the 

form: 

( )1
2

0

T T
I dt

∞

= +∫ x Qx u Ru
 (12) 

 

where ( )n n×Q  is non-negative and ( )m m×R  

is positive definite symmetric weighting matrix.  

Applying calculus of variations for 

minimisation of performance index (12), the 

feedback control law is obtained in the form: 

1( ) ( )Tt t−= −u R B Sx
 (13) 

A constant, positive-definite symmetric matrix 

S in the feedback gain matrix is obtained as a 

solution of matrix algebraic Riccati equation: 

1 0T T T− − − − =SBR B S SA A S C QC
 (14) 

Generally solution of Eq. (14) requires 

sophisticated numerical methods.  

The resulting closed-loop dynamics equation is 

then defined as: 

,= = +x Lx L A BF�
 

(15) 

where the feedback control matrix has the form:  

1 T−= −F R B S
 (16) 

For a controllable system such a solution yields 

to a stable closed-loop system, i.e. the 

eigenvalues ( ), 1,...,j j nλλλλ =L of L, and 

Re ( ) 0jλλλλ <L
 (17) 

lie in left-half plane of the complex plane.  

This method is referred as the linear regulator 

problem. By this method systems may be 

stabilised in the range of parameters essential 

for the system application. 

Based upon the assumption of a model with 

“fixed” Cm, it is possible to devise a set of the 

angle of attack α, the sideslip-angle β. 

Let us assume that at initial time, prior to the 

beginning of a manoeuvre, the wind reference 

frame coincides with the local horizontal 

reference frame.  This situation may correspond 

to a steady-state level flight.  

We want to guide the animalopter from a given 

initial state to a given terminal state in minimum 

time. 
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4.3 Control via Smart Structure Technology 

– MAVs vs. Insects 

Recent application of piezoelectric (PZT) 

materials for structural vibration suppression 

has added new dimensions to the control 

system. Because of the direct and converse 

effects of PZT materials, the dream of an smart 

structure, which is defined as a structure with 

the integrated sensor/actuator system, is 

beginning to be realized. Emerging “smart 

structure technology” is widely investigated for 

application to enhance rotorcraft performance
7
. 

Application of smart structures to shape control 

for adapting rotor behavior to surrounding 

conditions and to a flight regime is a new 

concept giving prospect of combination into one 

mechanism primary and additional controls of a 

helicopter rotor. Changing of the blade cross 

section shape using different active materials is 

considered. The idea of controlling blade shape 

can be put into practice by using of smart 

composite in the form of either fibers or rods 

embedded inside the blades. Active composites 

are offered now by some manufacturers and are 

being used to change the blade structure. 

The facts described above form the background 

for undertaking the study in which a model of 

elastic blade is modified by application of 

actively controlled elements or fibers. 

In the field of biomechanics, the flight 

performance of insects has been studied 

extensively. The studies show that not only do 

some insects actively generate torsional motion, 

but also they passively change the torsional 

angle of their wings by inertial and aerodynamic 

forces resulting from the beating motion. Such 

passive changes in the torsional angle and wing 

shape are important in the flight of insects. For 

example bumblebee wings do not make simple 

up and down movements, but in the course of 

each cycle also move backwards and forwards 

to some extent. The plane in which the wings 

vibrate relative to the bumblebee’s body is 

called the stroke plane. During the beating 

motion, the forewing and hindwing of a 

bumblebee are in the same plane, so that the 

wing moves as a single wing. It is possible to 

measure the flapping angle, lag angle and 

torsional angle of this single wing, and it is 

possible digitizing the distorted projected lines 

on the image of the CCD camera, and got the 

spatial coordinates of the wing with respect to 

each distorted projected line. As the flapping 

angle increases, the projected line spacing on 

the wing changes. To ensure that the torsional 

angle and torsional deformation measured are at 

the same section with respect to different 

flapping angle, it is possible to calculate them 

by using an interpolation method. 

Figure 10 shows the interpolation method. 

Consider arc AB distorted projected line. It is 

possible to divide line A1B1 that joins leading 

edge A1 and tailing edge B1 into 12 equality 

parts: D1 , D2 , . . D12, and then made a group of 

plane, each passes through Di , i is1, 2, . . . ,12, 

and perpendicular to line AB. These planes cross 

with arc AB at point E1 , E2 , . . . E12 . Similarly, 

we get M1 , M2 , . . . ,M12 with respect to arc AB 

. To get the torsional deformamtion at the 

section AB, A is the point at leading edge and 

between points A1 and A2, we make a plane p 

that passes through A, perpendicular to n 

leading edge and crosses with tailing edge at 

point B. Lines E1M1 , E2M2 , . . .E12M12 cross 

with plane at points N1, N2 , . . . N12. Then the 

torsional deformation can be expressed by arc 

AN1, N1N2, . . .N12B as shown in Figure 10. 
 

