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Abstract

Thermal problems related with heat transfer
mechanisms appearing in aeronautic engineering
take place in an environment where many param-
eters required for the mathematical formulation
of the problem have not precise numerical values
and some degree of uncertainties or inaccuracies
exists.

In that regard, deterministic analysis may be
unable to provide the amount of information re-
quired by the designer and thus other approaches
taking into account uncertainties will be neces-
sary. That circumstance also requires for the de-
signer to be aware about the variations of the per-
formance in their prototypes, considering these
random variables. And, usually, an aim of ro-
bustness or, in other words, the idea of choosing
designs that reduce the uncertainty of the perfor-
mance is preferred.

In this paper, a revision of some existing pro-
cedures, their capabilities and their applicability
to aeronautical problems will be carried out along
with some practical examples showing the per-
formance of methods used in the study.

1 Introduction

Two methodologies of design under uncertainties
applied to heat transfer problems were consid-
ered in this study: The uncertainty quantification
approach [1] and the robust design method, by
Taguchi [2] and [3].

The following sections describe the work car-
ried out using both procedures, along with the

practical examples, to demostrate the capabilities
of the approach.

2 Uncertainty quantification

Uncertainty quantification involves the propaga-
tion of probabilistic information from the input
parameters to the response functions, based on
a set of simulations which take into account the
random information of the uncertain inputs. The
flowchart of this approach is shown in Fig. 1.

Probability
information

of inputs

UQ
Procedure

Probability
information
of outputs

Fig. 1 Flowchart of uncertainty quantification

This method gives the designer some ideas
about the significance of randomness in the re-
sponse of the problem with regards to the input.

2.1 Description of the application example

A panel of 1 m2 area and 6 mm thickness will
be used to show the methodology of uncertainty
quantification (Fig. 2). The following heat trans-
fer phenomena are included in the analysis [4]:

• Solar flux.

• Conduction.

• Free convection to ambient.

• Radiation to ambient, radiation to ground
and radiation to sky.
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Fig. 2 Concept of panel and heat transfer mech-
anisms involved

2.2 Definition of random parameters

Up to fourteen random parameters were consid-
ered in this study. The list of those parameters
grouped by concept is:

• Geometry: Panel thickness.

• Loads: Solar flux and its absorptivity.

• Conduction: Thermal conductivity.

• Free convection to ambient: Convection
heat transfer coefficient.

• Radiation to ambient: View factor, surface
emissivity and ambient temperature.

• Radiation to ground: View factor, surface
emissivity and ground temperature.

• Radiation to sky: View factor, surface
emissivity and sky temperature.

All of them were asumed to have normal dis-
tributions. The selected mean value µ was the
most common value found in technical literature.
For the standard deviation σ two different values
were considered:

• σ = 30 % of the mean value for parameters
having wide range of values.

• σ = 5 % of the mean value for parameters
having narrow range of values.

The uncertainty is the coefficient of variation
of the random parameters:

δ =
σ

µ
(1)

The numerical values of mean and uncer-
tainty of random input parameters are shown
in Table 1. The probability density function
(PDF) of one of them, the ambient temperature,
is shown in Fig. 3. The output value of the UQ
approach is the temperature value at the point lo-
cated at the center of the panel.

2.3 Single random parameter uncertainty

Fourteen UQ studies considering separately each
one of the random input parameters were carried
out. In each of them, a hundred random processes
were produced by using Monte Carlo simulations
(MCS) [5].

Fig. 4 shows the temperature values obtained
when uncertainty exists in the ambient tempera-
ture. A similar representation can be defined for
the rest of simulations.
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Fig. 3 PDF of ambient temperature (input) and
nodal temperature (output)

The mean, standard deviation and the coeffi-
cient of variation, i.e., the uncertainty of the out-
put, are calculated from those results. Fig. 3 show
the PDF of the output with ambient temperature
uncertainty and the Table 1 lists the values of δ

for all the parameters sorted by their uncertainty
level from higher to lower values.

