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Abstract  

Turning maneuvers of a non-axisymmetric 
undersea vehicle have been conducted by 
Northrop Grumman Shipbuilding, and 
experimental data has been acquired from their 
free-running Nnemo1 model.  This paper will 
focus on the application of a nonlinear time 
domain technique, based on a fast recursive 
neural network (RNN) approach, to simulate the 
six degree-of-freedom (6-dof) motion of the 
vehicle.  Graphs are presented comparing the 
predicted motions with the experimental 
measurements, and error measures are used to 
quantify the results.  The predictions clearly 
capture the details of the maneuvers and 
demonstrate a faster-than-real-time simulation 
capability.  The simulation will be coupled with 
a controller to allow advanced, predictive 
control strategies to be explored. 

1  Introduction 
There has been recent interest in the 
development of an undersea vehicle 
configuration exploiting an advanced hull that is 
not based on a body of revolution, but on a non-
axisymmetric design.  Newport News 
Shipbuilding constructed a non-axisymmetric, 
free-running model, as shown in Fig. 1 and 
denoted Newport News Experimental Model 1 
(Nnemo), and conducted turning maneuvers 
with the vehicle to generate a data base for 
future concept vehicle designs [1].  These open 
water trials have shown that the vessel can 
develop large roll angles under certain operating 
conditions.  There is a need to understand the 
causes of the roll, to model it via a simulation 
and to then develop effective control strategies. 

Fig. 1a.  Forward view of Nnemo. 

Fig. 1b.  Aft view of Nnemo. 
The Maneuvering and Control Division 

(MCD) at the Naval Surface Warfare Center, 
Carderock Division along with Applied 
Simulation Technologies have developed a 
faster-than-real-time simulation capability for 
predicting the six degree of freedom motions of 
marine vehicles.  The simulation employs a 
recursive neural network as a computational 
technique for developing time-dependent 
nonlinear equation systems that relate input 
control variables to output state variables.  The 
RNN is used to predict the time histories of 
maneuvering variables of NNemo conducting 
turning maneuvers.  These maneuvers have been 
used to train and validate the neural network.  
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Upon completion of training, data from 
additional validation maneuvers (not included in 
the set of training maneuvers) are input into the 
simulation, and predictions of the motion of the 
vehicle are obtained and compared with 
measurements.  The simulations are 
implemented in FORTRAN using code 
developed by the authors. 

This work builds upon previous successful 
efforts to simulate underwater vehicles [2-3].  In 
contrast to these previous efforts, the current 
vehicle employs an aft sail configuration, four 
adjustable sternplanes in an X configuration, 
twin propellers, adjustable bowplanes and a 
non-axisymmetric hull design. 

This simulation approach has also been 
directed towards surface ships operating in calm 
water, regular waves and random seas.  
Specifically, predictions for calm water 
operation and maneuvers in extreme regular 
waves were developed for a 46th scale model of 
a pre-contract DDG51 Arleigh Burke class 
destroyer [4-5].  The method has been used to 
predict the motion of a full scale vessel 
operating in sea states 4 & 5; namely, the Office 
of Naval Research (ONR) high speed catamaran 
experimental vessel, Sea Fighter [6].  Work is 
also in progress to develop a 6-dof maneuvering 
simulation for the Landing Craft, Air Cushion 
(LCAC) amphibious landing craft operating in 
calm water and in waves. 

The goals of the current work are: to 
develop a nonlinear simulation of a non-body-
of-revolution (NBOR) undersea vehicle; to 
require that the simulation correctly capture the 
details of the roll motion; to successfully 
demonstrate new computational capabilities for 
NBOR vehicles; and to couple a controller to 
the simulation in order to compensate for 
undesired vehicle motions.  We turn now to a 
description of the vehicle, and the data used to 
train the simulation. 

