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Abstract  

Airplane manufacturers must certify the 
airplane systems to be safe for flight.  One 
means of safety certification is by analytic 
demonstration that the probability of failure in a 
typical flight is bounded.  The probability bound 
requirement for a system is based on the 
criticality of system failure. Therefore, 
probability of failure calculations for these 
systems is necessary for certification. The 
probability of failure for a system which can 
have latent faults is non-constant across flights.  
So we are led into the concept of “Average 
Probability of Failure per Flight” or “Average 
Probability of Failure per Flight Hour”.  

 
In this paper we will discuss new 

methodologies and equations.  We will also 
review and compile previous efforts (many of 
which are our own) to develop efficient methods 
and tools to compute the “Average Probability 
of Failure per Flight” for aerospace systems.    

1 Introduction  

Fault-tolerance in commercial aircraft 
applications is typically achieved by 
redundancy. Dual or triple redundancy is 
common, and higher redundancy aircraft 
systems exist. This is also true for the Military, 
Defense and Space vehicles. In many cases the 
backups are provided for safety, and are used 
only to provide functionality when the primary 
fails.  In such systems the primary component is 
checked before the start of a flight to see if it 
operates correctly.  The aircraft will not take off 
unless the primary component is functioning. 

 

Usually backup components are checked 
(inspected) at intervals that span multiple 
flights. This leads to flights where the system 
although functional could have potential latent 
failures in the backup components.  The 
probability of failure in such cases varies from 
flight to flight due to the different exposure 
times for components in the system. In avionics 
systems, redundancy management techniques 
are used to detect, isolate and reconfigure the 
systems. Automatic reconfiguration is a 
standard redundancy management technique. 

 
Another scenario is the inspection of aging 

parts typically associated with the airframe 
structure. An example will be bolts or rivets on 
a wing that can potentially expose a path to 
lightning due to degradation with age.  Aging 
components are typically modeled by the 
Weibull lifetime distribution. Depending on the 
inspection interval the risk per flight hour 
changes. For very small  intervals the cost of 
inspections can become exorbitant. 

 
Airplane manufacturers must certify the 

airplane systems to be safe for flight.  One 
means of safety certification is by analytic 
demonstration that the probability of failure in a 
typical flight is bounded.  The probability bound 
requirement for a system is based on the safety 
criticality level (consequences) of system 
failure. Typical criticality levels are Minor, 
Major, Hazardous and Catastrophic in 
increasing order of severity.  Therefore, 
probability of failure calculations for these 
systems is necessary for certification. As 
mentioned in the previous paragraph, the 
probability of failure for a system which can 
have latent failures is non-constant across 
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flights.  So we are led into the concept of the 
metric “Average Probability of Failure per 
Flight” or “Average Probability of Failure per 
Flight Hour”.  

 
In the following sections we define the 

metric and discuss methodologies and equations 
to compute the metric. 

1.1 Definition of Average Probability  

Assume that an airplane is operated for a 
total of M flights in its life time with each flight 
being of a constant duration of t flight hours. 
This is an idealization of reality and t represents 
the average flight length of a typical airplane of 
a specific type such as the Boeing 737.  An 
example could be 3000 flights per year of 
average duration of 1.5 hours and an airplane 
life of 20 years. This results in M = 60000 with t 
= 1.5 hours. Airplane life can also be expressed 
in flight hours as T, which in this example 
would be 90000 hours. 

 
Assume that the system under analysis 

comprising one or more redundant components 
operates and provides a function for the full 
flight of duration t. If the system operates for 
only a portion of the flight, the analysis methods 
can be used by adjusting the flight length to 
system operation time. 

 
If Pi is the probability of system failure in 

the i-th flight then we define the Average 
Probability per Flight as   

M

P

P

M

i
i

avg

∑
== 1                                   (1) 

Note that Pi is the probability the system 
fails anywhere in the typical flight of duration t 
given that it was working at the start of a flight. 
If the system fails there is a loss of function that 
is noticeable or indicated and results in the 
repair or replacement of the system on the 
ground before the next flight. The implication is 
that a system can fail only once in a given flight 
and hence the definition of average probability 
of failure as in Eq. (1) makes sense. 

 

Another way of describing the metric in (1) 
is  

M
TNEPavg

)]([=                                 (2) 

where E[N(T)] is the expected number of 
system failures (repairs/replacements) in the life 
T of the airplane. Based on the assumption of 
repairs/replacements only on ground N(T) is less 
than or equal to M, the measure above makes 
sense and is equivalent to Eq. (1). 
 
