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Abstract

This paper examines the proposed integrated
backstepping design of missile guidance and con-
trol to the engagement of manoeuvring targets.
To control engagement geometry, impact-angle-
control guidance (IAGC) is analysed in two di-
mensional geometry. The integrated backstep-
ping design with disturbance observer is then de-
veloped and interpreted in view of stability and
robustness. The performance of designed algo-
rithm is verified via numerical simulation.

Nomenclature

α Angle-of-attack (AOA)
q Angular pitch rate
Az Acceleration tangent to bodyz-axis
δ Actuator deflection angle for pitch control
CD0 Zero-lift drag coefficient
U Velocity along bodyx-axis
Q̄ Dynamic pressure
m Mass
Iyy Inertia of bodyy-axis
S Reference surface
dre f Reference code
η Actuator deflection angular rate

1 Introduction

Over the recent past, the tendency of guidance
system has been to rely more on precision and
manoeuvrability with small warhead than on
large missiles with a large warhead [1], [2]. Both
of missile and guided weapon system have be-
coming more accurate and sophisticated based
on development of sensor technology and con-
trol theory, but the targets have also become more
intelligent and stealthy. Thus, it is required to
design an aerial system which has high-angle-of-
attack manoeuvrability and operation capability
over a broad flight envelop, and to design bet-
ter guidance algorithms that can intercept smaller
and more manoeuvrable targets that are difficult
to detect and track. Robustness about model er-
rors has been primary check point for modern
control design owing to high-angle-of-attack sta-
bility variation, pitch-roll-yaw coupling effects,
and nonlinear aerodynamics with uncertainties
cased by expanded covering range of missiles.
Moreover, because of the reliance on more pre-
cision and smaller warheads, the endgame ge-
ometry has also become more important to en-
able aim-point selection and approach direction
to be controlled. These trends require greater
control of the engagement trajectory for the ter-
minal guidance phase. Traditional Proportional
Navigation does not allow for the control of the
trajectory, but is not-the-less a robust solution.
Hence there is a need for equally robust guidance
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solutions that allow for greater flexibility in the
engagement trajectory.

First contribution of this paper is analysis and
interpretation of proposed impact-angle-control
guidance (IACG) that will ensure manoeuvring
target interception and achieve the desired impact
angle. The purpose of IACG is to design missile
guidance law which can intercept target and con-
trol engagement geometry [9]. IACG has been
widely studied and used to satisfy the flight path
angle constraint for several reasons [10], [11].
For anti-ship or antitank missiles, the terminal
impact angle is important for warhead effect. Es-
pecially, it is well known for missiles that vertical
impact on the target can reduce the miss distance
produced by navigation errors. It can also be gen-
eralized for an unmanned aerial vehicle which
has flight-path constraints depending on its mis-
sion.

Second contribution is integration the pro-
posed IACG and control law using backstepping
control method. Although there are numerous
methods to produce an entire system of guid-
ance and control, it is typical and dominant to
design each component separately and then in-
tegrate them for complete system [4]. However,
integrated design of guidance and control has at-
tracted considerable attention for a recent decade
[3], [4], [7], [13], [12]. Integrated guidance and
control methodology not only improve hitting
performance but also it is powerful to design ro-
bust control law when a model has disturbances
and uncertainties [3], [4].

Final Contribution of this paper is study for
implementation issues and analysis for robust-
ness of proposed algorithm. For real application,
it is important how simply the algorithm is imple-
mented and how robustly the proposed method
keeps reasonable performance under big uncer-
tainties. The algorithm should not be compli-
cated and the sensor information should not be
difficult to measure for simple and practical im-
plementation [6]. Thus, state estimation has been
another important issue for integrated guidance
and control [5], [14]. In this paper, it is assumed
the sensor tracking the target, either in the mis-
sile nose or as a third party sensor, will give the

following information:

1) Range

2) Range rate

3) Line of sight angle

4) Line of sight angle rate

In real application of missile guidance, these pa-
rameters have been used because we can mea-
sure. Every guidance and control command
is composed by simple multiplication of above
information and missiles motion information.
Moreover, high order sliding mode disturbance
observer is considered in order to guarantee ro-
bustness. The effectiveness and applicability
of the proposed integrated guidance and control
logic is verified by numerical simulations. The
longitudinal dynamics of the missiles and kine-
matics of engagement geometry are used.