2  Description of Measured Data 
The Advanced Concepts Group at Northrop 
Grumman Shipbuilding, Newport News 
Operations funded the construction and 
operation of the free-running Nnemo undersea 
vehicle.  The vehicle has a length of 14.5 ft and 

a width of 3 ft. with a non-axisymmetric hull 
and appendage arrangements as shown in Fig. 1.  
The motion of the submerged vehicle is 
controlled by: two five-bladed propellers, four 
adjustable aft planes in an X-configuration, and 
two adjustable bow planes.  Sensors recorded 
the rotational speed of the propellers and the 
deflection angles of the planes during the 
maneuvers.  The vehicle is ballasted to be 
neutrally buoyant with no static pitch or roll 
angles.  The sail can be mounted in a forward or 
aft position on the vehicle; the aft position was 
used for all of the maneuvers in this study.  
Other quantities measured during maneuvers 
included: time, speed over bottom, course over 
bottom (heading), depth, roll pitch & yaw, and 
roll, pitch & yaw rates. 

Three types of turning maneuvers were 
conducted.  The first type is a planes only turn 
initiated by using the aft planes.  They are 
deflected in a manner to give an equivalent 
rudder deflection of 10°, 20° or 30°.  Both port 
and starboard turns were performed at two 
speeds: 1.8 kn and 3 kn.  Once the planes have 
been deflected, they are maintained at that 
position throughout the maneuver until it is 
terminated.  Bowplanes are used by the 
controller to maintain depth.  The second type 
of turn is denoted a differential thrust turn.  This 
maneuver is carried out by rotating the 
propulsors at different forward speeds, or by 
rotating one at a forward speed and the other at 
a reverse speed.  The third type of turn is 
referred to as a combined turn, because it uses 
differential thrust as well as planes to execute 
the turn. 

The measured time series data described 
above were collected at 100 Hz and packaged in 
ASCII data files for each maneuver.  Prior to 
using the data for developing the simulation, a 
series of data preparation steps were performed.  
These included: decimating the data to 10 Hz, 
repairing dropouts in some of the channels, 
correcting π2  transitions in the heading 
variable, and transforming the data to the 
coordinate system shown in Fig. 2.  Then, 
needed variables were derived from the 
measured quantities.  These included trajectory 
components x and y; linear velocity components 
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Fig. 2.  Coordinate system. 
u, v and w; angular velocity components p, q 
and r; and the six accelerations 

.  Note that the derived angular 
velocity components were checked against their 
measured counterparts; the derivation was 
performed to ensure that velocities and 
accelerations were mathematically consistent 
with the measured trajectory and attitude 
variables.  All of the data were then digitally 
lowpass filtered at 0.5 Hz.  A summary of the 
measured and derived variables is given in 
Fig. 3. 

randqpwvu &&&&&& ,,,,

Fig. 3.  Measured and derived data. 
Forces components directed along the three 
coordinate axes depicted in Fig. 2 are denoted 
by X, Y and Z, although we will use convenient 
designations such as lift and thrust as well.  
Moments about these axes are: roll moment, K, 
pitch moment, M, and yaw moment, N. 

3 Description of Simulation 

A schematic diagram of the simulation is given 
in Fig. 4.  The figure shows a recursive neural 
network at the heart of the simulation.  A 
recursive network is one that employs feedback; 
namely, the information stream issuing from the 
outputs is redirected to form additional inputs to 

Fig. 4.  Simulation schematic 
the network.  The input data consist of the initial 
conditions of the vehicle (first time step of each 
variable) and time histories of the control 
variables: propeller rotation speeds and 
appendage deflection angles.  As the simulation 
proceeds, these inputs are combined with past 
predicted values of the state variables (outputs) 
to estimate the forces and moments that are 
acting on the vehicle.  The resulting outputs are 
predictions of the time histories of the state 
variables: linear and angular velocity 
components which can then be used to recover 
the remaining hydrodynamic variables required 
to describe the motion of the vehicle.  The 
equations used to describe the forces and 
moments are designed to pose the problem well 
to the simulation, and the network is trained to 
learn how the forces and moments lead to 
vehicle motion. 
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Fig. 5.  RNN architecture. 
The architecture of the neural network is 

illustrated in Fig. 5.  The network consists of 
four layers (groupings of nodes): an input layer, 
two hidden (internal) layers and an output layer.  
Within each layer are nodes, which contain a 
nonlinear transfer function that operates on the 
inputs to the node and produces a smoothly 
varying output.  The binary sigmoid function 
was used for this work; for input x ranging from 
∞−  to ∞ , it produces the output y that varies 