 
Fig. 10 Deformation of entomopter wing [29] 

4.4 Control via Multiwire Wing Structure – 

Flying Insects Morphology Overview 

Another approach to shape wing control, named 

by us “control via multiwire wing structure”, is 

presented in Ref. [14, 15]. The chief function of 

the veins is to provide support for the wing and 
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act as cantilever beams and elastically transmit 

force (see Fig. 10). A great variety of often-

complicated venation schemes occurs in insects. 

However, selecting the structurally important 

spars and ignoring those with less obvious 

mechanical functions can simplify the wing 

design for an MAV. Such an efficient pattern is 

observed in flies, which are excellent flyers. The 

occurrence of one or more supporting veins near 

the leading edge of the wing allows to modify 

the angle of attack during flapping cycle by 

actively twisting the joints. This action is 

performed against the aerodynamic and inertial 

moments, and the torsional elasticity of the 

wing base. 

 
Fig. 11 (A–D). Plans and two sections of the forewings of the 

butterflies (A) Heliconius charitonia; (B) Dryas julia; (C) 

Papilio polytes; (D) Pieris brassicae; (E) Plan and cross section 

of paper model wing. (Symbols shown in (A) means: m.f.l. - 

median flexion line; cl.f. - claval furrow; Sc - subcosta; R - 

radius; Rs1,2,3,4 - branches of radial sector; M1,2,3 - branches 

of media; CuA1,2 - branches of anterior cubitus; 1A - first anal 

vein. rs-m - cross-vein linking Rs and M). X–X9, Y–Y9 show 

the positions of the transverse sections so labeled. 

Scale bars represent 5mm. (cf. Ref. [29]). 
 

As a cantilever beam, the wing needs to accept 

the shifting pattern of bending and twisting 

forces without structural failure. Since wings 

accelerate and decelerate, these forces include a 

significant inertial component. Considerable 

deformability of wings allows withstanding 

these loadings over thousands of flapping cycles 

throughout the insect's life. Also, controlled 

changes of wing shape during the flapping cycle 

is essential to develop adequate thrust and lift. 

Finally, having the center of mass of the wing 

behind the torsional axis helps the wing to twist 

at the end of each half-stroke (see ref [14]). 

The functional morphology of butterfly wings 

will be treated in detail in many papers (see for 

example papers by R. J. Wootton, in 

preparation). Briefly, forewings and hindwings 

differ in size and shape and in some details of 

venation. They are not physically coupled in 

flight, but overlap appreciably, and normally 

beat in phase, acting as a single pair of aerofoils. 

However, they are capable of separating 

slightly, particularly during glides (Betts and 

Wootton, 1988), and far greater separations can 

occur momentarily (S. J. Bunker and R. J. 

Wootton, unpublished observations from high-

speed film). We are concerned here only with 

the forewing (Figure 11). This is supported by a 

framework of thin-walled tubular veins, which 

taper to the margin. With the exception of the 

most anterior vein (subcosta, Sc) and the most 

posterior veins (the one or two anals), the 

framework consists of a large, often more or 

less elliptical, cell and of the distal extension of 

the radius (R), and the branches of the radial 

sector (Rs), the media (M) and the anterior 

cubitus (CuA), which radiate from the cell to the 

leading edge, the wing-tip and the outer trailing 

edge. The veins forming and emerging from this 

cell all lie in nearly the same plane. Immediately 

adjacent to the radius lies the subcosta, a stout 

vein whose anterior edge lies significantly 

below the plane of the rest of the wing. In front 

of this is a band of membrane, with a slightly 

thickened margin which forms the leading edge. 

There is no costal vein. The wing has two fully 

developed flexion lines, which pass from the 

axilla to the margin. The more anterior, a 

narrow band of flexible cuticle, bisects the 

elliptical cell, crosses its apex at a flexible 
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section of the cross-vein-like base either of 

M2+3 or of M3, and runs to the outer posterior 

margin. This line, which originates between the 

bases of R+Rs and CuA, allows relative 

pronation and supination of the anterior section 

of the wing, creating and eliminating camber. 

