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Abstract

To investigate the aeroelastic effects of a flexi-
ble and oscillating airfoil, the numerical analysis
of such lightweight structures is described in this
contribution. Due to the interaction of the fluid
flow with the structural system, a multiphysical
approach is employed here, were the jig-shape
of the airfoil needs to be calculated. Further, the
analysis of low-Reynolds-number flows past this
flexible and flapping airfoil is presented where
transition from laminar to turbulent flow takes
place along a laminar separation bubble. To pre-
dict the point of transition, a linear stability solver
fully coupled to an unsteady Reynolds-averaged
Navier-Stokes flow analysis code is utilized. Re-
sults of the simulation of the airfoil’s flapping
motion in air are presented for specific parame-
ters and discussed in detail.

1 Introduction

To extend the area of application for future mi-
cro air vehicles (MAV), the flight speed range
needs to be increased. The flapping wing flight
inspired by birds locomotion is one way to reach
this demand. Both necessary flight forces - lift
and thrust - are generated by pitching-plunging
mechanism. Here, for simplification a two-
dimensional airfoil is investigated first and the
question arises if flexibility of such an airfoil is

advantageous for the propulsion efficiency. In
this paper this issue is addressed and further, the
aerodynamics of flapping wing propulsion is still
not adequately understood and needs to be inves-
tigated.

The size of the MAVs airfoil and the low
flight speed range cause a low-Reynolds-number
flow regime. The accurate prediction of the
flow behavior using computational fluid dynam-
ics (CFD) is still challenging due to the occur-
rence of laminar-turbulent transition [1, 2, 3, 4].
This transition takes place along a laminar sep-
aration bubble, which is caused by a strong ad-
verse pressure gradient within the laminar bound-
ary layer and along the smooth aerodynamic sur-
face. The evolution of the flow from laminar to
turbulent proceeds in three stages [2]. In the first,
receptivity stage, external disturbances like free
stream turbulence or acoustic waves are trans-
formed into low disturbances with wave charac-
teristics within the boundary layer. In the sec-
ond stage, a small number of unstable waves
(Tollmien-Schlichting waves) are amplified and
grow exponentially. Their behavior can be math-
ematically described by the linear stability the-
ory [5]. In the third stage, the amplitudes of the
waves increase and a nonlinear interaction with
the boundary layer occurs. Thereby, the mean
boundary layer profile distorts and the laminar
boundary layer breaks down to turbulence.
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For the simulation of such flow phenom-
ena fully coupled with a flexible thin structure,
a high qualitative and time resolved coupling
schemes nowadays used for fluid-structure inter-
action problems is utilized [6]. The so-called par-
titioned coupling approach uses well-validated
fluid as well as structural solvers, which are
linked together within a simulation environment
by the aid of flexible data transfer libraries [7].
Four coupling aspects need to be addressed; 1)
the data transfer across non-matching interface
grids, 2) the time integration and equilibrium it-
eration of the whole coupled system, 3) the grid
deformation of the fluid grid to take the updated
geometry into account and 4) the unsteady transi-
tion location which needs to be adapted for each
deformed fluid grid. For the first aspect, a con-
servative data transfer scheme based on Lagrange
multipliers and the Galerkin discretization is de-
veloped. To save computational costs, predictors
for the next structural displacements [8] are used
for the second aspect. For the third aspect the
whole fluid grid is treated as a pseudo structural
finite element system, where the current bound-
ary displacements are applied as inhomogeneous
boundary conditions.

For the structural part of the simulation envi-
ronment, a nonlinear finite element methodology
is employed [9, 10]. The first eigenfrequency of
the structural model is validated against the de-
signed model for the wind tunnel test campaigns
[11]. For the fluid part of the simulation envi-
ronment, an unsteady Reynolds-averaged Navier-
Stokes (URANS) flow solver [12] is modified
to take the transition process into account [3].
Therefore, for the second stage of the transition
process, a linear stability solver [13] is directly
coupled to the flow solver to investigate the flow
field and especially the boundary layer of the air-
foil. The transition location on the upper and
lower side of the airfoil is calculated by compar-
ison of a critical N-factor to the N-factor com-
puted by the eN-method [14, 15]. Due to the
use of a URANS solver the first stage is empir-
ically considered by a calibration of the critical
N-factor. Further it is assumed that the third stage
is very short and that therefore the location of the
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Figure 1: Coupled computational domains

breakdown to turbulence is equal to the end of the
second stage [2].