from 0 to 1 and is defined by 

Output Layer
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137 Inputs 56 Units 6 Outputs
118 Processing Units 11,337 Weights + Biases
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The nodes in the input layer simply serve 
as a means to couple the inputs to the network; 
no computations are performed within these 
nodes.  The nodes in each layer are fully 
connected to those in the next layer by weighted 
links.  As data travels along a link to a node in 
the next layer it is multiplied by the weight 
associated with that link.  The weighted data on 
all links terminating at a given node is then 
summed and forms the input to the transfer 
function within that node.  The output of the 
transfer function then travels along multiple 
links to all the nodes in the next layer, and so 
on.  So, as shown in Fig. 5, an input vector at a 
given time step travels from left to right through 
the network where it is operated on many times 
before it finally produces an output vector on 
the output side of the network.  Most nodes 
have a bias; this is implemented in the form of 
an extra weighted link to the node.  The input to 
the bias link is the constant 1, which is 
multiplied by the weight associated with the link 
and then summed along with the other inputs to 
the node.  This process is illustrated in Fig. 6. 

Fig. 6.  RNN architecture. 
The equations describing the 

transformation of the input vector into the 
output vector are given in Fig. 7.  The notation 
used considers  input nodes, 

 and  nodes in the two 
hidden layers and  output nodes.  
The notation is similar to that found in [7]. 
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A recursive neural network has feedback; 
the output vector is used as additional inputs to 
the network at the next time step.  For the first 
time step, when no outputs are available, these 
inputs are filled with initial conditions.  The  

Fig. 7.  Equations relating outputs to inputs. 
time step at each iteration represents a step in 
dimensionless time, .  Time is rendered 
dimensionless using the vehicle’s length and its 
speed computed from the preceding iteration; 
thus, the dimensionless time step represents a 
fraction of the time required for the flow to 
travel the length of the hull.  The neural network 
is stepped at a constant rate in dimensionless 
time through each maneuver.  An input vector at 
the dimensionless time, , produces the output 
vector at 
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The network has 137 inputs. Each hidden 
layer contains 56 nodes, and each of these nodes 
uses a bias.  The output layer consists of 6 
nodes, and does not use bias units.  The network 
contains 118 computational nodes and a total of 
11,337 weights and biases. 

The network predicts, at each time step, 
dimensionless forms of the six state variables: 
three linear velocity components, u, v, and w, 
and three angular velocity components, p, q and 
r.  Specifically, the outputs are defined as 
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These velocity predictions are then used to 
compute at each time step the remaining 
kinematic variables described in Fig. 3, 
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trajectory components, Euler angles and 
accelerations. 

The 137 contributions that form the input 
vector are described as follows.  Fifteen basic 
force and moment terms describe the influence 
of the control inputs and of time-dependent flow 
field effects; the first two are the thrust from the 
two propellers,  and .  When these two 
thrust terms are unequal, the resulting 
differential thrust contributes to a yaw moment 
on the vehicle, .  The deflections of the X-
planes are converted into equivalent rudder and 
sternplane deflections, then the lift on these 
equivalent planes is computed: upper rudder, 

; lower rudder, ; port sternplane, 
 and starboard sternplane, .  Lift 

from port and starboard bowplanes are the 
inputs,  and .  Unequal deflections 
of corresponding pairs of the aft X-planes can 
contribute to roll moments that act on the 
vehicle; these are summarized in two 
contributions,  and .  Two restoring 
moments resulting from disturbances in roll and 
pitch,  and , and two Munk moments 
acting on the hull,  and  make up 
the balance of the input vector.  These terms are 
developed from knowledge of the controls 
(propeller rotation speed, equivalent sternplane 
and rudder deflection angles), geometry of the 
vehicle, and from output variables which are 
recursed and made available to the inputs. 

portT
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Additional inputs are obtained by retaining 
past values of the fifteen basic inputs.  This 
gives the network memory of the force and 
moment history acting on the vehicle and 
permits the network to learn of any delay that 
can occur between the application of the force 
or moment and the response of the vehicle.  The 
number of past inputs that is used is displayed in 
the summary given in Table 1.  The number of 
past values to keep is chosen empirically and 
appears to be a function of the frequency 
response of the vehicle.  In this case the network 
is given information about past events for a 
period of time required for the flow about the 
vehicle to travel a distance of 0.5L. 

