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Abstract  

The in-flight deformation is a characteristic 

challenge in the design of the HALE UAVs. This 

paper deals with identifying the parameters of a 

multibody model of a flying wing of high aspect 

ratio, where the pressure distribution over the 

wing is calculated using a built-in Vortex-

Lattice method in every step of the simulation. 

The identification is based on drop tests of a 

scale model of a flat wing and image 

processing. 

1  Introduction  

On the video footage showing flights of High 

Altitude Long Endurance Unmanned Aerial 

Vehicles (HALE UAV), one can observe that 

the wings do not really behave as rigid or classic 

elastic bodies. If some disturbance deforms the 

wing, the structure shows large deformation, 

and it takes a long time before the elastic forces 

put the wing back into the original shape. The 

extrapolation of this behavior gave the idea to 

develop a multibody model that can simulate the 

motion and deformation of the near-flexible or 

even fully flexible flying wings.   

A flexible flying wing is unserviceable 

without appropriate flight and deformation 

controller. Constructing the above-mentioned 

model is the first step to develop such a control 

that can provide “virtual stiffness” for the wing, 

and supersedes the heavy wingspar. Thus, we 

can get a flying object with significantly 

improved payload/take-off-weight ratio, which 

is a critical parameter of HALE UAV’s because 

of the power available. 

 

2  Multibody Model  

Patil and Hodges [1] applied intrinsic equations 

for the dynamics of a general, non-uniform, 

twisted, curved, anisotropic beam to model a 

highly flexible flying wing. The method 

described in this paper was based on a different 

approach.  

The wing was partitioned spanwise into 

smaller bodies that were connected using ball 

joints, springs and dampers. (Fig. 1.) The 

system of equations includes the equation of 

motion of each body, with the boundary 

constraints defined by the connections and 

additional equations. The [2] gives a detailed 

description of the equation system, its solution, 

the necessary program written in MATLAB and 

the investigations to verify the model. 

 

 
Fig. 1. Illustration of the multibody model 
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3  Aerodynamic Model 

An adequate aerodynamic model has had to be 

choosen for the multibody simulation to obtain 

the forces which are taking effect on the wing.    

3.1 Considerations, Selecting the Model  

The selection of the applied model is based on 

three main conditions. First, the simulations are 

evaluated on a single PC platform, therefore the 

computational effort has to be kept as low as it 

can be. The flow around a three dimensional 

body submerged to the media is complex. 

Simplifications has to be taken which are 

conserving the important features of the flow. 

For example boundary layer, detached flows 

and vortex sheet roll-up are neglected. The 

second condition is that the model has to handle 

the complicated geometry generated by the 

multibody part of the simulation. It means that 

the calculations are performed on a twisted and 

bent surface.  Finally the model should be easily 

improved including the above neglected effects. 

All these thoughts are induced the choice of a 

Vortex Lattice Method (VLM), precisely a 

steady VLM.  

3.2 Theoretical Background  

The VLM is based on the assumption that the 

flow around a body consists two main region at 

high Reynolds-numbers, the boundary layer in 

the immediate vincinity of the bounding surface, 

and the outer flow. It can be shown by the 

analysis of the Navier-Stokes equation, that the 

effects of viscosity are confined to a thin 

boundary layer and a thin wake after the body. 

Navier-Stokes equation with density (ρ) and 

viscosity (ν) independent from time and space 

coordinates: 
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By the transformation to a dimensionless form 

of the above expression, the Reynolds number 

appears in the last term:  
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(2) and (3) is often called diffusion. Viscosity 

causes the rotation of  fluid. It is generated on 

the surface of the body, through the no slip 

condition. At high Reynolds number the viscous 

or diffusion term can be neglected, so rotation 

or vorticity is limited to a thin area as mentioned 

above. 
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Fig. 2. Regions of flow 

 

Therefore outer flow can be treated as being 

inviscid and irrotational, and its behaviour is 

described by: 

0=∇ cT  (4) 
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Where (4) is mass conservation and (5) is 

momentum conservation equation.  
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3.3 General Solution, Discretization 

The velocity field of an irrotational flow can be 

characterized by a velocity potential. There are 

two possible ways to formulate the problem: 

Φc ×∇=  
(7) 

Φ∇=c  
(8) 

With the use of these expressions, (4) will take 

the form: 

02 =Φ∇  (9) 

which is called Laplace’s equation. It has to be 

solved on a given domain visualized on Fig. 3. 
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Fig. 3.  