A near equivalent continuous analogue of the 
above metric can be defined for ultra-high 
reliable systems with not much loss in accuracy 
if we remove the restriction of 
replacement/repair only on ground. Considering 
that for safety critical systems the probability of 
system failure is very small in a flight (of the 
order of 1E-06 to 1E-09 per flight) and that the 
flight length t is much smaller than life of 
airplane T the following definition is nearly 
equivalent to those in Eqs. (1) and (2). 

avgP = ∫
T

dxxm
T
t

0
)(  = 

T
TNEt )]([*             (3) 

The integrand m(x) is also called the 
instantaneous system renewal rate. Pavg/t is the 
“Average Probability of Failure per Flight 
Hour”. It is equivalent to the average system 
renewal rate. Renewal theory methods [5, 7] can 
be used to obtain the renewal rate as we will 
show in the following sections.  
 
Many other definitions [2, 6] have been 
previously proposed such as “Average System 
Unavailability”, “Average System Failure Rate” 
etc with the intent to calculate the same metrics 
as in Eqs. (1)-(3) but the definitions here are 
precise and unambiguous.  

 

2 Average Probability Calculation Methods  

2.1 Closed-Form Solutions for Simple 
Systems  

For systems that have a small number of 
redundant components such as dual and triple 
redundant systems it is possible to obtain 
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closed-form solutions for the average per flight 
failure probability. 
 
Dual Redundant System 
 
Consider a dual redundant system of two 
identical units where the failure of a single 
component is not indicated in a flight but the 
system failure (loss of both units) is identified 
because of the resulting loss of function.  
Periodically both units are inspected and failed 
units are repaired at a fixed interval T.   If both 
units fail between inspection intervals, the 
system will be fixed within a flight (nearly 
instantaneously) after its failure. Suppose the 
failure rates λ (assumed constant with time) are 
the same for both units and we consider the 
impact of an inspection/scheduled maintenance 
interval for the system.  The system has the 
possibility of failing and being renewed 
multiple times during the inspection interval, 
depending on the length of the interval. If the 
interval is too long one encounters the risk of 
multiple system failures. On the other hand if 
the interval is too short then the cost of schedule 
maintenance goes up. In this scenario we are 
interested in the average probability of failure 
over one inspection interval.  
 
The system renewal rate m(x) can be obtained 
from a transient analysis of a Markov chain [5] 
for the system. The Markov chain for the dual 
redundant system with system repair on failure 
is shown in Figure 1. 
 

 
Figure 1: Markov Chain of Dual Redundant System 
  
State 2 corresponds to a system that is fully 
functional (both components working), 1 to a 
system where one component has failed, and F 
represents system failure. The flow into the 
failure state is P1*λ where P1 is the state 
probability of state 1. If repair rate γ  is taken to 
be infinite, i.e. the repair is instantaneous, 
failure state F can be mapped to the starting 

state 2, yielding the simpler Markov chain in 
Figure 2. If flight length is much smaller than 
the inspection interval, instantaneous repair is a 
good assumption. 

 
Figure 2: Simplified Markov Chain of Dual Redundant 
System 
 
The state probability equations [5] for this 
Markov chain are 

)(2)(
)(

21
1 tptp
dt

tdp λλ +−=  

 
Using the conservation equation p1 + p2 = 1.0 
we have p2 = 1-p1 and substituting for p2 in the 
differential equation above we obtain 
 

λλλλ 2)(3))(1(2)(
)(

111
1 +−=−+−= tptptp
dt

tdp
 

The solution to this one variable simple 
Ordinary Differential Equation (ODE) can be 
obtained easily as 

)1(
3
2)( 3

1
tetp λ−−=  

The instantaneous renewal rate is 

)1(
3
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Note that 3
2)( λ=∞m

 which is the inverse of the 
MTBF (Mean Time Between Failures) of the 
dual redundant system. Using Eq. (3) we obtain 
the average probability of failure per flight as 
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     (4) 

Note that T in equation above is the inspection 
interval and t is the flight length. For large T the 
average probability expression is close to 2λt/3 
which equals t/MTBF for the system. 
 
In Table 1 we compare the result in Eq (4) with 
a computer package called HIMAP [1] that 
computes Pavg numerically from Eq. (1), using 
Markov chain analysis method  described in 
detail in [3] and briefly in Section 2.2. 
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Inspection interval T is set at 10000 hours and 
flight length t at 1.0 hour.  The correlation is 
very good and shows that removing the 
restriction of repair/replacement on the ground 
only as assumed in Eq. (4) does not affect the 
result much except for large component failure 
rates.  
 