Table 1  Summary of network inputs. 

Input Description # 

)4(,,)(,)( ttTttTtT portportport ′Δ−′′Δ−′′ K  5 

)4(,,)(,)( ttTttTtT stbdstbdstbd ′Δ−′′Δ−′′ K  5 

)4(,,)(,)( ttNttNtN TTT ′Δ−′′Δ−′′ ΔΔΔ K  5 

)9(,,)(,)( ttLttLtL urudurudurud ′Δ−′′Δ−′′ −−− K  10 

)9(,,)(,)( ttLttLtL lrudlrudlrud ′Δ−′′Δ−′′ −−− K  10 

)9(,,)(,)( ttLttLtL pstplpstplpstpl ′Δ−′′Δ−′′
−−− K  10 

)9(,,)(,)( ttLttLtL sstplsstplsstpl ′Δ−′′Δ−′′
−−− K  10 

)9(,,)(,)( ttLttLtL pbowpbowpbow ′Δ−′′Δ−′′ −−− K  10 

)9(,,)(,)( ttLttLtL sbowsbowsbow ′Δ−′′Δ−′′
−−− K  10 

)9(,,)(,)( ttKttKtK rudrudrud ′Δ−′′Δ−′′ K  10 

)9(,,)(,)( ttKttKtK stplstplstpl ′Δ−′′Δ−′′ K  10 

)4(,,)(,)( ttKttKtK rrr ′Δ−′′Δ−′′ K  5 

)4(,,)(,)( ttMttMtM rrr ′Δ−′′Δ−′′ K  5 

)9(,,)(,)( ttMttMtM MunkMunkMunk ′Δ−′′Δ−′′ K  10 

)9(,,)(,)( ttNttNtN MunkMunkMunk ′Δ−′′Δ−′′ K  10 

)(,)(,)(,)(,)(,)( trtqtptwtvtu ′′′′′′′′′′′′  6 

)(,)(,)(
,)(,)(,)(

ttrttqttp
ttwttvttu
′Δ−′′′Δ−′′′Δ−′
′Δ−′′′Δ−′′′Δ−′′

 
6 

Total 137 

Recursed outputs from the prior time step 
are used as six additional contributions to the 
input vector.  Furthermore, the output vector 
from one previous time step is also retained and 
made available as six additional inputs.  
Knowledge of the output velocities for two 
successive time steps permits the network to 
implicitly learn about the accelerations of the 
vehicle.  We turn now to a discussion of the 
results. 

4 Results  
As mentioned previously, information presented 
to the inputs of the simulation is modified as it 
flows through the network by the presence of 
the weights and by the nonlinear outputs of each 
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of the nodes until it arrives at the output layer of 
the network.  Thus, at each time step, an input 
vector produces a predicted output vector; this is 
then compared to the actual (target) output 
vector determined from the data.  The difference 
between the target and predicted output vectors 
is a measure of the error of the prediction.  The 
process by which the network is iteratively 
presented with an input vector in order to 
produce outputs that are then compared with a 
desired output vector is known as training.  The 
purpose of training is to gradually modify the 
weights between the nodes in order to reduce 
the error on subsequent iterations.  In other 
words, the neural network learns how to 
reproduce the correct answers.  When the error 
has been minimized, training is halted, and the 
resultant collection of weights that have been 
established among the many connections in the 
network represent the knowledge stored in the 
trained neural net.  Therefore, a training 
algorithm is required to determine the errors 
between the predicted outputs and the desired 
target values and to act on this information to 
modify the weights until the error is reduced to 
a minimum.  The training algorithm employed 
here is called backpropagation, which is a 
gradient descent algorithm.  The collection of 
input and corresponding target output vectors 
comprise a training set, and these data are 
required to prepare the network for further use.  
Data files containing time histories of all of the 
variables described in Fig. 3 for the three 
turning maneuvers formed the training sets. 