 

The solution requires to set up boundary 

conditions on bS , wS  and ∞S : 

ncn ⋅=⋅Φ∇ b
 

(10) 
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(11) 

The flow through the surface of the body is zero 

(10), and the disturbance in the flow caused by 

the body decays to zero in the infinity (11). The 

general solution of Laplace’s equation with the 

above boundary conditions can be gained by the 

application of Green’s identity. Presuming that 

the body is thin: 

( ) ( ) ( )PPP wb ∞Φ∇+Φ∇=Φ∇ ,
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This solution automatically fullfills (11), 

therefore only (10) has to be applied on (12): 

[ ] ncn ⋅Φ∇−=⋅Φ∇ wbb
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(14) is the governing equation of the VLM. It 

contains integral quantities, which have to be 

discretized for calculating them on complicated 

surfaces.  It can be done by subdividing the 

surface to quadrilateral elements or panels 

without gaps and overlappings. 
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Fig. 4. Discretizing the geometry 

 

Each quadrilateral on the surface of the body 

has a collocation point ( iP ) and a normal vector 

( in ).  

With the use of the panels defined 

above, equation (14), (15) and (16) yields: 
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In (18) and (19) the expression in the 

integrand is a constant strength (µj) doublet 

distribution. It can be proved that the latter 

element is equivalent to a vortex ring which is 

created by four straight vortex filaments placed 

on the edges of a doublet distribution (Fig. 4). 

The choice of the applied element is a matter of 

taste, maybe use of vortex lattice is more lifelike 

and forcibly descriptive.  

Substituting (7) to (4) leads to: 

( ) 0=Φ×∇∇  
(20) 

A solution of (20) is the Biot-Savart law: 
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It gives the induced velocity of an arbritary 

vortex filament. For a finite length straight 

vortex filament (21) has to be applied in the 

form: 
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Fig. 5. Induced velocity of a vortex 

3.4 System of Equations  

If a vortex lattice is assembled of four straight 

vortex segment with Γ equal to unity and the 
induced velocity of it is signed by C then (17) 

become: 
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(23) 

The equation (23) is applied to the i-th 

collocation point, so there are bN  equation, 

which form an inhomogeneous linear system of 

equations: 

RHSΓC =bm
 (26) 

Where Cm is an bb NN ×  matrix, ΓΓΓΓb is the 

vector of unknown panel circulations on the 

body. Solution of (24) for ΓΓΓΓb is well known. In 

the present simulation a built-in MATLAB 

Moore-Penrose pseudoinverse procedure is 

used. The aerodynamic forces which are arising 

on the body panels, can be calculated from ΓΓΓΓb  
with use of the Euler equation.  

3.5 Handling of Unsteady Effects  

The present aerodynamic calculation is a steady 

state method. It means that in each timestep the 

shedded vortex sheet is assumed to be like on 

Fig. 4. It follows, that such phenomenon as 

starting vortex, which has a quite strong 

circulation does not appear automatically in the 

simulation. The measurments have showed that 

this inadequacy significantly influences the 

difference between simulation and experiments. 

Therefore an additional formulae has to be 

applied to represent the starting vortex.  

 Lesson is that for an appropriate 

simulation an unsteady VLM is a minimum 

requirement. Fortunately the steady VLM can 

be easily upgraded to an unsteady method. 
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4  Identification 

4.1  Drop Tests 

A test wing (Fig. 6.) was built to validate the 

model and demonstrate the operability of the 

identification method developed for this 

purpose. The specifications were the following: 

Span: 1035mm 

Chord: 253mm 

Profile: 3 mm thick flat plate with flap 

Flap chord: 20% 

Flap deflection: -8 deg (fixed) 

Material: 3 mm thick depron foam. 

Weight: 105 g 

 

 
Fig. 6. The test wing 

 

The wing was dropped from a start rig, 

which enabled the setting of the initial AoA and 

provided for reproducibility of drops. A small 

camera was mounted in the plane of symmetry, 

directed at the two markers on the wingtip. A 

second camera was installed to record the flight 

path of the wing from an external viewing point. 

 

Fig. 7. Picture taken by the onboard camera 

 

The footage of the two cameras were 

evaluated on two different ways. The recording 

of the onboard camera (Fig. 7.) were evaluated 

by a program based on the OpenCV computer 

vision library, written in the C language. This 

program was able to recognize the positions of 

the two black markers at the wingtip after 

applying specific filtering techniques. The 

camera and the method were calibrated by 

recognizing known wingtip deformations. The 

information on wingtip deformations enabled 

the identification of the elastic behavior of the 

wing material. 

The footage from the ground camera were 

converted into sequence of images and the 

position of the wing was determined manually 

picture by picture. A long tape with equidistant 

markers was placed in different positions in the 

plane of flights to calibrate the camera. This 

way the distortion of the camera could also be 

eliminated. On the basis of the flight path, 

important parameters could be identified, which 

had effect on the moment coefficient of the 

wing. 