2 Missile Model

Linearised missile dynamics in a pitch plane are
given by:

α̇ = Zαα+Zδδ+q+∆α
q̇ = Mαα+Mqq+Mδδ∆q

Az = (Zαα+Zδδ)U (1)

with:

Zα = −Q̄S
m

(CD0 +CLα)

Zδ = −Q̄S
m

CLδ

Mα =
Q̄Sdre f

Iyy
Cmα

Mq =
Q̄Sd2re f

Iyy
Cmq

Mδ = −Q̄Sdre f

Iyy
Cmδ (2)

whereCX represents the static or dynamic aero-
dynamic derivatives, i.e.,CLα is the derivative of
the lift coefficient w.r.t. α, and∆α and ∆q are
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unknown aerodynamics and nonlinear dynamics
term. In order to design a guidance and control
law of missile, which kinds of measurements are
available is important. Basically, a normal mis-
sile has accelerometers and rate gyros sensors to
measure the own motion information. When it is
assumed that the missile is equipped only these
sensors, state equation (39) can be rewritten as:

Ȧz = Z̄AAz+ Z̄qq+ Z̄ηη+∆Az

q̇ = MAAz+Mqq+Mδδ+∆q (3)

with:

Z̄A = Zα, Z̄q = UZα, Z̄η = UZδ

M̄A =
Mα

UZα
, M̄q = Mq, M̄δ = (Mδ−

MδZδ
Zα

)

(4)

where∆Az is unknown disturbance term for the
accelerationAz dynamics. Note that the term̄Zηη
is related to nonminimum phase characteristics,
and the actuator deflection angular rateη is diffi-
cult to be measured. Therefore, missile dynamics
equation (3) can be reintroduced under assump-
tion that the unknown disturbance∆Az includes
the term, in the form:

Ȧz = Z̄AAz+ Z̄qq+∆Az

q̇ = MAAz+Mqq+Mδδ+∆q (5)

3 Guidance Strategy

3.1 Homing Guidance

Consider a planar engagement scenario of two
vehicles shown in Fig. 1. The two-dimensional
(2-D) point mass model is used in homing guid-
ance problem for the simplicity. In this figure,
subscript M and T denote motion information of
the missile and target, respectively, i.e.,vM and
vT represent velocity vector of the missile and
target. And,ρ means the relative distance,λ and
γ represent the line-of-sight (LOS) angle and the
flight path angle, respectively. The I-frame is the
inertial reference frame and all information of the

λ
Mγ

MV

MA

TV

ρ

IX

Target

Missile

Tγ
TA

Vλ

Fig. 1 Guidance geometry

motions of vehicles is described with respect to
the inertia reference frame.

From the missile guidance geometry shown
in Fig. 1, the relative distance of the follower with
respect to the target and LOS angle are obtained
as:

ρ =
√

ρ2
X +ρ2

Y (6)

λ = tan−1 ρY

ρX
(7)

whereρX = ρcosλ andρY = ρsinλ. Under as-
sumption of constant speed of the missile and tar-
get, kinematics of missile to range and LOS angle
are governed by:

ρ̇ =
ρXρ̇X +ρYρ̇Y

ρ
= VT cos(γT −λ)−VM cos(γM−λ)

λ̇ =
ρXρ̇Y−ρYρ̇X

ρ2

=
VT sin(γT −λ)−VM sin(γM−λ)

ρ

γ̇T =
AT

VT

γ̇M =
AM

VM
(8)

In conventional homing guidance using propor-
tional navigation (PN) concept, a guidance law
is designed to make and maintain LOS rateλ̇ as
zero because it is possible to intercept a target
when LOS angle is sustained as constant. Simi-
larly, if zero effort transversal miss distance per-
pendicular to LOS [1] becomes zero during total
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homing phase, a missile can accomplish the hom-
ing mission. To design a guidance law for inter-
ception, new sliding manifoldσ is introduced as
equation (9) in this report.

