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Abstract  

The purpose of the present paper is to provide a 
design methodology for digital automatic flight 
controllers. The main idea of the proposed 
method is based on the mixed 2 /H H∞  
optimization which allows the simultaneous 
attenuation of both deterministic bounded 
power and stochastic bounded spectrum 
exogenous inputs. The paper mainly brings two 
contributions. The first is that the considered 

2 /H H∞  optimization problem is formulated in 
the sampled-data framework. The motivation for 
this statement comes from the fact that 
automatic control laws are extensively 
implemented using digital equipment. In order 
to model the hybrid dynamics obtained by 
coupling the sampled-data control system to the 
continuous-time dynamics of the aircraft, a 
representation based on systems with finite 
jumps has been used. The second contribution 
consists in introducing a multiplicative noise 
component in order to improve the stability 
robustness performances with respect with 
random parametric variations. The theoretical 
results are illustrated by a case study for the 
design of an automatic landing system. 

1  Introduction  
Although the aircraft flight control design has 
been dominated for a long period of time by 
classical control methods, over the last decades 
a major attention was devoted to 
“unconventional” design techniques able to 
provide effective solutions for control problems 
with high level of complexity. This interest has 
been motivated by the aim to enhance the 
functionality and the safety of the aircraft over 

an increased range of operating conditions 
characterized by severe external disturbances 
and parameters variations. Optimal control 
techniques are among the most widely studied 
modern design methodologies due to their large 
area of applications in aerospace engineering. 
The norm minimization of the mapping from 
certain exogenous inputs to appropriate 
regulated outputs played a crucial role in many 
applications including tracking problems, robust 
control, filtering, identification, fault detection. 
A powerful approach combining the advantages 
of the well-known linear quadratic optimization 
with the ones of the H∞ -norm minimization is 
the mixed 2 /H H∞  optimization method. The 
solution of this problem provides an effective 
procedure to attenuate simultaneously the 
effects of stochastic disturbances and of 
deterministic input variables. Such requirements 
often arise in aviation applications (see for 
instance [5], [11], [16], where examples like 
automatic landing, control under aeroelastic 
effects and robust fault detection can be found).  
Another important issue for the performance of 
the automatic control system is the 
implementation of the control law. Over the last 
decades the discrete-time control algorithms 
became dominant due to the intensive use of the 
digital devices. There are two common ways to 
design discrete-time control laws. The first one 
is to design a continuous-time controller and 
then to discretize it for a small enough sampling 
period. A second usual method is to determine a 
discretized model of the dynamics aircraft and 
then, using a discrete-time synthesis approach, 
to obtain the discrete-time control system. There 
is also a third alternative methodology which 
takes into account the hybrid character of the 
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closed loop configuration obtained by coupling 
the discrete-time control system with the 
continuous-time dynamics of the airplane. In 
this framework in which the discretization 
approximations are eliminated, one expects to 
improve the stability and the disturbance 
attenuation performances and to point out a 
more direct relationship between the sampling 
period and these performances. For such hybrid 
dynamical systems, well-known in the literature 
as sampled-data systems, many useful results 
for optimal control are actually available. Some 
of these results can be found in [1], [2], [8], [9], 
[10], [17], [18].        
An important aspect taken into account in the 
control system design is the robustness 
performance with respect with modeling 
uncertainties of the airplane dynamics. Besides 
the well known representation of the modeling 
uncertainty (see e.g. [12]), many other 
applications in aviation deal with models in 
which some of the parameters have 
nonuniformly distributed random variations. 
Such behavior naturally leads to stochastic 
models with multiplicative noise which have 
been intensively studied both in the continuous-
time case (see e.g. [15] and the applications 
therein) and in the discrete-time framework (e.g. 
[7]).  