The second flexion line is the claval furrow, 

which lies in front of the more anterior anal 

vein, and allows the wing to be pronated and 

supinated relative to the narrow posterior clavus 

and to the hindwing. Neither of these flexion 

lines appears to be in a position to influence 

distal torsion and, as we shall see, the 

asymmetric twisting behaviour of the wings 

persists when the lines are immobilised at the 

axilla. Its cause must lie elsewhere. The most 

probable candidate appears to be the cambered 

cross section. The wing relief of butterflies has 

attracted little attention. It is most obvious in the 

membrane, which has deep grooves between 

and parallel to most of the longitudinal veins. 

The local effects of these grooves on wing 

section in flight have been discussed by 

Brackenbury (1991). In many – perhaps all – 

butterflies, however, the anterior strip of the 

forewing, immediately behind the leading edge, 

is deflected ventrally. The extent of the 

deflection, and the location of the posterior 

boundary of the strip, vary with species (Figure 

11). Of the four species studied here, the 

downward curve is least marked in Pieris 

brassicae, being confined to the basal area 

anterior to R, which forms its posterior 

boundary (Fig. ``D). In Papilio polytes, the 

boundary ridge follows the common stem of R 

and Rs, continues along Rs1, which lies close 

behind R and Sc, and runs to the wingtip along 

Rs2, which has curved anteriorly to lie adjacent 

to Rs1 (Fig. 11C). The anterior strip is therefore 

narrow, but the camber is steep. In the 

Heliconiinae Heliconius charitonia and Dryas 

julia the posterior boundary ridge of the 

downwardly deflected strip follows R+Rs, 

Rs1+2+3 and Rs2+3, and the strip is, therefore, 

relatively broader than in Papilio polytes. The 

anterior camber is clear in both species and 

particularly marked in the longer-winged Dryas 

Julia (Figure 11 A, B). 

The dorsoventrally asymmetric flexural rigidity 

of thin cambered plates, including insect wings, 

has already been noted in many papers (see for 

example Wootton, 1981; Betts, 1986). A 

cantilevered plate, point-loaded through the 

shear centre of its cross section from the 

concave side, is far more rigid than if loaded 

from the convex side. In the former case, the 

force tends to increase the camber, and hence 

the second moment of area of the cross section 

and the overall rigidity of the plate. If a thin 

cantilevered plate is loaded at a point some 

distance from the shear centre of its cross 

section, so that it is both bent and twisted, it 

again deforms asymmetrically according to the 

direction of application of the force. A point 

force applied to the concave side twists the 

plate, but this is rapidly arrested. A similar force 

to the convex side, however, causes a much 

greater deflection: the plate twists freely and 

tends to flex along an oblique line running 

anterodistally from the base of the posterior 

edge. A insect (for example butterfly) forewing 

can be modelled in its entirety as a plate of this 

kind, or its ventrally curved anterior margin can 

be regarded as a narrow cambered plate with the 

rest of the wing attached along its posterior 

edge. If the centre of pressure lies behind the 

shear centre of the plate’s cross section, its 

effect in each model will be essentially similar. 

Ennos (1988a), examining wing torsion in three 

species of Diptera, used a torsion balance that 

applied a couple to the wing-tip, and so loaded 

the wing in pure torsion. He, too, found that the 

wings were more compliant to supinatory than 

to pronatory torques, but did not explain the 

mechanism. The balance used in the present 

work measures the total deflection of the wing 

and so allows both torsion and bending, which 

clearly interact. Since the wing bases were 

immobilised in the experiments, it is clear that 

the observed difference in resistance to 

pronating and supinating torques is a property of 

the wings beyond their axillae. In the flying 

insect, this effect would be superimposed on the 

active pronation and supination of which the 

insect is capable and would allow the distal part 

of the wing to twist disproportionally in the 

upstroke, so rotating the net aerodynamic force 

vector in the direction of greater weight support 

and permitting slow flight and manoeuvring at 

low speeds. The experimental results from the 
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paper model, together with a great deal of 

unpublished, non-quantitative experience of 

manipulating various other models, support the 

contention that the curved leading edge section 

is, by itself, capable of producing this observed 

asymmetric rigidity. Modelling the wing in this 

way, we are treating it as a thin curved plate. It 

is important to examine the ways in which the 

real forewing differs from this simple model and 

how the differences might be expected to affect 

functioning. 

The curved plate is made of a single material, of 

uniform thickness, whose properties are 

constant throughout. It has appreciable stiffness 

in compression, as well as in tension and shear. 