σ ≡ Vλ =
ZEMPLOS

tgo

= ρλ̇ (9)

ZEMPLOS = tgoρλ̇

wheretgo, ZEMPLOS, andVλ are time-to-go, zero
effort transversal miss distance, and a relative ve-
locity normal to LOS, respectively. Note that the
sliding manifold has to be zero to intercept a tar-
get. Let us consider Lyapunov candidate function
in order to guarantee homing to the target:

VPROP=
1
2

σ2 (10)

The governing dynamic of the proposed sliding
manifold derived as:

σ̇ = ρ̇λ̇+ρλ̈
= −ρ̇λ̇+Aλ (11)

Aλ = ρλ̈+2ρ̇λ̇ (12)

Thus, the time derivative of Lyapunov candidate
function Eqn. 10 is derived as:

V̇PROP = Vλσ̇
= σ(−ρ̇λ̇+Aλ) (13)

SinceV̇PROP should be negative definite with re-
spect toσ for asymptotical stability,Aλ is taken
as:

Aλ = ρ̇λ̇−K1Vλ (14)

Substituting of equation (14) into equation (13)
yields:

V̇PROP = −K1V
2
λ

≤ 0 (15)

Traditional PNG acceleration command,VPNG,
also can be one of candidate to satisfy equa-
tion (13) as:

V̇PNG = −(N−1)
V2

λ
tgo

≤ 0 (16)

Since tgo decreases to zero in homing phase,
VPNG of equation (16) in initial homing phase is
much closer to zero than that of the final. IfK1

is set toN− 1, VPNG is larger thanVPROP until
tgo becomes 1 second. It means that theVλ con-
vergence speed of the proposed guidance com-
mand is faster than the speed of PNG in initial
guidance phase. Moreover, proposed accelera-
tion command of final homing phase is within
acceptable bound, while PNG generally deduce
large or saturated homing acceleration command
in final homing phase.

3.2 Impact Angle Control

Impact angleθi is defined as the angle between
two velocity vectors at the interception point:

θi = γM(t f )− γT(t f ) (17)

wheret f is the impact time, i.e., the time at the
interception point. Since a IACG must guarantee
homing and the same impact angle with desired
one simultaneously, it is necessary to define two
coupled sliding surfaces for designing a IACG
using the backstepping method. Whilst both the
first time derivatives of equation (9) and (17) in-
clude same guidance command, it is impossible
to define these two equations as sliding surfaces
because they are decoupled.

In order to find a new sliding surface for a
IACG, in other words homing guidance with ter-
minal angle constraint, consider the engagement
geometry of the missile and target as shown in
Fig. 2. From the figure, it is obvious that the im-

λ

Mγ
MV

TV

IX

Target

Missile

β

Tγ
iθ Interception point

Fig. 2 Engagement geometry
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pact angle can be controlled by setting the desired
LOS angle. In this paper, a sliding surface corre-
sponding to the impact angle is introduced as:

σ1 = λ−λc (18)

When there is no lateral acceleration of the target,
λc is given by [9]:

λc = γT +β (19)

whereβ is a new parameter determined by the
impact angle. As shown Fig. 2, under assump-
tion that the velocities of the missile and target
are constant, applying sine rule to the geometry
of the interception course provides a matching
condition to findβ:

τ
sinβ

=
1

sin(β−θi)

τ =
VM

VT
(20)

And, from this equation, we have:

β = tan−1
(

τsinθi

τcosθi−1

)
(21)

Hence, for IACG, two sliding surfaces are pro-
posed as:

σ1 = λ−λc

σ2 = Vλ (22)

If there is target’s lateral acceleration, the en-
gagement geometry is different from Fig. 2 soλc

has to be different from equation (19). This prob-
lem will be considered in our future work.