In the present paper a mixed 2 /H H∞  type 
control problem for sampled-data systems 
corrupted with multiplicative white noise is 
considered. Its formulation given in the next 
section takes into account the specific of some 
usual applications in aviation.    Section 3 is 
devoted to the computation of the performance 
index associated with the considered 2 /H H∞  
control problem. Using the result derived in this 
section, the state-feedback 2 /H H∞  control 
problem for stochastic systems with jumps 
corrupted with multiplicative white noise is 
solved in Section 4. The results proved in 
Sections 3 and 4 are expressed in terms of the 
solutions of some specific systems of coupled 
continuous-time and discrete-time Riccati 
equations. In the final part of Section 4 an 
iterative procedure to compute the stabilizing 
solution of such systems is presented. An 

illustrative example is given in Section 5 for the 
design of an automatic landing system of an 
airplane. The paper ends with some concluding 
remarks. 

2  Preliminary Results and Problem 
Formulation 

The sampled-data mixed 2 /H H∞  optimization 
problem analyzed in this paper has the 
following simplified configuration: 

Discrete-time
control system ZOH

Airplane dynamics
( )v t
( )tη

( )u t

( )z t

( )y t

( )d ihη

( )u ih h

Fig. 1. Sampled-data closed loop configuration 
 
where ( )v t  is a continuous-time bounded in 

power input, ( )tη  is a white noise process with 

unitary intensity, ( )z t  denotes the continuous-

time controlled output and ( )y t  is the 
continuous-time measured output which is 
sampled with the constant period 0h>  in order 
to be processed by the digital controller. dη  
denotes a discrete-time noise approximated by a 
sequence o independent random vectors. The 
constant piecewise control ( )u t  is obtained as 
the output of the zero-order hold (ZOH) 
element, that is ( ) ( ) ( ), 1u t u ih ih t i h= < ≤ + . 
An effective method to represent the hybrid 
configuration in Figure 1 which includes the 
continuous-time dynamics of the airplane and 
the discrete-time controller together with its 
corresponding ZOH is based on the 
representation using the systems with finite 
jumps.   Thus, following the idea used in [9], the 
constant piecewise control ( )u t  can be 



 

3  

AUTOMATIC FLIGHT CONTROL

represented as the solution ( )x t  of the system 
with jumps: 

 
( )

( )

( ) ( )

0, for 1

, at 0,1,...

dx t
ih t i h

dt
x ih u ih i+

= < ≤ +

= =
 (1) 

where the following notation has been used 
( ) ( )0: limf fεα α ε+ = + .  The above 

equations suggest to consider the following 
structure of a system with jumps corrupted with 
multiplicative white noise: 

( ) ( ) ( )( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( )
( ) ( )

0 1

,

, 0,1,...
d d d

d d

d d

dx t A x t Hv t dt A x t d t

G t t ih

x ih A x ih H v i

G i i

z t Cx t

z i C x ih

ξ

η

η

+

= + +

+ ≠

= +

+ =

=

=

   (2) 

where nx ∈  denotes the state vector, 0h >  is 
the sampling period, v  and dv  are  continuous-
time and discrete-time bounded in power inputs, 
respectively. The random variables 

( ) , 0t tξ ∈ ≥  and ( ) , 0rt tη ∈ ≥  are such 

that the pair ( ) ( )( ),t tξ η  is an 1r + -
dimensional standard Wiener process 
and ( ) dr

d iη ∈ , 0,1,...i =  is a sequence of 
independent random vectors on a probability 
space ( ), ,P FΩ . It is assumed that 

( ) ( ), , 0t t tξ η ≥  and ( ) , 0,1,...d i iη =  are 
independent stochastic processes with zero 
mean and unitary second moments. The outputs 
z  and dz  are the continuous-time and the 
discrete-time controlled outputs, respectively. 
By virtue of standard results from theory of 
stochastic differential equations (see e.g. [6]), 
the system (2) has a unique tF -adapted solution 
for any initial condition ( )0x , tF  denoting the 
σ -algebra generated by the random vectors 

( ) ( ),s sξ η    and ( ) , 0 ,0d i s t ih tη ≤ ≤ ≤ ≤ . This 
solution is almost surely left continuous. 