It can be concluded that for all random pa-
rameters, the degree of randomness decreases
from input to output. In other words, in this heat
transfer problem, the level of uncertainty is at-
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Parameter Mean µ
Uncertainty δ (%)
Input Output

Solar flux
(

W
m2

)
1350 30 10.5

Ambient temperature (°C) 55 30 9.3
Ground temperature (°C) 83 30 6.3

Convection heat transfer coefficient
(

W
m2°C

)
7 30 5.7

Solar flux absorptivity 0.8 5 1.8
Sky temperature (°C) 27 30 1.1
Thermal conductivity

( W
m°C

)
0.9 30 0.6

Radiation view factor in radiation to sky 0.8 5 0.6
Surface emissivity in radiation to sky 0.8 5 0.6
Panel thickness (m) 0.006 30 0.4
Surface emissivity in radiation to ambient 0.8 5 0.2
Radiation view factor in radiation to ambient 0.2 5 0.2
Radiation view factor in radiation to ground 0.8 5 0.1
Surface emissivity in radiation to ground 0.8 5 0.1

Table 1 Uncertainty values in input and output
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Fig. 4 MCS of temperature at panel center with
ambient temperature uncertainty

tenuated due to the nature of the problem. It can
be observed that solar flux is the parameter for
which randomness is maintained to the largest
degree and radiation to ground is the least sig-
nificant random parameter.

2.4 Multiple random parameters uncer-
tainty study

After the uncertainty studies using only a single
random parameter, another study was carried out
considering several random parameters aiming to
find out how the agrupation of uncertainties af-
fects the response. In order to make the process
more consistent, the methodology used is charac-
terized as follows:

1. The set of random parameters were dis-
tributed among five concepts: geometry,
thermal load, conduction, convection and
radiation. Statistic properties of each ran-
dom parameter were the same as used in
the single random parameter study.

2. Those concepts were grouped to form
seven stochastic processes with increas-
ing number of random parameters starting
from two and finishing with fourteen. The
concepts for each process are listed in Ta-
ble 2

Up to a hundred MCS were carried out for
each multiple random parameter process, and
from those results, the statistic properties of
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nodal temperature at panel center were charac-
terized.

Table 2 shows the number of parameters in-
cluded in the random processes and their levels of
uncertainty. It can be concluded that the level of
uncertainty propagation from input data to output
temperature increases as it does the number of
random parameters. However, the degree of un-
certainty in the panel center temperature is lower
than the uncertainty of random parameters. This
is the same kind of behaviour observed in the
single random parameters study described previ-
ously.

3 Robust Design

Robustness is the aim of obtaining a design that
is, as less as possible, insensitive to variation in
the parameters. In robust analysis, given a tar-
get value for a design performance, the preferred
candidate is not the one closest to the target value,
but the one least sensitive to parameter variations.

Robust analysis improves the capacity of UQ
technique because it incorporates a function rep-
resenting robustness, which is optimized in the
procedure. The flowchart of this methodology is
shown in Fig. 5.

Noise
factors

Product
or Process

Control
factors

Response
function

Fig. 5 Flowchart of robust design

Genichi Taguchi, the pioneer of robust de-
sign, said [6]: “ ... robustness is the state where

a technology, product or process performance is
minimally sensitive to factors causing variabil-
ity”. Robustness has two goals: on-target behav-
ior and low variation.

In Taguchi method, robustness of a design is
determined by the value of a function defining
the quality loss of the design. The best design
is the one having the lowest quality loss. Taguchi
method formulates the robust design problem in
an uncertain environment as follows:

• A set of noise factors: Parameters related
to the problem that have a range of values
not controlled by the designer.

• A set of control factors: Parameters related
to the problem that have a range of values
that can be selected by the designer.

• A response of the problem, with a preferred
value choosen by the designer, that is the
target of the problem. Any difference be-
tween such value and the performance of a
given design is considered to be decreasing
in its adecuacy. In that regard, the so-called
quality loss function is defined to measure
such circumstances.

The strategy of Taguchi method for finding a
robust design is to identify the proper values of
the control factors that minimize the quality loss
function, while taking into account the variabil-
ity of the noise factors. In summary, the steps of
Taguchi method are:

1. Define the vector of noise factors and their
levels.

2. Define the vector of control factors and
their levels.

3. Define the orthogonal arrays, which are re-
lated to the number of experiments to per-
form.

4. Carry out thermal analyses.

5. Define the quality loss function.
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Concept
Random Uncertainty of

parameters output δ

Geometry, load, conduction, convection and radiation parameters 14 0.169
Geometry, load and radiation parameters 11 0.155
Conduction, convection and radiation parameters 11 0.130
Load, geometry, conduction and convection 5 0.124
Radiation parameters 9 0.111
Geometry and load 3 0.104
Conduction and convection 2 0.058

Table 2 Multiple random process results

6. Observe the effect of each control factor in
the quality loss function by using analysis
of mean method (ANOM).

7. Identify the best level of each control fac-
tor, and therefore the most robust design.

Three different classes of problems can be
solved by Taguchi methods:

• Problems having a particular value for the
response. They are called nominal the best
type problems (NTB).