The numerical setup for the coupled sys-
tem to simulate an oscillating and flexible air-
foil for flapping wing propulsion is presented in
this paper. This includes the partitioned cou-
pling approach as well as the transition predic-
tion method. Results from unsteady aeroelastic
analyses for specific test cases are presented and
discussed in detail.

2 Numerical Elements

Due to the nonlinearities, the physical system,
where the structure is fully coupled with the flow
field, is treated in the time domain. Using a
well validated finite element analysis tool for
the structure and a finite volume code for the
fluid, several coupling aspects have to be con-
sidered for the steady and unsteady flight case.
The basic partitioned coupling approach is nowa-
days widely used for Computational Aeroelastic-
ity [16] and some of the numerical elements used
and added in this work are discussed in the next
subsections.

2.1 Data Transfer

In general, the data transfer takes place across
nonmatching interface grids. In Fig. 1, a
schematic view of the spatial grid coupling is
shown. The structural domain is deformed with
discrete values us

Ω,i under the boundary loads
f s
Γ0,i and λi. The structural deformation us

Γ,i
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Figure 2: Transfer schemes

on the common interface Γ influences the fluid
boundary deformation u f

Γ,i and new locations of
the fluid grid nodes are evaluated with the aid of
u f

Ω,i. The new fluid grid finally leads to updated
values for λi. Here a weak formulation of the
continuity transfer condition is used:

us
Γ = u f

Γ
→

Z
Γ

λ(us
Γ−u f

Γ
)dΓ = 0, (1)

where us
Γ

and u f
Γ

are the structural and fluid dis-
placements defined on the coupling interface Γ,
and λ is the Lagrange multiplier, which weights
the jump of the interface state variables. The La-
grange multiplier has the physical meaning of a
traction force gluing both subdomains together.

By using shape function for the discrete in-
terface state variables, ui

Γ
= Ni

uui
Γ
, the Lagrange

multiplier needs to be discretized in a way that
the resulting scheme is unique solveable for the

nodal values of the fluid interface displacements
u f

Γ
. This can be carried out by the Galerkin

method, where the shape functions of the La-
grange multiplier are chosen to be the same as for
the displacements of the fluid interface, Nλ = N f

u
and Fig. 2a. The discretized version of Eq. (1)
then reads:

M f f u f
Γ

= M f s us
Γ with M f i =

Z
Γ

N f
u

T Ni
u dΓ ,

(2)
which has to be solved for u f

Γ
. The coupling ma-

trices M f f and M f s are evaluated with the aid of
a quadrature rule [6].

Alternatively, a collocation method can be
used, where the Dirac-delta function serves as
the shape function for the Lagrange multiplier,
Fig. 2b. While the latter method is advantageous,
because the integral of Eq. (1) vanishes and the
transfer equation reduces to the evaluation of the
structural shape functions at the fluid nodes, the
former shows more local accuracy of the transfer
condition [6].

From a given state transfer, the correspond-
ing load transfer is obtained in a straightforward
manner by using the transposed relation of the
state transfer. According to the principle of vir-
tual work and with the schemes described above,
conservation in the load is retained, which is es-
sential for aeroelastic problems. With:

δu f
Γ

T
f f
Γ

= δus
Γ

T fs
Γ and u f

Γ
= T us

Γ (3)

the load transfer is obtained as:

fs
Γ = T T f f

Γ
, (4)

where T is an operator which maps one variable
from one grid to another. Neglecting the forces
due to friction of the fluid flow and using the
Galerkin based transfer, the fluid pressure distri-
bution can directly be used for the load transfer:

u f
Γ

= M−1
f f Mf s us

Γ

→ fs
Γ = MT

f s M−1
f f f f

Γ
= MT

f s p f
Γ

,
(5)

which makes this scheme attractive.
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2.2 Grid Deformation

Since fluid grid generation is computationally ex-
pensive, the fluid grid needs to be deformed to
take the new structural displacements into ac-
count. Here, the grid is treated as a pseudo-
structural system, where the fluid interface dis-
placements are applied as Dirichlet boundary
conditions on this system:[