Definition 1. The system (2) with jumps and 
with multiplicative white noise is exponentially 

stable in mean square (ESMS) if for 
( ) ( )0, 0, 0v t t tη= = ≥  and ( ) 0,dv i =  

( ) 0, 0,1,...d i iη = =  there exist 0α >  and  

0β >  such that ( ) ( )2
0tE x t e xαβ −⎡ ⎤ ≤

⎣ ⎦
 

for any initial condition ( )0 nx ∈  for all 0t ≥ , 

where [ ]E ⋅  denotes the mean of the random 

variable [ ]⋅  and 2 : Tq q q= . 

The   next result is well-known in the literature 
as the Itô’s formula and it plays a key role in the 
proof of the results presented in the following 
sections. 

Proposition 1 ([6]). Let ( ),v t x  be a continuous 

function in ( ) [ ], 0, nt x T∈ × . If ( )x t  is a 
solution of the stochastic differential equation  

( ) ( ) ( ) ( )dx t a t dt t dw tσ= + , then 

( )( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )

( )( ) ( ) ( )

2

, , ,

1 ,
2

,

T

T

T

v vdv t x t t x t t x t a t
t x

vTr t t x t t dt
x x

v t x t t dw t
x

σ σ

σ

⎡∂ ∂⎛ ⎞= +⎢ ⎜ ⎟∂ ∂⎝ ⎠⎢⎣
⎤∂+ ⎥∂ ∂ ⎦

∂⎛ ⎞+ ⎜ ⎟∂⎝ ⎠
where Tr  denotes the trace of the matrix. Ñ 

Necessary and sufficient conditions under which 
the system (2)  is ESMS are derived in [4] using 
some appropriate Lyapunov operators. 

Throughout the paper 2[0, )L ∞  denotes the 
space of measurable functions ( ) , 0f t t ≥  with  

( )2

22

0

:
L

f E f t dt
∞⎡ ⎤

= < ∞⎢ ⎥
⎣ ⎦
∫  

and 2  denotes the space of the random vectors 
( ) , 0,1,...g i i =  with the property  

( )2

22

0
:

i
g E g i

∞

=

⎡ ⎤= < ∞
⎣ ⎦∑  . 

If the additive white noise components in (2) are 
missing, namely if 0G =  and 0dG = , one 
obtains a system which will be denoted by T  
with the inputs v  and dv . If the system (2) is 
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ESMS then for all 2[0, )v L∈ ∞  and 2
dv ∈  its 

solution ( ) , 0x t t ≥  has the property that 

( ) 2[0, )x t L∈ ∞  (see e.g. [13]), ( ) 2[0, )z t L∈ ∞  

and ( ) 2
dz i ∈ . Then one can consider the input-

output operator T  associated with the system T  
defined as 2 2 2 2: [0, ) [0, ) ,L LT ∞ × → ∞ ×  

( ) ( ), , .d dv v z z  The norm T  of this input-
output operator will be analyzed in the next 
section.  

3 The  2 /H H∞  Performance for ESMS 
Systems with Jumps and Multiplicative 
White Noise  

As it is already known from the deterministic 
framework, the computation of the mixed 2H  
and H∞  performance ([1], [2]) implies to solve 
the following optimization problem: 

( ) ( )( )2 2 2 2

2 2 2 22
0 ,sup

d d dv v L L
J z z v vγ= + − +  

                                                                         (3) 

where  ( ) 2 2, [0, )dv v L∈ ∞ ×  and Tγ > , T  
denoting  the input-output operator  defined 
above. Note that if v  and dv  are ignored, 0J  
corresponds to the norm induced from ( ), dη η  

to ( ), dz z  which represents the 2H -type norm 
of the system (2). Similarly, if η  and dη  are 
ignored then 0J  corresponds to the H∞  
performance of (2).  