In contrast, the wing is a framework of fairly 

rigid tubes, varying in section and perhaps in 

material properties both along their length and 

between individual tubes, linked by a membrane 

whose thickness and properties vary around the 

wing, but which is probably only significantly 

stiff in compression in the thickened band along 

the leading edge. Two implications of this 

difference require comment. First, a force 

applied to the uniform plate would be 

transmitted through the structure by the material 

as a whole, whereas a force applied to the wing 

would be transmitted variously as tension or 

compression by the veins, but only as tension by 

the membrane. The precise distribution of forces 

induced in a real wing by a distributed 

aerodynamic load or by a point load close to the 

presumed centre of aerodynamic pressure is at 

present impossible to determine, but it seems 

clear that torque would be transmitted to the 

leading edge spar – Sc, R and the branches of 

Rs, and the membrane anterior to and between 

them – primarily by the crossvein rs-m (Figure 

8A) This would be levered up in pronation and 

down in supination by the applied force centred 

behind it. The spar, with its curved section, 

would deflect in much the same way as the 

anterior band of the uniform plate, and the 

wing-tip would similarly twist more easily in 

supination. Second, the curved plate deflects by 

bending as well as twisting. The leading edge 

spar of the real wing is stiffened by the veins, 

which might therefore interfere with the effect. 

This proves not to be the case; indeed, the veins 

may actually assist the mechanism. 

5 MAV Mathematical Model 

5.1 General Remarks 

The dynamical description of a flexible 

structure must accurately represent all structural 

characteristics by relating dynamic responses at 

specific locations throughout the structure to 

forces acting on the system. Mathematically 

speaking, the motion of animals with distributed 

elastic parts can be described by a set of 

ordinary differential equations for the rotational 

motion of a given reference frame, and a set of 

partial differential equations for the elastic 

motion relative to that frame. Such a system of 

differential equations is known as a hybrid 

dynamical system.  

Often, in the aerospace industry, the analysis of 

unmanned spacecraft with flexible appendages 

begins with the assumption that the attitude and 

the vibrational motions of the spacecraft are 

uncoupled. Such analyses are performed for 

bounding the spacecraft jitter due to instrument 

disturbances. 

For our study the motion of the animalopter will 

be represented in the most general way by the 

differential equations (18). 

f( , )=x x u�
 

(18) 

where : x – is the state vector, u – is the control 

vector. For rigid MAV 

x=[U, V, W, P, Q, R, Θ, Φ, Ψ]
T
  

where U, V, W are the forward, side, and yawing 

velocities of the animalopter; P, Q, R are the 

angular velocities, roll, pitch, and yaw, 

Θ, Φ, and Ψ are roll and pitch angels (Figure 6). 

In Ref. [5, 7] vector u was taken in the form 

[ ]
T

δ,γ, ,λ=u ω  where: γ - feathering angle of 

wings, δ - flapping angle of wings, 

ω - frequency of wing motion respect to the 

body, λ - phase shifting between feathering and 

flapping  

We propose to derive the system equations of 

motion by means of Lagrange’s procedure. 

( )
q

d T T U V

dt

∂ ∂ ∂ +
− + =

∂ ∂ ∂
F

q q q�

 (19) 
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where T is the kinetic energy, U is the strain 

energy, U is the gravitational energy, Fq is the 

vector of nonpotential external forces, and q is 

the vector of generalized coordinates. 

5.2 Systems of Coordinates 

An important ingredient in the treatment of 

coupled wing/body problems is a clear 

definition of the coordinate systems, because 

various systems will be used (Figure 12). It is 

worth noting that problems involving flight 

control systems are generally related to events 

which do not persist: the dynamic situation 

being considered rarely lasts for more than a 

few minutes. Consequently, a more convenient 

inertial reference frame is a tropocentric 

coordinate system, i. e. one whose origin is 

regarded as being “fixed” at the center of the 

Earth: the Earth or gravitational axis system G 

(not shown in Figure 12). It is used primarily as 

a reference system to express gravitational 

effects, altitude, horizontal distance, and the 

MAV orientation. 
 