Kf
ΩΩ

Kf
ΩΓ

Kf
ΓΩ

Kf
ΓΓ

][
u f

Ω

u f
Γ

]
=

[
0
0

]
. (6)

This equation has to be solved for u f
Ω

and as an
abbreviation the mesh deformation is written as:

u f = Gu f
Γ

, (7)

where G is the grid deformation operator and u f

is the whole fluid mesh deformation vector. The
stiffness for each finite element is adapted to val-
ues depending on the minimal edge legnth. Thus,
smaller cells near the wall have a higher stiff-
ness than greater cells in the farfield. Examples
of the grid deformation including rigid body mo-
tion are depicted in Fig. 3. The matrix K needs
to be evaluated only ones at the beginning of the
computation and that here the fluid grid is treated
with plane elements rather than the widely used
spring analogy [17], which results in high quali-
tative grids for the fluid solver.

2.3 The fluid solver and the linear stability
solver

The Navier-Stokes equations are solved on
block-structured grids using an URANS fluid
solver which based on a centered finite volume
approach [12]. A five stage Runge-Kutta scheme
for integration to steady state is utilized. For tran-
sient problems the classical second order accu-
rate implicit dual time stepping method is used.
An implicit residual smoothing, local time step-
ping and a multigrid approach is applied for con-
vergence acceleration. Due to the low speed
range, a low-Mach number preconditioning is
used. The turbulence model was chosen to be the
Menter base line (BSL) k−ω model [18], due to

(a)

(b)

Figure 3: Grid deformation

the experience obtained with the SD7003 airfoil
[3]. Because the fluid grid changes in every time
step due to the grid deformation, the ALE form of
the Navier-Stokes equation is solved and the geo-
metric conservation law (GCL) is satisfies within
the flow solver. For the coupling scheme, a fluid
solver operator F is introduced as abbreviation,
which solves the fluid equations on a given fluid
grid configuration to get the fluid force on the in-
terface:

f f
Γ

= F u f . (8)

This fluid solver operator takes also the tran-
sition prediction using the eN-method into ac-
count [14, 15]. This method assumes, that the
location where the boundary layer breaks down
to turbulence corresponds to a certain amplifi-
cation number of the most unstable Tollmien-
Schlichting wave. To calculate the N-factors for
the eN-method, several values of the boundary
layer, like the velocity distribution, are trans-
ferred from the flow solver to a linear stability
solver. The frequencies of all amplified modes
are calculated and the amplification region is es-
timated [19]. For each frequency of an ampli-
fied mode the N-factor distribution is calculated
and the N-factor curve is obtained by taking the
envelope of all N-factor distributions. By com-
parison of this envelope with a critical N-factor,
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the location of transition is found. The challeng-
ing point for the partitioned coupling procedure
is the fact, that this location needs to be perma-
nently adjusted for the updated grid, which re-
sults from the grid deformation step. This critical
N-factor can simply be calculated from the given
turbulence level of the wind tunnel [20].

Practically, the transition location is calcu-
lated along a line from the leading to the trail-
ing edge. Here, this line is the mean line of the
airfoil and therefore this line need to be updated
before each fluid solver run to consider the de-
formed grid. Further the transition location is
also adapted to the updated grid, which is par-
ticularly necessary if the transition is located at
the trailing edge.

2.4 Equilibrium Iteration and Time Integra-
tion

Due to the use of a partitioned solution pro-
cedure, the nonlinear coupled system is solved
by an iterative solution procedure. This itera-
tion procedure is also required due to the quasi-
incompressible fluid acting on a high-flexible
structure, which leads to the so-called added
mass effect [21]. Utilizing further a structural
solver, which solves the structural equation by
the aid of the nonlinear finite element method to
get the structural displacements on the interface
from prescribed nodal forces:

us
Γ = S fs

Γ (9)

the structural displacement residual rus from the
current structural displacement vector to an up-
dated one can generally be written as:

rus = (S ◦T T ◦F ◦G ◦T )us
Γ−us

Γ . (10)

Eq. (10) represents the classical Dirichlet-
Neumann step, where the structural interface
state is transferred to the fluid side, followed by
the grid deformation and solving the fluid prob-
lem, followed by the load transfer and solving
the structural problem to get a new structural in-
terface state. The residual can be used in a re-
laxation step (Richardson iteration) to update the
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F n

us,n+1
Γ,k=0

1

2
6

4
8

5
73

F n+1

λ
n+1
k

Figure 4: Time integration scheme

structural interface displacements iteratively:

us
Γ,k+1 = us

Γ,k +ωrus , (11)

where ω is the relaxation parameter, which is
user-defined.