The main result of this section is given by the 
following theorem: 

Theorem 1. The optimum in (3) is given by: 

( )( ) ( )( )0
0

1 h
T T

d dJ Tr G X ih G Tr G X t G dt
h

−= + ∫    

(4) 
where ( )X t  denotes the stabilizing solution of 
the system of coupled Riccati-type equations: 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( )( ) ( )

0 0 1 1

2

12

,

, 0,1,...

T T

T T

T T
d d d d

T T
d d d d

T
d d

X t A X t X t A A X t A

X t HH X t C C t ih

X ih A X ih A A X ih H

I H X ih H H X ih A

C C i

γ

γ

−

−

−

− = + +

+ + ≠

= +

× −

+ =

(5) 

Remark 1. (i) By definition, a solution 
( ) , 0X t t ≥  of (5) is called stabilizing if it is 

symmetric and it satisfies the following 
conditions: 

(a) ( )2 0, 0,1,...T
d dI H X ih H iγ − > =  

(b) The linear system with jumps and with 
multiplicative white noise: 

( ) ( ) ( ) ( )
( ) ( )

0 1 ,

, 0,1,...d

dx t x t dt A x t d t t ih

x ih x ih i

A

A

ξ
+

= + ≠

= =
 (6) 

is ESMS, where 
( )

( )( )
( )

2
0 0

12

:

:

.

T

T
d d d d d

T
d d

A HH X t

A H I H X ih H

H X ih A

A

A

γ

γ

−

−

= +

= + −

×

 

(ii) The stabilizing solution of (5) is h -periodic 
and right continuous. 

Theorem 1 was proved using the Itô’s formula 
applied for the function  

( )( ) ( ) ( ) ( )Tv x t x t X t x t=  where ( )x t  is the 

solution of (2) and ( )X t  denotes the stabilizing 
solution of the system of Riccati-type equations 
(5). 

4 Mixed 2 /H H∞  Optimal State-Feedback 
Control for Stochastic Systems with Jumps 
and Multiplicative White Noise 
Based on the result presented in the previous 
section one can state the following state-
feedback 2 /H H∞  optimization problem: given 
the system with jumps and with multiplicative 
white noise 
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( ) ( ) ( )( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

0 1

,

, 0,1,...

,

d d d d

d

dx t A x t Hv t dt A x t d t

G t t ih

x ih A x ih B u i G i i

z t Cx t

z i u i

ξ

η

η+

= + +

+ ≠

= + + =

=

=

(7) 

determine the discrete-time control 
( ) ( ) ,u i Fx ih=  0,1,...i =  such that the closed 

loop system 
( ) ( ) ( )( ) ( ) ( )

( )
( ) ( ) ( ) ( )
( ) ( )
( ) ( )

0 1

,

, 0,1,...d d d d

d

dx t A x t Hv t dt A x t d t

G t t ih

x ih A B F x ih G i i

z t Cx t

z i Fx ih

ξ

η

η+

= + +

+ ≠

= + + =

=

=

(8) 

is ESMS and the following conditions are 
fulfilled: 

(i) The input-output operator obtained for    
( ) 0tη ≡  and ( ) 0d iη ≡  has the norm less 

than a given 0γ > ; 
(ii) The performance index: 

( )2 2 22

2 2 22
[0, )

supF dL Lv L
J z z vγ

∈ ∞
= + −    (9) 

 is minimized.   

Remark 2. In the first equation of the system 
(7) the continuous-time control ( )u t  is missing. 
This particular structure of the system (7) 
corresponds to the one obtained when 
representing a sampled-data system as a system 
with jumps. Such representation can be 
obtained for the continuous-time stochastic 
system corrupted with multiplicative white 
noise: 

( ) ( ) ( )( ) ( ) ( )0 1dx t A x t Bu t dt A x t d tξ= + +  
with the piecewise-constant  control 