 

Table 1: Equation (4) vs. Eq. (1) 
 
Suppose one of the units is considered the 
primary unit and the other unit is the backup. 
Assume the primary is checked to make sure it 
is functional before every flight and the backup 
is checked at T hours. The probability that both 
the primary and backup fail in the same flight 
leading to a system failure is much smaller than 
the probability that the backup fails latent in an 
earlier flight and the primary fails in a 
subsequent flight, leading to system failure. 
Although both scenarios can be modeled, we 
consider only the main failure path as 
represented by the Markov chain in Figure 3. 

 
Figure 3: Markov Chain of Dual Redundant System 
Failure Path with Backup Failing First Followed by 
Primary Failure 
 
λ λ*T Eq. (5) Numerical 

Markov Solver  
(Eq. (1)) 

1.00E-01 1.00E+03 4.9975E-02 4.9936E-02  
1.00E-02 1.00E+02 4.9750E-03 4.9752E-03  
1.00E-03 1.00E+01 4.7500E-04 4.7503E-04  
1.00E-04 1.00E+00 2.8383E-05 2.8386E-05  
1.00E-05 1.00E-01 4.6827E-07 4.6831E-07  
1.00E-06 1.00E-02 4.9668E-09 4.9673E-09  
Table 2: Equation (5) vs. Eq. (1) 
 
 

Using the methodology shown for the no-
inspection of both components case described 
earlier we can obtain the average probability as 
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Inspection interval T is set at 10000 hours and 
flight length t at 1.0 hour.  The correlation in 
Table 2 is very good and shows that removing 
the restriction of repair/replacement on the 
ground only as assumed in Eq. (5) and also 
ignoring the replacement probability due to 
primary and backup failure in the same flight 
with primary failing first does not affect the 
result much except for large component failure 
rates. 
 
Triple Redundant System 
 
Consider a triple redundant system with 
identical components where none of the 
components are inspected. Assume a constant 
failure rate of λ for the 3 components.  Assume 
that the loss of function due to system failure 
will be detected which will trigger a system 
renewal where all 3 components are restored to 
full working condition almost instantaneously 
within a flight. The loss of one or two 
components is latent and is not detected. 
 

 
Figure 4: Markov Chain of Triple Redundant System 
 
The Markov chain for this system in shown in 
Figure 4. The flow into the failure state is P1*λ. 
If repair rate γ  is taken to be infinite, i.e. the 
repair is instantaneous, failure state F can be 
mapped to the starting state 3, yielding the 
simpler Markov chain shown  in Figure 5. 

 
 Figure 5: Simplified Markov Chain of Triple Redundant 
System 
 
 

λ λ*T 2*λ/3 Eq. (4) Numerical 
Markov Solver  
(Eq. (1)) 

1E-01 1000 6.6666E-02 6.6644E-02 6.4495E-02 
1E-02 100 6.6666E-03 6.6444E-03 6.6224E-03 
1E-03 10 6.6666E-04 6.4444E-04 6.4424E-04 
1E-04 1 6.6666E-05 4.5508E-05 4.5549E-05 
1E-05 0.1 6.6666E-06 9.0707E-07 9.0707E-07 
1E-06 0.01 6.6666E-07 9.9007E-09 9.9007E-09 
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The state probability equations for this chain  are 

)(2)()(
21
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tdp λλ +−=  
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Using the conservation equation p1 + p2 + p3 = 
1.0 we have p3 = 1 - p1 – p2. The above is a set 
of two coupled ordinary differential equations. 
To solve it one may use many techniques such 
as the Laplace transform technique [5]. 
The result for the renewal rate is obtained then as 

⎥
⎦

⎤
⎢
⎣

⎡ +−

==

− )2sin
2

32(cos1
11
6

)(*)(

3

1

tte

tptm

t λλλ
λ

λ  

The average probability per flight is then 
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                                                                              (6) 
For large T the average probability expression is 
close to 6λt/11 which equals t/MTBF of the 
system. 