After the neural network has been 
successfully trained, the weights are no longer 
modified and remain fixed.  At this point the 
network may be presented with an input vector 
similar to the input vectors in the training set 
(that is, drawn from the same parameter space), 
and it will then produce a predicted output 
vector.  This ability to generalize, that is, to 
produce reasonable outputs for inputs not 
encountered in training is what allows neural 
networks to be used as simulation tools.  To test 
the ability of the network to generalize, a subset 
of the available data files must be set aside and 
not used for training.  These validation data files 
then demonstrate the predictive capabilities of 
the network. 

The simulation was trained to predict the 
time histories of maneuvering variables of an 
undersea vehicle executing submerged turning 
maneuvers of the three types described 
previously.  A total of 24 maneuvers were used.  
Of these, 17 were used for training and 7 
validation runs were set aside to test how well 
the simulation was able to predict maneuvers 
similar to, but different from, maneuvers in the 
training set.  The network was trained for 
100,000 epochs, where an epoch is defined as 
one presentation of the time series for all inputs 
and outputs for all files in the training set. 

Periodically, training is paused and both 
sets of training and validation files are presented 
to the network, and the outputs are compared to 
the measured data.  Two error measures are 
used to quantify the comparison: an Average 
Angle Measure, AAM, and a correlation 
coefficient, R.  The AAM was developed by the 
Maneuvering Certification Action Team at 
NSWCCD in 1993-1994 and some details may 
be found in the papers [8-9].  Both AAM and R 
quantify (with a single number) the accuracy of 
a predicted time series when compared with the 
actual measured time series.  A value of 1 
corresponds to perfect magnitude and phase 
correlation, 1−  implies perfect magnitude 
correlation but 180° out of phase and zero 
indicates no magnitude or phase correlation. 

The epoch, at which a maximum in the 
average value of the AAM and R (computed over 
all 24 files) was found, was noted and 
designated the stopping epoch.  The simulation 
was then restarted and trained to the stopping 
epoch of 29000.  The resulting values are given 
in Table 2. 

Table 2  Quantitative error measures. 
 AAM R AVG 

Trn 0.893 0.961 0.927 
Val 0.860 0.932 0.896 
All 0.876 0.946 0.911 

The columns of the table give the AAM, R and 
the average (of AAM and R) values, and the 
rows give the file sets over which the results 
were determined.  So, row 1 gives the values of 
AAM and R computed over the 17 training files, 
row 2 gives the answers for the 7 validation files 
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and the last row computes the numbers over all 
24 files in both sets.  The first indication of 
success is the high values achieved for the 
training files.  This is a sign that the problem is 
posed well, and the input vector contains 
sufficient information for the simulation to 
capture the details of the maneuver.  The 
excellent numbers for the validation files 
demonstrate that the network has learned how 
the vehicle maneuvers during these three types 
of turns, as these files were not seen during the 
training process.  Another indication of the 
quality of the simulation is the closeness in the 
relative magnitudes of the error measures for the 
validation files and the training files; the 
simulation is producing stable results of uniform 
quality. 

The averaged error measures given in 
Table 2 are computed for four critical variables: 
speed, depth, roll and pitch.  These variables are 
sensitive measures of the performance of an 
undersea vehicle.  The speed magnitude U is 
computed from velocity components as 

 222 wvuU ++=   . (4) 

Besides speed, the other critical variables are 
obtained by integrating the outputs of the 
simulation.  Small errors in the outputs could 
easily grow during the integration to produce 
large errors in these variables.  The point is that 
choosing these critical variables is appropriate 
for this type of vehicle, and represents a more 
stringent test than just looking at simulation 
outputs alone.  The results in Table 2 have been 
decomposed into contributions from the four 
critical variables computed over all 24 files, and 
are presented in Table 3. 