( ) ( ) ( )(, , 1 , 0,1,...u t Fx ih t ih i h i= ∈ + =⎤⎦  
by introducing the additional state x  defined in 
(1) with ( ) ( ), 0,1,..u i Fx ih i= =  Thus, using the 

continuity of ( )x t at , 0,1,...ih i =  one gets the 
extended system with jumps and multiplicative 
white noise: 

( ) ( ) ( ) ( )
( ) ( ) ( )

0 1 ,

, 0,1,...
e e e e e

e de e de

dx t A x t dt A x t d t t ih

x ih A x ih B u i i

ξ
+

= + ≠

= + =
 (10) 

with   
1

0 1

0
: , : , : ,

0 0 0 0

0 0
: ,

0 0

e e e

de de

x A B A
x A A

x

I
A B

I

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

in which the continuous-time control variable is 
missing.   
  
The solution of the state-feedback to the mixed 

2 /H H∞  optimisation problem formulated 
above is given by the following result. 

Theorem 2. Assume that the following system of 
coupled Riccati-type equations 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( )( ) ( )

0 0 1 1

2

12

,

,

0,1,...

T T

T T

T T
d d d d

T T
d d d d

X t A X t X t A A X t A

X t HH X t C C t ih

X ih A X ih A A X ih B

I B X ih B B X ih A

i

γ

γ

−

−

−

− = + +

+ + ≠

= −

× +

=

(11) 

has a stabilizing solution ( )X t . Then the 
optimal solution of the state-feedback mixed 

2 /H H∞  problem for the system (7) is given by 

( ) ( ) ,u i Fx ih=  0,1,...i =  with 

  ( )( ) ( )12 T T
d d d dF I B X ih B B X ih Aγ

−
= − +  .(12) 

Proof. Note first that F  given by (12) is 
constant since the stabilizing solution ( )X t  is 
h -periodic. Further, one can prove that the 
stabilizing solution has the property 

( ) ( ) , 0FX t X t t≤ ≥                    (13) 

where ( )FX t  denotes the stabilizing solution of 
the Riccati-type system of form (5) associated 
with the closed loop system (8) obtained for an 
arbitrary stabilizing state-feedback gain F , 
namely: 
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( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )( )

0 0 1 1

2 ,

, 0,1,...

T T
F F F F

T T
F F

T

d d d dF F

T

X t A X t X t A A X t A

X t HH X t C C t ih

X ih A B F X ih A B F

F F i

γ −

−

− = + +

+ + ≠

= + +

+ =

    

                                                                       (14) 
The proof of (13) is mainly based on the same 
arguments used in [2] to prove the similar result 
for systems without multiplicative white noise, 
and therefore it is omitted. On the other hand, 
by direct algebraic computations one can show 
that the Riccati-type system (11) coincides with 
(14) for F F=  with F  given by (12). Then 
taking into account the expression (4) of the 
mixed 2 /H H∞  performance one concludes that 
F  minimizes (9) . The fact that the input-output 
operator obtained for ( ) 0tη ≡  and ( ) 0d iη ≡  
has the norm less than γ  is a direct consequence 
of the Bounded Real Lemma applied for (14) 
with F F= . Ñ 
 
A natural problem arising when determining the 
optimal state-feedback gain (12) is the 
computation of the stabilizing solution of (11). 
The next result provides an iterative procedure 
allowing to compute this stabilizing solution.  
 
Proposition 1. Assume that the system of 
coupled Riccati-type equations (11) has a 
stabilizing solution. Then it can be determined 
by the following iterative procedure: 

( ) ( )
( ) ( )( )

( )

( ) ( ) ( )( )

0 0

0 0

0 0

1 1

2

0

1 1
0

1 1

T

T

T

A h A h
k k

h
A s A sT T

k k

h
A s A sT

k

T
k d d k k d d k

X ih e X ih e

e C C X s HH X s e ds

e A X s A e ds

X ih A B F X ih A B F

γ

−
+ +

−

−
+ +

=

+ +

+

= + +

∫

∫

                                                                       (15) 
with 

( )( ) ( )1T T
k d k d d k dF I B X ih B B X ih A

−
= − + , 

0,1,...k =  where ( ) ( )0 0, 0,X t t h= ∈ , 0F  is a 
stabilizing gain for the system (7). Ñ 
 