• Problems aiming for the lowest possible
value. They are called smaller the better
type problems (STB).

• Problems aiming for the greatest possible
value. They are called larger the better type
problems (LTB).

3.1 Application of Taguchi method to ther-
mal problems

Thermal robust analysis can be carried out using
Taguchi method formulation. The parameters in-
cluded in the problem can be interpreted as noise
factor or control factors. For instance:

• Set of possible noise factors: Solar flux,
ambient temperature, sky temperature,...

• Set of possible control factors: Thickness
of structure, material conductivity,...

The type of response appropriate for each
kind of problem is:

• Nominal the best type: Temperature value
at some selected points.

• Smaller the better type: Lowest tempera-
ture value at a point in a domain.

• Larger the better type: Maximum tempera-
ture change between two domains.

3.2 Description of the application example

A box having two cavities subjected to several
heat transfer phenomena will be used as an appli-
cation example. Figs. 6 and 7 describe the geom-
etry of the box and the heat transfer phenomena
taken into account in the problem. In this exam-
ple, nodal temperature at central points of each
cavity were chosen to define the design quality
level (Fig. 7).

Lateral flux

Lateral flux

Solar flux Sky
temperature

Ground
temperature

Ambient
temperature

Fig. 6 Box with two cavities subjected to solar
flux, radiation, convection and conduction.
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Node 1

Node 2

Fig. 7 Nodal points selected for temperature output

Seven noise factors were included in the
study, having a mean value µ and percentage of
variation ν. From these two statistical param-
eters, the value of standard deviation σ can be
evaluated as

σ =
µν

3
(2)

For each noise factor, two different values,
namely µ−σ and µ + σ, were considered in the
study. According to the terminology used in
Taguchi method, these two values will be referred
to as level 1 and level 2. The complete informa-
tion for the definition of noise factors appears in
Table 3.

In the case of control factors, up to four
different characteristics of the thermal problem
were chosen. In each of them, up to three dif-
ferent levels were selected, which are shown in
Table 4.

After the noise and control factors were de-
fined, the next step is to define the set of orthog-
onal arrays. The idea is to predict a set of anal-
ysis unbiasing the significance of any noise fac-
tors and, therefore, to assign the same number of
events to all of them. Table 5 shows a matrix con-
taining the levels selected for each noise factors.
Each one of the eight combinations is called ex-
periment in Taguchi’s terminology (EXP). In the
same way, an orthogonal array needs to be de-
fined for control factors. Table 6 describes the
levels selected for the nine experiments.

We should keep in mind that, for each exper-
iment included in the array of control factors, the
eight cases considered in the orthogonal arrays

EXP NF1 NF2 NF3 NF4 NF5 NF6 NF7

1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

Table 5 Orthogonal array of noise factors

EXP CF1 CF2 CF3 CF4

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

Table 6 Orthogonal array of control factors

of noise factors need to be carried out, which
results in up to seventy two solutions. Each of
them corresponds to different cases of the ther-
mal problem, therefore up to seventy two thermal
analyses with the numerical values of the levels
of noise factors and control factors used in the
study were performed. For each of them, the
nodal temperature fields at each point were ob-
tained and amongst them, temperature values of
central points of both cavities were used in the
study. Figs. 8 and 9 show an example of numeri-
cal results obtained for each case.

3.3 Problem formulation: Nominal the best

In this variant of Taguchi method, temperature
values T1 and T2 at nodes 1 and 2 located in the
center of the cavities will be chosen as targets of
the design. Problem will be formulated aiming to
minimize variations of T1 or T2 due to noise fac-
tors. As the variation is an indication of quality
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Noise factors Mean µ Variation ν (%) σ Level 1 Level 2

Ambient Temperature (°C) 48 10 1.6 46.4 49.6
Ground Temperature (°C) 75 10 2.5 72.5 77.5
Sky Temperature (°C) 24 10 0.8 23.2 24.8