λ λ*T Numerical Markov 
Solver 
Eq. (1) 

Eq. (6) 

1.00E-01 1000 5.30692E-02 5.45157E-02
1.00E-02 100 5.41012E-03 5.42479E-03
1.00E-03 10 5.15570E-04 5.15702E-04
1.00E-04 1 2.62312E-05 2.62314E-05
1.00E-05 0.1 8.61827E-08 8.61827E-08
1.00E-06 0.01 9.85124E-11 9.85124E-11

Table 3: Equation (6) vs. Eq. (1) 
 
Inspection interval T is set at 10000 hours and 
flight length t at 1.0 hour.  The comparison in 
Table 3 is very good and shows that removing 
the restriction of repair/replacement on the 
ground only as assumed in Eq. (6) does not 
affect the result much except for large 
component failure rates. 
 

Based on the complexity of system redundancy 
and the component inspection scenario the 
approach shown in this section can be used to 
obtain the average probability. For some cases 
one can use approximation techniques described 
in [6]. For large systems a Fault Tree model can 
be constructed and the minimal cutsets of the 
fault tree model can be treated as a dual or triple 
redundant system with latent failure events and 
the equations can be applied to each type of 
minimal cutest.  
 
Aging System/Component Analysis 
The failure characteristics of an aging 
component or system can be described by a 
Weibull distribution.  The component is 
inspected at intervals and is replaced with a new 
component if found to have failed.  The 
inspection does not detect wear; hence the 
Weibull age of the component doesn't change 
unless the component is replaced because of 
failure.   The average probability of failure of 
the component over the life of the airplane is to 
be calculated.   
 
The average probability of failure for a 
component with Weibull failure distribution in 
the absence of repair is first derived.  The 
derivation is extended to the case in which the 
component is repaired periodically. The 
derivation does not require repair intervals to be 
uniform. 
 
Average Unreliability with No Repair  
 
The average reliability of a Weibull distribution 
is given by the integral 

∫
⎟
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Where β is the shape factor and c is the 
characteristic life. 
 
Making the substitutions in (7) 
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The integral is the lower incomplete gamma 
function 
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The average unreliability UAV(T) is the 
complement of the average reliability: 
 

)(1)( TRTU AVAV −=          (10) 
 
Average Unreliability with Periodic Repair 
(Renewal Case) 
 
A more accurate approximation takes renewal 
into account – that is, failed components are 
inspected periodically and repaired when the 
inspection uncovers failure.  The repaired 
components then contribute to system 
reliability.  Again we calculate average 
reliability, and obtain average unreliability from 
Eq (10). 
  
Symbol Description 
to, t1, …, 
tn 

Component put into service at time 
to, and inspected at times t1, …, tn 

Ak,n Average reliability of a unit 
installed new at tk in the interval [tk, 
tn],  considering renewal 

Uk,n Average unreliability of a unit 
installed new at tk in the interval [tk, 
tn],  considering renewal 

Rk,n Average reliability of a unit 
installed new at tk in the interval [tk, 
tn],  when renewal is not considered, 
represented by equation 6 with T set 
to tn - tk,  

uk,j Probability that first failure of a unit 
that was new at time tk occurs in 
interval  [ tk+j-1 ,  tk+j ]. 

 
It is convenient to start with the final interval 
and work backwards.  A unit that is installed 

new at Tn-1 has average reliability in the interval 
[ tn-1,  tn ] given by 
 
An-1,n = Rn-1,n  
 
(The component installed at the start of the last 
interval, so no renewal is possible).  A part 
installed new at time tn-2 has the possibility of 
renewal at tn-1: 
 
An-2,n = Rn-2,n + u n-2,1 A n-1,n   
 
(Reliability of equipment installed new at time 
tn-2, corrected for renewal at tn-1 after failure in 
the interval [tn-2, tn-1]).  Similarly, equipment 
installed new at time tn-3, can have first renewal 
at tn-2 or tn-1 :  
 
An-3,n = Rn-3,n + un-3,1An-2,n + u n-3,2 An-1,n   
 
In general, 
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k
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Continuing in this manner we calculate A0,n , the 
average reliability of a component that was 
installed new at t0 if repair is considered.  The 
average unreliability of the component is 1 - 
A0,n.  
 
This calculation has complexity O(n2) and 
requires n evaluations of the incomplete gamma 
function. 
 
For example if a component has a Weibull 
distribution with characteristic life c=10000 
hours, and β = 2.0 and periodic inspection is 
done at 10000 hours for failure with 
replacement upon failure over an airplane life of 
80000 hours, then the average probability of 
failure of this component over the life of the 
airplane is 0.3503 using Eq. (9) and (11). 
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2.2 Numerical Methods for more Complex 
Systems 

For systems with complex maintenance 
scenarios for redundancy management, a 
general approach to obtaining Pavg is by 
numerical solution of Markov models for each 
flight or mission of the airplane and then using 
Eq. (1). 
 