Table 3  Critical variable performance. 
 Speed Depth Roll Pitch 

AAM 0.991 0.957 0.808 0.761 
R 0.998 0.957 0.955 0.884 

Speed and depth are extremely well predicted; 
whereas, the simulation is having relatively 
more difficulty with roll and pitch.  The graphs 
which follow bear these relative indications out; 
however, as will be seen, the graphical 
comparison between the predictions and results 
is very accurate. 

Figure 8 depicts measured and predicted 
time series for 12 variables for training run  301, 
which is a 10° planes only port turn at 3 kn.  
The right hand column (Fig. 8b) shows the six 
velocity outputs of the simulation with the 
predictions in red and the measured data in 
black.  The typical behavior: speed loss in the 
turn, lateral velocity away from the center, 
rapidly changing yaw rate that settles down to a 
near constant value in the turn, and fluctuating 
vertical roll and pitch rates are all captured very 
accurately.  The left hand column (Fig. 8a) 
gives speed, depth, roll, pitch, heading and 
trajectory (x vs. y).  The drop in speed is 
predicted nearly perfectly.  Large oscillations in 
roll, to °±30 , are evident, and the simulation is 
following the measurements.  Some small 
discrepancies are apparent in pitch and depth, 
on the order of 2° in pitch and perhaps 2 ft in 
depth.  The overall shape and character of the 
trajectory is picked up nicely.  Apparently a 
small error, perhaps in yaw rate, early in the 
maneuver, biased the prediction slightly and led 
to the shift in the curves.  This makes clear just 
how precise the velocity predictions must be in 
order for accurate integrated variables to be 
achieved.  The conclusion to draw from this 
training run is that the simulation has 
successfully understood the 6-dof motion of the 
vehicle and can replicate it. 

Figure 9 shows another typical training 
run; this one is a combined turn using 
differential thrust and an equivalent 10° 
deflection to port at a speed of 1.8 kn.  For this 
and later figures, only the integrated variables 
and speed are shown.  Roll excursions of °±12  
are apparent, and the simulation picks this up 
nicely with errors of 2-3° or less.  Errors in pitch 
and depth are at most 2° and 1 ft, respectively.  
The tactical diameter of the turn is correct and 
the overall shape of the trajectory is predicted 
nicely.  We now turn to some examples of 
validation maneuvers, which are the true test of 
the simulation. 

Figures 10 & 11 show two typical 
validation turning maneuvers: a 20°, 1.8 kn 
planes only turn to starboard and a 30°, 1.8 kn 
planes only turn to port.  Roll variations of 

°± 20  can be found, and the simulation matches 

7  
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Fig. 8a. Trn. 301: 10° Port Turn, 3 kn. 

Fig. 8b. Trn. 301: 10° Port Turn, 3 kn, Vels. 
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Fig. 9. Trn. 328: 10° Port. Comb. Turn, 1.8 kn. Fig. 10. Val. 314: 20° Stbd. Turn, 1.8 kn. 
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Fig. 11. Val. 319: 30° Port. Turn, 1.8 kn. 

this behavior within a couple of degrees.  For 
both maneuvers, depth and trajectory are 
captured extremely accurately.  Indeed, the 
worst apparent predictions are for pitch, but the 
expanded scale on these plots show the error to 
be at most a degree or two. 

5 Conclusions 

When considering the nonlinear simulation 
results, they demonstrate the clear potential for 
the development of models of undersea vehicle 
behavior.  These models can be used not only 
for time-domain simulation of vehicle motions 
but also for predictive control applications.  The 
results show that the open loop simulation can 
predict into the future without a priori guidance 
from real-time measured sensor feedback, and 
therefore without real-time feedback from an 
on-board control system driving the simulation 
to a known solution.  The information predicted 
about the future ship motion history can be used 
to determine ordered control inputs to the ship 
that are needed to either realize a desired ship 
motion history or to counter an undesired ship 
motion history in the future. 

Such work is currently in progress.  An 
existing X-plane controller for an undersea 
vehicle is being coupled to the faster-than-real-
time simulation.  The goal is to demonstrate that 
the roll excursions can be reduced for all three 
types of turning motions. 