 
Fig. 12 System of Cordinates (cf. Agrawal and Khan [1, 2]) 

 

The next one is the system fixed to MAV body, 

rotating with angular velocity ΩΩΩΩ = [P, Q, R]
T
; P, 

Q, R are the roll, pitch, and yaw angular 

velocities. The axes of this system are denoted 

as x, y, z with the versors ex, ey, ez. The relative 

position of the system x, y, z attached to the 

animal is described by Euler angles Φ, Θ and Φ, 

while the relative position of the system xa ya za 

attached to the airflow by the angle of attack α 

and slip angle β. The relationship between the 

Euler angles and angular velocity has the 

traditional form: 

sin

cos cos sin

sin cos cos

P

Q

R

= Φ − Ψ Θ

= Θ Φ + Ψ Θ Φ

= −Θ Φ + Ψ Θ Φ

��

� �

� �

 (20) 

Next we define a set of wing axes ξj, ηj  and ζ j 
(j=1,2), as the principal axes for the wings in the 

undeformed configuration with the origins at the 

wing roots. The sets ξj, ηj and ζ j, provide the 

reference frames for measuring deformations 

whereas the set xyz is more convenient for 

describing the over-all motion. 

5.3 Physical Model of Animalopter 

The animalopter model used for this study 

includes six-degree-of-freedom “fuselage” 

dynamics. The wings are modeled structurally 

as a Bernoulli-Euler beam with inertially 

coupled bending and twisting motions. The 

essential features of this model are described 

below: 

• The “fuselage” may assume large rigid body 

displacements with respect to the fixed axis 

system. 

• The wing is cantilevered beam; 

• Wing material has linear isotropy and 

Hooke’s law is applicable; 

• The curvature and deflections of the 

deformed wing are small; 

• The wing elastic axis (E. A) forms a straight 

line; 

• The wing can bend in two perpendicular 

directions and twist around E. A.; 

• The wing cross-section (airfoil) do not 

deform, nor warp. 

• The tension loads are included. 

5.4 Kinetic Energy Contributions 

The total kinetic energy is defined by the 

formula: 

1

2

d d
T d

dt dt
= ⋅∫∫∫

R R

τ

ρ τ  (21) 

where ρ is the mass per unit volume, assumed 

invariant with respect to time, and a position 
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vector R is referred to an orthogonal inertial 

axis system J. When the origin of the x-y-z 

coordinate system is taken at the center of 

gravity of the animalopter, then we have : 

C l= + +R R R r
 (22) 

where RC is the position vector to the center of 

gravity, Rl is the local position vector to the 

wing roots, and r is a position vector of a 

particle in the ξj, ηj  and ζ j (j=1,2), -axis 

system. 

Using assumption that the wing cross-section do 

not deform nor warp, the position vector r of a 

wingpoint after deformation is given as (Fig. 

12) 

0= + + ⋅r r u T ρ
 (23) 

[ ]

[ ]

0
0 0

T

j

T

T

u v w

 =  

=

=

r

u

ρ

ξ

ξ η ζ

 

(24) 

cos sin sin cos sin cos
cos cos

sin cos sin sin

cos cos cos sin
sin cos

sin sin sin sin sin cos

sin cos sin cos cos

− − − 
 

− − 
 + −
 =

+ − 
 − 
  

T

ς β φ ς β φ
ς β

ς φ ς φ

ς φ ς φ
ς β

ς β φ ς β φ

β β φ β φ

 (25) 

The position of an arbitrary point after the wing 

has deformed is given by ( ), ,j j jξ η ζξ η ζξ η ζξ η ζ  j=1,2  

where 

( cos sin )

( sin cos )

cos sin

sin cos

j

j

j

v

w

v

w

′= − − +

′− +

= + −

= + +

ξ ξ η ϕ ζ ϕ

η ϕ ζ ϕ

η η ϕ ζ ϕ

ζ η ϕ ζ ϕ

 
(26) 

The velocity of this point of the wing with 

respect the inertial frame J is 

 
t

= + ×
r

V Ω r
δ

δ
 (27) 

 

where tδ δ is the derivative in the rotating 

frame R, and  

j j j= + +r i j kξ η ζ  (28) 

The term ΩΩΩΩ    x r is the velocity contributed by 

the rotating coordinate system. The velocity in 

the rotating frame R is: 

j j j
t

= + +
r

i j k� ��
δ

ξ η ζ
δ

 (29) 

In view of above-mentioned, the total kinetic 

energy can be written as: 

21
2

 C rot coup vibT mV T T T= + + +  (30) 

where m is the total mass of the animalopter 

1
 
2

T

rotT = Ω JΩ
 (31) 

where J is the inertial tensor  

x xy xz

xy y yz

xz yz z

I D D

D I D

D D I

 − −
 

= − − 
 − − 

J
 (32) 

Two additional terms  and coup vibT T  in the 

formula (30), are nontrivial one, and be 

specified later. 