Backstepping control design is a recursive
procedure, which breaks down the control prob-
lem into a sequence of lower-order control prob-
lems and determines the virtual control inputs
providing the Lyapunov stability for each sub-
problem and overall system. In order to design
the IACG which can guarantee the stability of the
guidance system, a backstepping control method
is considered. The main idea of backstepping is
to introduce pseudo control for Lyapunov stabil-
ity. In this paper, the new residual variablesz1, z2

and virtual control statesσ2c is proposed as:

z1 = σ1

z2 = σ2−σ2c (23)

The first time derivative of the residual variables
are given by:

ż1 =
z2

ρ
+

σ2c

ρ
− λ̇c

ż2 = −ρ̇λ̇+Aλ− σ̇2c (24)

The stability of the guidance algorithm can be de-
termined by use of a simple Lyapunov function of
the form:

VIACG =
z2
1

2
+

z2
2

2
(25)

For stability, the time derivative of the function
VIACG has to be negative semi-definite. Thus,σ2c

andAλ is proposed as:

σ2c = ρλ̇c−K1z1

Aλ = σ̇2c + ρ̇λ̇− z1

ρ
−K2z2 (26)

whereK1, K2 are positive. Substituting this equa-
tion into the time derivativėVIACG yields:

V̇IACG = −K1z2
1−K2z2

2

≤ 0 (27)

This equation represents the proposed IACG sys-
tem is stable.

4 Integrated Guidance and Control Law

4.1 Backstepping Control Design

In order to design the integrated missile intercep-
tion guidance and control , the backstepping con-
trol method is also considered in this section. It
is necessary to redefine plant dynamics for inte-
grated backstepping design of missile guidance
and control. For the new dynamics of backstep-
ping design, the first time derivatives of the slid-
ing surfaces are reintroduced:

σ̇1 = λ̇−∆σ1

σ̇2 = −ρ̇λ̇+Az+∆σ2 (28)

where∆σ1 and∆σ2 denote uncertainties produc-
ing by unconsidered target acceleration such as
the target acceleration, axis transformation error,
etc.. Note that the second sliding manifoldσ2
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is redefined with respect to the acceleration im-
plied in a direction of body z-axis and all errors
caused by the redefinition is considered in∆σ2.
Similarly, considering uncertainties or parame-
ters which are difficult to measure such as the ac-
tuator deflection angular rateη gives the equation
of motion rewritten as:

ẋ1 =
x2

ρ
+∆σ1

ẋ2 = −ρ̇λ̇+x3 +∆σ2

ẋ3 = Z̄Ax3 + Z̄qx4 +∆Az

ẋ4 = M̄Ax3 + M̄qx4 + M̄δδ+∆q (29)

where:

x = [x1 x2 x3 x4]T

= [(λ−λc) Vλ Az q]T (30)

For the backstepping design, the new residual
variablesz1, z2, z3 and virtual control statesxc

are proposed as:

z1 = λ−λc = x1

z2 = Vλ−Vλc = xc−x2c

z3 = Az−Azc = x3−x3c

z4 = q−qc = x4−x4c (31)

Here, the equilibrium point of this system is the
origin. Futhermore, the derivatives of the residual
variables are obtained by:

ż1 = −ρ̇λ̇+z2 +∆σλ +x2c

ż2 = Z̄Ax2 + Z̄qz3 +∆A′z+ Z̄qx3c− ẋ2c

ż3 = M̄Ax2 + M̄qx3 + M̄δδ+∆q− ẋ3c (32)

Let us consider the simple Lyapunov function
candidateV to analyse the stability of the system:

V =
z2
1

2
+

z2
2

2
+

z2
3

2
+

z2
4

2
(33)

In order to makėV negative definite,x2c, x3c, x4c,
andδ are introduced as:

x2c = ρ∆σ̂1−K1z1

x3c = ρ̇λ̇−∆σ̂2− z1

ρ
−K2z2

x4c =
1
Z̄q

[
ẋ3c− Z̄Ax3−∆Âz−z2−K3z3

]

δ =
1

M̄δ

[
ẋ4c− M̄Ax3− M̄qx4−∆q̂− Z̄qz3−K4z4

]

(34)

where∆σ̂1, ∆σ̂2, ∆Âz, and∆q̂ are the estimations
of ∆σ1, ∆σ2, ∆Az, and ∆q. Substituting equa-
tion (34) into the time differentiation ofV yields:

V̇ =−K1z2
1−K2z2

2−K3z2
3−K4z2

4

+∆σ̄1z1 +∆σ̄2z2 +∆Āzz3 +∆q̄z4

=−a+b (35)

where:

a =−K1

(
z1− ∆σ̄1

2K1

)2

−K2

(
z2− ∆σ̄2

2K2

)2

−K3

(
z3− ∆Āz

2K3

)2

−K4

(
z4− ∆q̄

2K4

)2

b =
∆σ̄2

1

4K1
+

∆σ̄2
2

4K2
+

∆Ā2
z

4K3
+

∆q̄2

4K2
4

(36)

And:

∆σ̄1 = ∆σ1−∆σ̂1

∆σ̄2 = ∆σ2−∆σ̂2

∆Āz = ∆Az−∆Âz

∆q̄ = ∆q−∆q̂ (37)

Generally, the first time derivative of Lyapunov
function candidate should be negative definite to
guarantee stability of the dynamic system for in-
terception. However,for this system, it is possible
to prove that this system is always bounded to
the convergent sphere,a = b, from the condition
given by:

{
V̇ ≤ 0 for a≥ b
V̇ > 0 for a < b

(38)
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As shown in equation (35), the performance
of integrated guidance and control logic are sen-
sitive to the value of unknown disturbance esti-
mation;∆σ̂1, ∆σ̂2, ∆Âz, and∆q̂. Well estimated
unknown disturbance can help to alleviate the
degradation of the tracking performance. There-
fore, the disturbance estimator algorithm is intro-
duced in the next section.

5 Sliding Mode Disturbance Observer

As described previous section, the performance
of the suggested integrated guidance and control
law using backstepping control can be signifi-
cantly degraded due to the big modelling inac-
curacies. In this section, the sliding mode dis-
turbance observer is introduced in order to solve
this problem. Consider following first order sys-
tem dynamic to understand the proposed method
that apply robust disturbance observer to the for-
mation guidance law:

ẋ0 = f0(x,u)+d0

ẋ = f0(x,u)+d

x = x0 +ξ (39)

wherex0 andx are measurable state without mea-
surement noise and with it,f0(x,u) is the known
function of state and control, andd0 and d are
unknown disturbance term without the noise and
with that. In the ref. [8], arbitrary-order exact
robust differentiator is introduced and stability
and bounndness of the proposed differentiator is
proved in the case thatξ ∈ [−ε ε] is Lebesque-
measurable noise. Modification of the robust dif-
ferentiator is allow to design a sliding mode dis-
turbance observer for estimation ofd0. In this
paper, the sliding mode disturbance observer is
proposed in the form:

ṡ0 = ν0 + f0(x, u)

ν0 = −κ0|s0−x|n/(n+1)sign(s0−x)+s1

ṡ = ν1

ν1 = −κ1|s1−ν0|(n−1)/nsign(s1−ν0)+s2
...

ṡn−1 = νn−1

νn−1 = −κn−1|s0−x|1/2sign(sn−1−νn−2)+sn

ṡn = −κnsign(zn−νn−1) (40)

As introduced in ref. [8], define functionsπ0 =
s0− x0(t), π1 = s1− do(t), π2 = s2− ḋ0(t), · · · ,
πn = sn−d(n−1)

0 , ξ = x− x0. Then any solution
of equation (40) satisfies the differential inclusion
understood in the Filippov sense, such that:

π̇0 = ν0 + f0(x,u)− f0(x,u)−d0

= −κ|π0 +ξ(t)|n/(n+1)sign(π0 +ξ(t))+π1

(41)

and:

π̇1 = −κ1|π1− π̇0|(n−1)/nsign(π1− π̇0)+π2
...

π̇n−1 = −κn−1|πn−1− π̇n−2|1/2

sign(πn−1− π̇n−2)+πn

π̇n ∈ −κnsign(πn− π̇n−1)+ [−L, L] (42)

Although the observer is modified from the dif-
ferentiator in ref.[8], these equations are the
same as the differential inclusion in the reference.
Therefore, the stability and boundness of the pro-
posed observer can be derived in the exactly same
way as the reference’s:

Theorem 5.1 The parameters being properly
chosen, the following equalities are true in the
absence of input noise after a finite time of a tran-
sient process

s0 = x0(t); si = vi−1 = d(i−1)
o (t), i = 1, · · · ,n

(43)

Proof.See the ref. [8].