Not least among the outcomes discussed 
here is the fact that a simulation capability has 
been demonstrated for undersea vehicles that 
have a non-axisymmetric shape.  A new 
generation of simulation capabilities permits 
greater flexibility in the design of such vehicles 
for future missions. 

Acknowledgments 

The U.S. Office of Naval Research sponsored 
this work, and the program monitor is Dr. 
Ronald D. Joslin, Code 331.  The authors would 
like to thank Mr. Todd Sedler of Northrop 
Grumman Shipbuilding, Newport News 
Operations, Advanced Concepts Group, Dept. 
E33, Submarine Technology for providing the 

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0

U
 (f

t/s
ec

)

20 40 60 80 100
Time (sec)

measured predicted

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

0

R
ol

l (
de

g)

20 40 60 80 100
Time (sec)

-8.0
-6.0
-4.0
-2.0
0.0
2.0
4.0
6.0
8.0

0 2

P
itc

h 
(d

eg
)

0 40 60 80 100
Time (sec)0

2

4

6

8

10

12
0 2

D
ep

th
 (f

t)

0 40 60 80 100
Time (sec)

-400

-300

-200

-100

0

100

0

H
ea

di
ng

 (d
eg

)

20 40 60 80 100
Time (sec)120

140

160

180

200

220
110 130

Y
 (f

t)

150 170 190 210
X (ft)

10 



 

11  

SIMULATION OF A NON-AXISYMMETRIC UNDERSEA VEHICLE 
USING A RECURSIVE NEURAL NETWORK 

Nnemo captive model experimental data and for 
his many supportive conversations. 

References 
[1] Sedler T. Nnemo 1 and 2 Public Information Release 

Index. Prepared for OFOISR Release 07-S-2037, 
Northrop Grumman Shipbuilding, Newport News 
Operations, Advanced Concepts Group, Dept. E33, 
Submarine Technology, Aug 23, 2007. 

[2] Faller W, Smith, W and Huang T. Applied dynamic 
system modeling: six degree-of-freedom simulation 
of forced unsteady maneuvers using recursive neural 
networks. 35th AIAA Aerospace Sciences Meeting, 
97-0336, 1997, pp. 1-46. 

[3] Hess D and Faller W. Using recursive neural 
networks for blind predictions of submarine 
maneuvers. 24th Symposium on Naval 
Hydrodynamics, Fukuoka, Japan, July 8-13, 2002. 

[4] Hess D, Faller W, Lee J, Fu T and Ammeen E. Ship 
maneuvering simulation in wind and waves: A 
nonlinear time-domain approach using recursive 
neural networks. 26th Symposium on Naval 
Hydrodynamics, Rome, Italy, September 17-22, 
2006. 

[5] Faller W, Hess D, Fu T and Ammeen E. Fast time-
domain nonlinear simulations of ship motions in 
extreme waves using a new formulation for the wave 
elevation. To be presented at the 27th Symposium on 
Naval Hydrodynamics, Seoul, Korea, October 5-10, 
2008. 

[6] Hess D, Faller W, Minnick L and Fu T. Maneuvering 
simulation of Sea Fighter using a fast nonlinear time 
domain technique. 9th International Conference on 
Numerical Ship Hydrodynamics, Ann Arbor, 
Michigan, August 5-8, 2007. 

[7] Haykin S. Neural Networks: A Comprehensive 
Foundation.  Macmillan, New York, 1994. 

[8] Ammeen E. Evaluation of correlation measures. 
Naval Surface Warfare Center Report, CRDKNSWC-
HD-0406-01, March 1994, pp. 1-65. 

[9] Roddy R., Hess D. and Faller W. Utilizing neural 
networks to predict forces and moments on a 
submarine propeller. 2008-0888, 46th AIAA 
Aerospace Sciences Mtg, Reno, NV, Jan. 7-10, 2008. 

Copyright Statement 
The authors confirm that they, and/or their company or 
institution, hold copyright on all of the original material 
included in their paper. They also confirm they have 
obtained permission, from the copyright holder of any 
third party material included in their paper, to publish it as 
part of their paper. The authors grant full permission for 
the publication and distribution of their paper as part of 

the ICAS2008 proceedings or as individual off-prints 
from the proceedings. 