Heat transfer coefficient
(

W
m2°C

)
12 10 0.4 11.6 12.4

Thermal conductivity
( W

m°C

)
150 20 10 140 160

Solar flux
(

W
m2

)
1350 5 22.5 1327.5 1372.5

Lateral flux
(

W
m2

)
500 15 25 475 525

Table 3 Noise factors formulation

Control factors Level 1 Level 2 Level 3

Solar absorptivity of top panels 0.2 0.5 0.8
Emissivity of left box in radiation to ambient 0.1 0.5 0.9
Emissivity of right box in radiation to ambient 0.1 0.5 0.9
Emissivity of two boxes in radiation in cavities 0.1 0.5 0.9

Table 4 Control factors formulation

Fig. 8 Temperature field in external walls

loss, the problem represents the lower the differ-
ence, the better the behaviour. Therefore, this for-
mulation corresponds to the definition of nominal
the best type. According to this approach, signal
to noise (S/N) function is defined as follows:

η = 10log10

(
µ2

t

σ2
t

)
(3)

In the expression above, µt is the mean value
and σt is the standard deviation of temperature at
any node in the thermal experiments associated

Fig. 9 Temperature field in internal walls

to orthogonal array of control factors. Obviously,
in this example, only temperature at nodes 1 and
2, or in other words T1, and T2 will be of inter-
est. It can be observed that function η includes
the standard deviation in the denominator, which
means that small values of σt are equivalent to
similar values in the temperature field. The lower
the value of σt , implies the greater the value of
η, which means, the quality of the design. There-
fore, minimization of quality losses can be inter-
preted as maximization of such function η.
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After carrying out each set of eight thermal
analyses for each control factors experiment, the
values of η are shown in Table 7.

EXP
Control factor

Nominal the best
Loss of quality

1 2 3 4 Node 1 Node 2

1 1 1 1 1 30.99 30.99
2 1 2 2 2 31.71 31.71
3 1 3 3 3 32.04 32.04
4 2 1 2 3 32.00 32.23
5 2 2 3 1 32.63 32.74
6 2 3 1 2 32.56 32.21
7 3 1 3 2 32.71 33.15
8 3 2 1 3 32.75 32.46
9 3 3 2 1 33.38 33.24

Mean 32.31 32.31

Table 7 Values of η at nodes 1 and 2

Then, the analysis of mean step is carried out.
In such step, the mean value of η for the three
experiments corresponding to the same level of
each control factor is evaluated. For instance,
control factor 2 has level 3 in experiments 3, 6
and 9 and then:

η23 =
32.04+32.56+33.38

3
= 32.66 (4)

In this formula, sub-index 2 and 3 represents
the control factor and the control factor level, re-
spectively. Table 8 shows the complete set of val-
ues for nodes 1 and 2.

Numerical results of ANOM can be shown
graphically. For example, those values corre-
sponding to node 1 appears in Fig. 10.

It is already known that maximizing η, is
equivalent to decreasing quality losses. There-
fore Fig. 10 indicates clearly which level of each
control factor produces the best values of η and
thus the set of selected levels can be easily cho-
sen. The only indeterminacy occurs in control
factor 4, when levels 1 and 2 produce the same η

result of 32.33. In that circumstance, any of them
can be selected.

Fig. 10 Results of ANOM in node 1 and selected
control factor levels

It can be observed that the set of control fac-
tor levels corresponding to robust design does not
exist in the orthogonal array of Table 7. This cir-
cumstance is one of the powerful characteristics
of Taguchi method, as it can identify combina-
tions of control factors with better performance
than those included in the set of experiments car-
ried out.

The last step in robust design is to confirm
that the set of control factor levels selected be-
haves better than the set of experiments carried
out. This phase is called usually experiment ver-
ification. This is done by comparing the mean
value and the standard deviation of the seventy
two experiments defined by the orthogonal ar-
rays of control and noise factors, named starting
condition, and the mean value and the standard
deviation corresponding to the eight experiments
carried out considering the selected set of con-
trol factors at robust design and the orthogonal
array of noise factors. Table 9 shows the numeri-
cal values obtained at node 1. It can be concluded
that not only function η has a larger value, mean-
ing lower quality losses, but also the variance de-
creases showing an improvement of 26.15 %.