Theorem 5.2 Let the input noise satisfy the in-
equality:

|x(t)−x0(t)| ≤ ε (44)

Then the following inequalities are established in
finite time for some positive constantsµi , ςi de-
pending exclusively on the parameters of the ob-
server:

|s0−x0| ≤ µ0ε,

|si−d(i−1)
0 | ≤ µiε(n−i+1)/(n+1), i = 1, · · · ,n

|vi−d(i)
0 | ≤ ςiε(n−i)/(n+1), i = 0, · · · ,n (45)
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Table 1 Initial conditions for the simulation

Missile Target

position(km,km) (0, 0) (4, 1)
Bearing angle(deg) 0 30
Ground speed(m/s) 300 100

Proof.See the ref. [8].

From the theorems, it is clear thats1 converges
to d0 in a finite time. Moreover, the convergent
sphere of the proposed integrated algorithm with
the observer in the absence of noises converges
into stable point[0, 0, 0]T .

6 Engagement Simulation

The effectiveness and applicability of the pro-
posed integrated guidance and control logic is
verified by numerical simulations. The longitu-
dinal dynamics of the aerial vehicle and dynam-
ics of engagement geometry are used. The mis-
sile and target velocity is assumed to be constant
and two different evasive manoeuvres of the tar-
get, 0g and 1g acceleration, are considered. The
initial conditions for the engagement simulation
are given in Table 1. And, three desired impact
angles,0(deg), 45(deg), and90(deg), are con-
sidered in the numerical simulation. The aerody-
namic characteristics missile is listed as follows:

Zα =−0.6, Zδ =−0.116

Mα =−30, Mq =−1.8, Mδ =−80 (46)

It is assumed that the actuator model used for
simulation has a first order lag dynamics with the
deflection limit±30deg:

δ
δc

=
100

s+100
(47)

The proposed guidance and control algorithm
with the high order disturbance observer is ap-
plied in order to validate its performance, and the
results are represented in Table 2, Fig. 3, and Fig.
4. The trajectories for each desired impact angle

Table 2 Impact angle

Desired Value 0g Case 1g Case

0(deg) -0.02(deg) 0.92(deg)
45(deg) 44.79(deg) 50.01(deg)
90(deg) 89.14(deg) 95.85(deg)
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Fig. 3 Trajectories with 0g acceleration of the target
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Fig. 4 1
2σ2

1 with 1g acceleration of the target

is depicted in Fig 3 when there is no target’s eva-
sive manoeuvre and real impact angles are repre-
sented in the table. As shown in the figure and
table, the proposed integrated guidance and con-
trol algorithm guarantees that it can intercept the
target with the specific terminal angle constraint
under certain conditions. Meanwhile, in order to
check that it is essential to considerλc different
from equation (19), the values of1

2σ2
1 for each

case are represented in Fig. (4). From the fig-
ure and Table 2, it is obvious that the integrated
guidance and control law can not satisfy the ter-
minal angle constraint althoughσ1 converges to
zero. Therefore, as mentioned in section 3.2,λc

should be redefined when there is target’s lateral
acceleration.

7 Conclusions

In this paper, a integrated guidance and con-
trol algorithm with the terminal angle constraint
is proposed by using the backstepping control
method. And, the high order disturbance ob-
server is introduce not only to enhance the perfor-
mance of the proposed approach, but also to es-
timate parameters which are difficult to sensor or
have disturbances such as modelling errors. The
performance of the proposed algorithm is veri-
fied using numerical engagement simulation ex-

amples after analysing the stability and robust-
ness of the algorithm using Lyapunov stability
theorem. Whilst the proposed method can guar-
antee the interception satisfying the constraint for
the case that there is no acceleration of the target,
we have to consider more simulation conditions
to check the performance of the method. And, it
is necessary to redefine theλc for the case that
there is target’s lateral acceleration.
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