5.5 Strain Energy Contributions 

In the presented approach, the crucial point of 

derivation expressions describing elastic loads 

(see Figure 16) is formulation of the potential 

energy U of system elastic deformation. The 

general form of the elastic energy formulae can 

be expressed as 

1

2
kl klU d

ττττ

σ ε τσ ε τσ ε τσ ε τ= ∫ , , 1, 2,3k l =  
 

(33) 

where klσ  and klε  are stress and strain tensor 

components, respectively. For slender body, 

such like animalopter wing, formula (33) can be 

simplified to the form: 

( )11 11 12 12 13 13

0

1
2 2

2

b

A

U dAd= + +∫ ∫ σ ε σ ε σ ε ξ
 

(34) 

where b is the wing length and A is the area of 

the wing cross section. Using Hooke law: 

11 11 12 12 13 13,   ,   E G G= = =σ ε σ ε σ ε  (35) 

where E, and G are Young’s modulus and shear 
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modulus, respectively. 

Formula (33) is transferred to the form: 

( )2 2 2

11 12 13

0

1
2 ( )

2

b

A

U E G dAd= + +∫ ∫ ε ε ε ξ  
(35) 

An elastic axis of the undeformed wing 

coincides with the ξ-axis 

Using Eq. 5 taken from Ref. 10 describing the 

relations between displacements we can obtain 

the formulae: 

11 ( cos sin )

( sin cos )

u v

w

′ ′′= − + +

′′+ −

ε η ϕ ς ϕ

η ϕ ς ϕ

 (37) 

12 13

1 1
,   

2 2
ε ςφ ε ηφε ςφ ε ηφε ςφ ε ηφε ςφ ε ηφ′ ′= = −  

(38) 

From (37) the strain component u’ is eliminated 

applying condition [4]
 

11( )
A

t dA= ∫ξ σ  

(39) 

where t(ξ) is the tension force in a wing section.  

Introducing the Hook law (35) into (37) and 

then (37) into (39) we obtain: 

( cos sin )

( sin cos )

T T T

T T

u v

w

′ ′′= + + +

′′+ − +

ε η ϕ ς ϕ

η ϕ ς ϕ
 

(40) 

where 

( )
,   a

T E

E A

t x
A EdA

A
εεεε = = ∫

 (41) 

1 1
,   T T

E EA A

E dA E dA
A A

= =∫ ∫η η ς ς
 

(42) 

Inserting (40) into (37) we obtain: 

[ ]

11

( )cos

( )sin

( )sin ( )cos

T

T

T

T T

v

w

− + 
′′= − − + − 

′′− − − −

η η ϕ
ε ε

ζ ζ ϕ

η η ϕ ζ ζ ϕ
 

(43) 

Formula (43) expresses the strain in any point of 

the wing cross section. 

      

      

  

 

 
Fig. 13 Deformation of wing elastic axis (E. A) 

 

The potential energy U is obtained from (34) 

including the strains given by (38) and (43). 

To obtain the animalopter model in ordinary 

differential equations form, the Galerkin [11] 

method may be applied. Thus the elastic 

displacements of the wings are decomposed as: 

1

( , ) ( ) ( )
vN

i i

i

v t q tξ η ξξ η ξξ η ξξ η ξ
=

=∑  
(44) 

1

( , ) ( ) ( )
v wN N

i i

i

w t q tξ η ξξ η ξξ η ξξ η ξ
+

=

= ∑  
(45) 

1

( , ) ( ) ( )
v wN N N

i i

i

t q t
φφφφ

φ ξ η ξφ ξ η ξφ ξ η ξφ ξ η ξ
+ +

=

= ∑  (46) 

where NV, NW, and Nφ are numbers of modes for 

in-plane, out-of-plane, and feathering modes, 

respectively. 

6. Formulation of manoeuvring dynamics 

and nonlinear control issues 

Consider manoeuvring MAV according to the 

prescribed configuration vector: 

1[ ]d d T

d d d d kφ (t),θ (t),ψ (t);ξ (t),...,ξ (t)=x
 

(47) 

 

where and ( ), 1,...,
d

d d d
φ (t),θ (t),ψ (t) t kκκκκξ κξ κξ κξ κ = are 

the desired attitude and elastic behaviour. 

Introducing the configuration error vector: 

d= −e x x
 

(47) 

the state-space equation of motion can be 

presented in the terms of  and  de x .  
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If   and  d d dφ (t),θ (t) ψ (t) are explicit prescribed 

function of time, a tracking problem for the 

animalopter will be obtained. 