3.4 Problem formulation: Smaller the better

Another suitable formulation of the thermal ro-
bust analysis is trying to have the lowest possi-
ble temperature value at nodes 1 and 2 and, of
course, having the smallest variation as possible.
This corresponds to the smaller the better type of
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Nominal the best node 1 Nominal the best node 2

Factor
Level

Factor
Level

1 2 3 1 2 3

1 31.58 32.40 32.94 1 31.58 32.40 32.95
2 31.90 32.36 32.66 2 32.12 32.30 32.49
3 32.10 32.36 32.46 3 31.88 32.39 32.64
4 32.33 32.33 32.26 4 32.32 32.36 32.24

Table 8 Results of ANOM

Starting Robust Improvement
Condition Design (%)

η 32.31 33.46
Variance 2.75 2.18 26.15

Table 9 Nominal the best. Numerical values of
experiment verification

formulation of robust design. In this formulation,
the signal to noise (S/N) function η describing
quality losses is to be maximized and defined as:

η = −10log10

(
1
n

n

∑
i=1

t2
i

)
(5)

Where ti is the temperature value at any point
and the parameter n represents the number of ex-
periments in the orthogonal array of noise fac-
tors. In our example, n = 8. As η is a nega-
tive number, maximizing this expression can only
be done by decreasing temperature values at the
nodes. The set of control and noise factors in
this problem are the same used in the previous
nominal the best type problems. Therefore or-
thogonal arrays in this problem formulation are
those appeared in Tables 5 and 6. After calcula-
tion of function η for each experiment, the nu-
merical values obtained are shown in Table 10.
Carrying out the analysis of mean technique, the
results obtained are shown in Table 11.

Graphical results of ANOM for node 1 ap-
pears in Fig. 11 and also the selected values of
control factors that maximize function η and,
therefore, minimize quality losses.

Finally, the numerical values obtained for

EXP
Control factor

Smaller the better
Loss of quality

1 2 3 4 Node 1 Node 2

1 1 1 1 1 -36.21 -36.21
2 1 2 2 2 -35.73 -35.73
3 1 3 3 3 -35.42 -35.42
4 2 1 2 3 -37.08 -36.84
5 2 2 3 1 -36.48 -36.29
6 2 3 1 2 -36.47 -36.91
7 3 1 3 2 -37.78 -37.23
8 3 2 1 3 -37.69 -38.00
9 3 3 2 1 -37.00 -37.23

Mean -36.65 -36.65

Table 10 Values of η at nodes 1 and 2

node 1 in the experiment verification are shown
in Table 12. It can be observed that the robust
design produces diminution of temperature by
about 16 %, while at the same time function η

is increased. Such behaviour is equivalent to de-
creasing quality losses, which is the aim of robust
design.

Starting Robust Improvement
Condition Design (%)

η -36.65 -35.41
Variance 68.26 58.93 15.83

Table 12 Smaller the better. Numerical values of
experiment verification
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Smaller the better node 1 Smaller the better node 2

Factor
Level

Factor
Level

1 2 3 1 2 3

1 -35.79 -36.68 -37.49 1 -35.79 -36.68 -37.49
2 -37.02 -36.63 -36.30 2 -36.76 -36.67 -36.52
3 -36.79 -36.60 -36.56 3 -37.04 -36.60 -36.31
4 -36.56 -36.66 -36.73 4 -36.58 -36.62 -36.75

Table 11 Results of ANOM

Fig. 11 Results of ANOM in node 1 and selected
control factors levels

4 Conclusions

1. Fourteen stochastic processes with single
random variables have been carried out. In
all of them, the level of uncertainty de-
creases for the whole set of paramenters se-
lected.

2. It must be remembered that the amount of
standard deviation chosen could not be re-
alistic and more appropiate values should
be preferred. Nevertheless, the methodol-
ogy carried out is completely general.

3. The set of random variables have been dis-
tributed among five concepts: geometry,
thermal load, conduction, convection and
radiation.

4. Seven stochastic processes with increasing
number of random variables starting form
two random variables and finishing with

fourteen random variables have been car-
ried out.

5. The level of uncertainty propagation from
input data to output temperature values in
the thermal problem increases as it does
the number of random variables. Some ta-
bles are enclosed to show the relative im-
portance of each stochastic process.

6. Taguchi method is suitable to obtain robust
designs in thermal problems.

7. The approach proceeds by carrying out a
discrete search in the range of variation of
noise factors and control factors.

8. Several type of problems can be defined to
be solved: nominal the best, smaller the
better and larger the better.

9. Two examples have been solved to demon-
strate the methodology using a selected set
of noise and control factors. Other diferent
sets can be defined as the method is com-
pletely general.
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