For transient analysis, the equilibrium itera-
tion described above has to be carried out in every
time step to advance the solution from time t to
t +∆t (time level n to n+1). In Fig. 4 a schematic
view of the time integration scheme is depicted,
while in step 1 a predictor for the next time level
is used to reduce the number of iterations [8, 16].
Due to the high nonlinearity of the coupled sys-
tem, the predicted displacement us,n+1

Γ,k=0 is calcu-
lated by the aid the structural solver and the load
obtained at the time level n:

us,n+1
Γ,k=0 = S n+1fs,n

Γ
. (12)

The data transfer as well as calling of the fluid
and structural analysis codes is integrated in a
flexible software environment, which provides a
user-friendly simulation workspace for the com-
putation of aeroelastic fluid structure interactions
[7].

2.5 Computational Domain

The coupled computational grids are shown in
Fig. 5. The structural domain is modelled with
the aid of layered shell elements to consider the
carbon reinforced material. The structure is de-
signed as three overlapping shells and the re-
gion of overlapping is incorporated with the aid
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Figure 5: Computational domain

of contact elements [11]. Due to the high flex-
ibility and the contact elements, the structural
subdomain needs to be solved with a nonlinear
solution scheme. The flapping motion is pre-
scribed at the quarter-chord line and the standard
Newmark time integration method is used. The
two-dimensional structured fluid grid consists of
585x129 points and the dual time stepping ap-
proach is used for time integration.

3 Results

Before the flapping flight motion is investigated,
the jig-shape of the airfoil in a steady state flight
is calculated. The jig-shape of the airfoil is
needed for the design of the structural wind tun-
nel model. Further the steady state analysis gives
a first insight into the principle behavior of the
flow field.

3.1 The Airfoil’s Jig-Shape

A gliding flight (Reynolds number Re = 105, an-
gle of attack α = 3◦) is assumed to obtain the
aerodynamic shape of the original airfoil. To get
the jig-shape of the airfoil, an iteration process
needs to be carried out similar to that of Eq. (10),
where the residual is taken as the difference to
the original airfoil. The jig-shape is depicted as
the black boundary in Fig. 6a. The obtained pres-
sure distribution of the fluid flow around the air-
foil is also seen from this figure and the pressure
distribution on the airfoil surface is depicted in
Fig. 6b. The displacement at the trailing edge is

(a) Pressure contours together with the jig-shape of the
airfoil

(b) Pressure distribution on the deformed airfoil

(c) Mach number contours and streamlines

(d) u′v′-contours

Figure 6: Analysis of the airfoil in gliding flight
(Re = 105, α = 3◦)
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calculated to 3.5% of the chord length. The lo-
cation of the transition on the upper side of the
airfoil is calculated to be at xu

t /c = 0.66. This
also can be seen from Fig. 6b, where the transi-
tion point is indicated by the pressure rise on the
upper surface at this location. The resulting tur-
bulent reattachment occurs at a location 71% of
the chord length The Mach number contours are
shown in Fig. 6c together with streamlines indi-
cating the laminar separation bubble. The corre-
sponding u′v′ contours are shown in Fig. 6d. The
u′v′ contours are chosen to be plotted because the
turbulent shear stress τ =−ρu′v′ causes transport
of momentum across the boundary layer, which
is responsible for the closure of the laminar sep-
aration bubble. The calculations were carried out
with a critical N-factor of Ncrit = 8, which corre-
sponds to a turbulence level of 0.1%.

3.2 Unsteady calculations

First unsteady computations with pure plunging
motion have shown, that the fluid flow shows
strong dynamic separations and leading edge vor-
ticities.