Remark 3. In order to apply the iterative 
procedure given in the statement of Proposition 
1 one first substitutes ( )1kX ih+  given by the first 
equation (15) into the second one which is 
solved with respect with ( )1kX ih−

+ . Then 

( )1 , [0, )kX t t h+ ∈  is obtained as the solution of 
the differential equation in (11) with the final 
condition ( )1kX ih−

+ . 

5  A Digital Automatic Landing System 
Design 

In this section one illustrates the previous 
theoretical developments by a case study in 
which the design problem of a digital automatic 
landing system is considered. It is a known fact 
that landing is the most demanding among all 
aircraft flight phases. The difficulties are 
determined by the fact that during landing the 
aircraft flies at a low speed and low altitude at 
which accidents are more likely to occur. In the 
same time important uncertain factors as 
atmospheric turbulence can severely influence 
the motion of the aircraft. The airplane landing 
can be accomplished by coupling an automatic 
landing system able to track the reference 
signals corresponding to the glide path. The aim 
of this case study is to design using the results 
derived in the previous sections, a digital 
automatic landing system providing together a 
zero order hold element a piecewise-constant 
control such that the aircraft tracks the desired 
trajectory. A linear continuous-time model of a 
modern aircraft with independent control 
surfaces has been used [14]. The state vector 
includes ten states and the control vector has 
five components. The state variables are 
assumed to be obtained either by direct or by 
indirect measurement. The aircraft dynamics 
has been augmented with integral and derivative 
components of the tracking errors , he eβ  and 

late  representing the sideslip angle errors, 
altitude error and lateral error, respectively (for 
details, see [14]). One thus obtains an 
augmented system with the state vector 

15
ax ∈  and with six exogenous inputs (three 
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for the reference signals and three for the 
atmospheric turbulence). A digital state-
feedback controller has been then determined 
for this augmented system. Using the idea 
presented in Remark 2, one firstly determined a 
system with jumps for which the optimal 
solution to the mixed 2 /H H∞  problem was 
obtained by Theorem 2 and Proposition 1. Some 
of the simulation results under vertical wind 
shear and lateral turbulence obtained for the 
sampling period 0.05sech =  are presented in 
Fig. 2-5.     
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time[s]
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Fig. 2. Time response of altitude tracking error 
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Fig. 3. Time response of altitude 
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Fig. 4. Time response of lateral tracking error 
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Fig. 5. Time response of the sideslip angle error 

The above responses indicate a very good 
behavior of the aircraft on the glide path under 
strong vertical and lateral winds.  

Then the influence of the sampling period h  
over the stability of the closed loop system has 
been analyzed. In Table 1 some comparative 
results are presented. They have been obtained 
with the state-feedback gains F  computed for 
different sampling periods h  using the results 
described in Section 4 and with the state-
feedback gain cF  determined in [14] by a 
continuous-time design method.  

Table1: stability of the closed loop system with 
respect to the sampling period 

[sec]h 0.05 0.01 0.3 0.5 1 
cF  stable stable stable unstable unstable

F  stable stable stable stable stable 

One can see that even for large values of the 
sampling period, the design procedure based on 
the representation of sampled-data systems by 
systems with finite jumps provides stabilizing 
solutions. 

6  Conclusions 

A mixed 2 /H H∞  state-feedback control 
problem for a class of systems with jumps and 
with multiplicative white noise has been 
analyzed. It was shown that the optimal solution 
of this problem depends on the stabilizing 
solution of a specific system of coupled Riccati-
type equations that can be solved using an 
iterative procedure. To demonstrate the 
proposed approach a state-feedback automatic 
landing controller was designed and analyzed 
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with respect to the stability and tracking 
performances.  
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