Quite a few reasons exist for why flapping 

flight could benefit greatly from an active, i.e., 

closed loop, control system. Open loop flow 

control performs well when the operating 

conditions are carefully restricted to the range 

within which the control mechanisms were 

designed. But outside the lab the operating 

environment can vary considerably from one 

instant to the next due to environmental factors 

such as a gust or wind or even due to 

mechanical damage to the wings themselves. 

Therefore, an active control system is needed to 

compensate for a wide range of flight 

conditions. Also, specifications for increased 

maneuverability call for an adaptive control 

technology that can intelligently alter the wing 

shape in order to generate adequate lift to meet 

the lowered wing loading requirement. 

Additionally, mechanical wings currently 

cannot effectively imitate the full range of 

motion and control displayed by natural wings 

and so it is no surprise that mechanical wings 

suffer in terms of performance compared to 

their biological counterparts. There are no 

muscles, feathers, or bone structure in 

mechanical wings comparable to those found in 

bird or bat wings. Active flow control therefore 

is a key component in closing the performance 

gap between the two without having to fully 

mimic the biological flapping motion, and hence 

reducing the mechanical complexity of the 

system. Essentially, satisfactory wing 

performance beyond the limited and narrow 

design range drives the demand for active flow 

control of flapping wings. The major challenges 

of animalopter control system development 

largely center on an appropriate control system 

which can properly handle the complexity of the 

aeroelastic problem at hand. Previous sections 

have described the difficulties in aeroelastic 

analysis of the flexible flapping wing system. In 

the parlance of dynamic control engineers, the 

‘‘plant’’, i.e., the flapping wing MSV complete 

with sensors and actuators, is a highly nonlinear 

system and there seems to be no linear control 

law or even an appropriate linear 

approximation. An active wing will, by 

definition, have many variable parameters, e.g., 

camber, stiffness distribution, twist, kinematical 

limitations, and this leads to a large state space 

for optimization. For example, if only 10 

actuators with 5 states apiece are on the wing, 

then almost 10 million combinations are 

possible! This staggering number of states 

creates quite an optimization and control 

problem.  

This section starts with an overview of closed 

loop linear control schemes. Then it quickly 

moves to nontraditional control algorithms such 

as genetic algorithms and neural nets and 

reviews their past application in a variety of 

active flow control experiments. Next, the Gur 

Game, a new nonlinear control algorithm, will 

be described. The Gur Game is especially 

appropriate for a distributed system of actuators 

operating in a nonlinear system. Some results 

using this new controller in optimizing wing 

kinematics then follows. 

6.1 Closed Loop Control of Separated Flows 

Linear optimal control of flutter comprises the 

vast majority of work on closed loop separated 

flow control. This was largely due to the ease of 

analytically modeling and predicting linear 

systems with the limited computing technology 

available at the time. If the systems were 

inherently nonlinear, “reasonable” linearizing 

assumptions were made for either the fluid or 

structural mechanics models. While this 

approach has worked satisfactorily for many 

years, the recent requirements of 

supermaneuverability and the advent of active 

materials (particularly piezoelectric transducers 

and MEMS sensors and actuators) now 

invalidate the old assumptions of attached flow, 

small wing deformations, and static material 

properties. Fortunately, the explosive growth of 

computing power has made possible the 

exploration of more computationally intensive 

control algorithms, such as genetic algorithms 

and artificial neural networks (ANNs). First, 

however, we start with linear control 

algorithms. 
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6.2 Linear Quadratic (LQ) Controllers  

The vast majority of closed loop control systems 

apply linear optimal control theory in order to 

produce a computable solution in terms of gain 

and phase margins. The use of LQ and linear 

quadratic Gaussian (LQG) controllers for active 

flutter suppression has a relatively long history. 

Theoretical work by Edwards et al. [31 

considered an extension to the standard 

computation of flutter whereby the generalized 

unsteady aerodynamic loading was represented 

by a rational transform instead of a simple 

harmonic function. However, the transforms 

were still in the Laplace splane and hence the 

loading was still linear. Newsom [32] followed 

the same path when he employed a Pade 

approximation to derive a deterministic LQ 

control law for flutter suppression using a 

trailing edge flap. Numerical simulations 

showed as much as 50% increase the dynamic 

flutter pressure, but again the model linearized 

aerodynamic loading with relatively small wing 

deformations. 

Experimentally, Mahesh et al.
 
[33]studied LQG 

control on a swept back wing with an active 

control surface. After calculating a high order 

LQG controller using linear aeroelastic theory 

with assumed simple harmonic steady-state 

wing motion, the group compared the use of 

residualization and frequency response 

matching to achieve lower order controllers. 