Thus, two pitching-plunging motions of the
airfoil are investigated here, which differ in their
frequency and amplitude. The plunging part of
the motion with z(t) being the position of the
quarter-chord line can be expressed as:

z(t) = ẑsin(2π f t) . (13)

The effective angle of attack due to the pitching
motion is then:

αeff(t) = α(t)+ arctan
(

ż(t)
U∞

)
= α0− α̂cos(2π f t)

+ arctan
(

2Kẑ
c

cos(2π f t)
)

≈ α0 +
(

2Kẑ
c

− α̂

)
· cos(2π f t) ,

(14)

where the K = π f c/U∞ is the reduced frequency
and a phase angle of 90◦ between the plunging
and pitching motion is assumed. Here the fol-
lowing parameters for two cases are used:

• reduced frequency of K1 = 0.2 and K2 =
0.4

• plunging amplitude of ẑ1 = 0.5c and ẑ2 =
10 cm

• angle of attack of α0 = 4◦

• effective angle of attack amplitude of
α̂eff = 2Kẑ

c − α̂ = 4◦

• Reynolds number of Re = 105

• time step size of ∆t = 1
500 f

The Mach number distribution for the first
case (K1, ẑ1) around the airfoil is depicted in
Fig. 7a for eight stages of one motion period.
The corresponding u′v′ contours are shown in
Fig. 7b. It should be noted here, that periodic
results are obtained after two cycles of the pre-
scribed motion and that therefore 2π f t was set
to 0◦ after two cycles. As can be seen from
these pictures, there is a laminar separation bub-
ble on the lower surface side during an angle
of 2π f t = 0◦. This separation bubble becomes
larger and moves slightly to the trailing edge dur-
ing the upstroke (2π f t = 45◦). Shy before the up-
per dead center, the separation bubble moves sud-
denly to the trailing edge and vanishes (2π f t =
90◦). During the downstroke, a new separation
bubble appears at the upper trailing edge and be-
comes larger while traveling fast to the leading
edge (2π f t = 135◦,180◦,225◦). While the airfoil
moves through the lower dead center, the separa-
tion bubble moves to the trailing edge (2π f t =
270◦). During the upstroke, a new separation
bubble appears at the lower surface of the airfoil.
A similar behavior can be observed for the sec-
ond case (K2, ẑ2), except that the deformations
are higher, Fig. 8.

Further, the time history of the transition po-
sition on the lower and upper airfoil side, xu

t and
xl

t , as well as lift developing is shown in Fig. 9.
As observed, the lift produced for the second case
with higher plunging amplitude is higher than
that for the first case, while the transition loca-
tion for both cases shows a similar behavior.
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(a) Mach number (b) u′v′-contours

Figure 7: Mach number and u′v′ contours around the airfoil during different motion stages (first case -
K1 = 0.2, ẑ1 = 0.5c)

8



NUMERICAL SIMULATION OF AN OSCILLATING AND FLEXIBLE AIRFOIL FOR FLAPPING
WING PROPULSION WITH FLUID-STRUCTURE INTERACTION

(a) Mach number (b) u′v′-contours

Figure 8: Mach number and u′v′ contours around the airfoil during different motion stages (second case
- K2 = 0.4, ẑ2 = 0.45c)
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(a) first case - K1 = 0.2, ẑ1 = 0.5c) (b) second case - K2 = 0.4, ẑ2 = 0.45c

Figure 9: Time history of lift and transition location over three period

4 Summary

The numerical coupling approach for the multi-
disciplinary system has been presented and nu-
merical elements have been discussed. A parti-
tioned coupling procedure has been introduced,
which uses a load and energy conservative data
transfer scheme and a qualitative grid deforma-
tion based on finite elements. Due to the quasi-
incompressible fluid and the high-flexible struc-
ture, an equilibrium iteration needs to be carried
out in every time step. Using a proper predic-
tor, the number of necessary iterations could be
reduced considerably. Further, the use of a tran-
sition prediction method together with the grid
deformation has lead to the need of an automatic
adjustment of the transition location for the up-
dated grid.

By calculating the jig-shape of the airfoil
for a steady-state flight case, first properties of
the flow field could be studied. Here, it has
been found, that a laminar separation bubble has
formed on the upper side of the airfoil, along
those the transition from laminar to turbulent
flow takes place. For the unsteady, flapping
case, laminar separation bubbles on the upper and
lower side of the airfoil move from the trailing
edge to the leading and back.
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