We will assume that the system failure/repair in 
any mission is modeled by a time-homogeneous 
continuous time Markov chain (CTMC) [5]. 
CTMCs are fully specified by the instantaneous 
transition rate matrices and initial probability 
vectors. The evolution of state probabilities 
within a specific flight is governed by the 
Chapman-Kolmogorov equations for CTMCs:

  
( ) ( ) txx

dx
xd T ≤≤= 0;pQp

      (12)  

The relation between the state probabilities at 
the start and end of a mission can be written: 

                       p Ppi
e

i= 0
                       (13)                 

Repairs are performed between flights.  We 
assume that such repairs can be modeled by a 
linear mapping between the state probability 
vector at the end of one flight and the initial 
probability vector for the subsequent flight 

e
iiii pGp )1,(

0
1 ++ =                             (14) 

By combining Eqs. (12)-(14) we can express the 
state probabilities at the end of any flight in 
terms of the first flight’s starting state 
probabilities p0 as follows: 

p PG Ppi
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P Q= e
T T                   (16)                                   

                                                                                         
Eqs.(15)-(16) show that the state probabilities at 
the of end of any mission can be computed by a 
series of matrix-vector multiplications involving 
the state-transition probability matrix P, the 
inter-mission mapping matrices G and the first 
mission’s initial state probability vector p0. 

 
Example 
Assume there are three components in the 
system: Component A is an Active unit 
providing some functionality in the system, 
Component B is the Backup unit for Component 
‘A’, and Component ‘M’ is the Monitor unit 
which is constantly monitoring the health of the 
Backup unit. System is assumed to be functional 
as long as both Active and Backup units do not 
fail. 
Maintenance scenario in this system is as 
follows: 
• System failure (Active unit and Backup unit 

failure) is repaired at the end of every flight 
to full up state. At this point any Monitor 
unit failures are also repaired. 

• Active unit is assumed to be repaired at the 
end of a flight, if failed. 

• Backup unit is checked and repaired every 
ten flights if the Monitor is working. 

• If Monitor is not working, Backup unit is 
not checked until there is a system failure or 
until the monitor gets fixed. 

Monitor unit itself is checked every hundred 
flights. So, at the end of 100th flight, all the 
components are effectively checked and any 
failures are repaired. This implies that system 
reliability/unreliability profile repeats itself 
every hundred flights and the Average system 
unreliability per flight can be computed by 
averaging over any cycle of hundred flights. 
 

 
Figure 6.  System Model for an Active and a Hot Spare 

Backup Unit 

Figure 6 shows the Markov chain model of the 
system. Suppose the state tuples are numbered 
as shown in Table 4. Then the flight to flight 
mapping matrices G(i-1,i) for this system that 
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model the repair and replacements between 
flights are as shown below: 

G
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In Eqs (17), (18) and (19), the matrices G(i-1,i) 
are (8x8) in size, ei

T; i = 1,...,8 are (1x8) row 
vectors where the i th entry equals 1.0 and all 
other entries in the row are 0.0, and 0T is a (1x8) 
row vector all of whose entries equal 0.0. The 
flight to flight mapping matrices are very sparse 
and they also have the property that their 
columns sum to 1.0, i.e. eT G(i-1,i) = eT where eT 
= (1, 1, 1, ..., 1) to conserve probability between 
flights. The tool HIMAP [1] starts with the 
initial probability vector and marches across 
flights recursively applying Eqs. (13) and (14). 
 

When the system is analyzed for one hundred 
missions in the tool HIMAP [1] with the 
component characteristics as shown in Table 5, 
we obtain the system unreliability time plot 
shown in Figure 7.  
 

State 
Number 

State Tuple 
 (state of A, state of B, state of M) 

1 (1,1,1) 
2 (1,1,0) 
3 (1,0,1) 
4 (0,1,1) 
5 (1,0,0) 
6 (0,1,0) 
7 (0,0,1) 
8 (0,0,0) 

Table 4: State Tuples and State Numbering 
 

Component Failure 
Rate 

Inspection Interval 
(Flights/Missions) 

Active Unit (A) 1.2e-4 1 
Backup Unit (B) 1.2e-4 10 – If Monitor is 

working 
Monitor Unit (M) 1.2e-6 100 

Table 5: Component Failure Rates 
 

 
Figure 7.  Probability of Failure and Average 
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