They found improvement in performance 

(adequate gain and phase margins), but it was 

only at one specific Mach number and they 

noted gain scheduling may be required for a 

range of Mach numbers. Mukhopadhyay [34] 

published results using LQG controller on a 

flexible wing with a trailing edge flap actuator 

and surface mounted accelerometers. After 

control law synthesis and order reduction of the 

controller, the closed loop controller increased 

the flutter pressure by 23% over the 

uncontrolled case. But he noted that 

discrepancies arose between the analytical and 

experimental frequency response for the 

actuator, which he attributed to the approximate 

modeling of the unsteady aerodynamics using 

attached flow when in fact, the flow may have 

separated. This points out the need for a viscous 

aerodynamic model that accounts for flow 

separation when dealing with flutter 

simulations. Finally, Lazarus et al.[34] used a 

LQG controller in conjunction with 

piezoelectric actuators to effect a change in 

flutter speed purely through changing the 

structural properties (namely the strain 

characteristics) of the wing. The result was an 

increase in flutter speed of 11%. This showed 

that a flap actuator was not needed to change the 

aerodynamic performance or flutter 

characteristics, but instead simple strain 

actuation could provide a means of extending 

the performance envelope. 

6.3 Other Linear Controllers 

Luton and Mook [36] conducted an interesting 

numerical study where they used linear 

feedback on the control of ailerons to suppress 

flutter on a nonlinear high aspect ratio wing 

undergoing large deflections. They employed 

unsteady vortex-lattice methods to model the 

flow, and so this model is not valid if the flow 

separates or if vortex bursting occurs. The 

simulation computed that the flutter divergence 

speed increased by almost 100%. 

Frampton et al. [37] demonstrated the control of 

panel flutter with piezoelectric transducers, 

which acted as both sensors and actuators. Here 

they used linearized potential flow 

aerodynamics and calculated the response of a 

panel with an attached piezoelectric transducer 

mounted on the surface. The control law for the 

transducer used collocated direct rate feedback, 

in which a voltage input signal proportional to 

the sensed structural velocity was sent to the 

piezoelectric actuator. Stability was achieved for 

a limited range of transonic and supersonic 

flows, but they noted that actuator saturation 

limited the amount of which this system could 

be stabilized. 

6.4 Proportional Integral Derivative Control 

Gursul et al. [38] changed the sweep angle of 

the delta wing to control vortex breakdown 

location. An integral feedback controller sought 

to minimize the rms value of pressure 

fluctuations induced by the helical mode 
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instability found in vortex breakdown as a 

function of the sweep angle. This approach 

proved fruitful as the amplitude of the pressure 

fluctuation monotonically varies with the vortex 

breakdown location, thus making a simple first-

order feedback control system possible. 

However, it is certainly not energetically 

efficient. 

7 Results of Simulations – Hovering Control 

In figures 14, 15 and 16 exemplary results of 

simulations of hovering stabilization are 

presented: 

 

 
Fig. 14 Hovering stabilization. Angular position of Entomopter 

 

 
Fig. 15 Hovering stabilization. Position of centre of mass of 

Entomopter. 

 
Fig. 16 Stabilization of hovering flight. Courses of control 

vectors (values of angles in relation to amplitudes of 

oscillations): 
0 0 0/ ,    / ,    /λ λ λ δ δ δ γ γ γ= = =  

8 Summary 

The MAVs development, apart from 

“theoretical” problems connected with 

modelling of their aerodynamics, flight and 

control dynamics also generates a lot of serious 

technical problems. One of those is the 

integrations of systems mounted inside of the 

apparatus. Because of small size of the cargo 

space of the MAV the distribution of the 

necessary devices, units and on-board sensors 

becomes an extremely serious problem. The 

conception used in “large” aeroplanes, 

consisting in filling the inside of the airframe 

with necessary instruments and then equipment 

– programme integration in this case is 

practically impossible.  

Probably the most difficult element of the MAV 

to design is the system of flight control, which 

should by highly autonomous and should 

operate instantaneously. Relatively strong forces 

and moments caused by laminar flow (in entire 

flight range) act on the MAV. Moreover it is 

very difficult to foresee the conditions in which 

the flight will take place. Because of little mass 

and dimensions (moments of inertia) the effects 

of unstationariness of flow caused by gushes of 

the air and manoeuvres will significantly 

influence the aerodynamic loads of the MAV.  
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