Fig 8. shows the flight paths of ten 

different flights with the same initial conditions 

based on the evaluation of the recording of the 

ground based camera. 

 
Fig. 8. Flight path of 10 drop tests 

4.2  Simulation 

Fig. 9. shows a simulated drop test with the 

initial values of the parameters in question (blue 

line) and the measured flight path (red crosses). 
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Fig. 9. Measured and first simulated flight path 

 

The origin of the remarkable difference is 

the simplification in the Vortex Lattice Method 

used for calculating the pressure distribution 

over the wing. The airfoil used by the drop tests 

was a 3 mm thick flat plate profile with 20% 

chord flap. As opposed to the ideal flow 

modeled by the VLM, the viscous flow around 

the flat plate will separate at the leading edge of 

the wing, as was demonstrated in ANSYS CFX 

(Fig. 10.) 

 

Fig. 10. Flow separation at the leading 

edge 

 

The most important cause of the 

separation, is that the chordwise pressure 

distribution cannot properly be simulated using 

the VLM. To correct the error in the momentum 

equation caused by the false chordwise pressure 

distribution, a correction factor was applied to 
the flap deflection. This factor is the first target 

of our identification process. 

 
Fig. 11. Illustration of starting vortex [3] 

 

The second aerodynamic effect that 

influenced the drop tests was the starting vortex 

(Fig. 11.). The starting vortex is the result of the 

rapid change in the circulation around the airfoil 

at the start. The induced velocity of an inviscid 

vortex is a function of 1/R, where R is the 

radius. To take viscosity into account, we 

assumed a function of 1/R
2
. At the start, the 

velocity induced by the vortex significantly 

changed the flow along the chord and resulted 

in positive momentum. This momentum was 

modeled by an additional negative flap 

deflection, which was a function of k2/R
2
, where 

the value of k2 was to be identified. The final 

flap deflection function applied was the 

following: 
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The two parameters above influenced the 

flight path, therefore they could be identified 

from the recordings of the flight path. The 

onboard camera enabled the identification of 

additional parameters involved in the modeling 

of the flexible-elastic behavior of the wing. Our 

wing was made from depron, which is a kind of 

hard foam. Its Young modulus is hard to 

determine, thus it was difficult to calculate the 

spring coefficients of the virtual springs applied 

between the rigid bodies used for modeling the 

wing. As a result, the twisting and bending 

spring coefficients were the third and fourth 

parameters chosen for identification. The wing 

elasticity in the chordwise direction was 

significantly lower; therefore it was simply 
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approximated by a high spring coefficient, and 

was excluded from the target parameters of the 

identification process. 

4.3 Identification Method 

The identification method was based on the 

Nelder-Mead Simplex Method, and searched for 

the values of the chosen parameters at which the 

difference between the measured and simulated 

flight path and wingtip deformation is minimal. 

Two cost functions were applied: 

( ) ( )[ ]
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,where 

SX  : simulated longitudinal positions of the 

CG in Earth based coordinate system 

(interpolated at the time of samples) 

SY   :simulated vertical positions of the CG 

in Earth based coordinate system 

(interpolated at the time of samples) 

wtSY :simulated vertical deformations of 

wingtip (interpolated at the time of 

samples) 

MX  :measured longitudinal positions of the 

CG in Earth based coordinate system 

MY  :measured vertical positions of the CG 

in Earth based coordinate system  

wtMY :measured vertical deformations of 

wingtip 

n,m :number of samples during the drop 

test 

The (29) was applied to identify the parameters 

describing the effect of the starting vortex and 

the separated flow, while (30) was used to 

identify the two parameters describing the 

elastic behavior of the wing. 

 

 

4.4 Results 

Fig. 12. shows how the identification 

method searched for k1 and k2.  

 
Fig. 12. Looking for k1 and k2  

 

The resulted value of k1 means that the 

effective flap deflection was reduced by 11,4 % 

because of the flow separation. The value of k2 

means that the effect of the starting vortex 

dropped after 0,49 m flight. Fig. 13. presents the 

simulated flight path with the resulted values of 

k1 and k2 (blue line) together with the measured 

one (red crosses). 

 
Fig. 13. Flight path after identification 

 

Fig. 14. shows how the identification 

searched for the values of the spring 

coefficients, while Fig. 15. and Fig. 16. show 

the results.  
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Fig. 14. Looking for the spring coefficients 

 

 
Fig. 15. Simulated and measured dihedral  

 

 
Fig. 16. Samples of the wing shape acquired in 

the simulated drop 

 

 

 

 

 

5  Summary 

The multibody model developed and the 

identification method was tested through drop 

tests of a scale model of a flying wing. The 

drops with different AoA were not evaluated in 

detail, but the results are promising enough to 

enable the entering the next phase of the 

development. This means that the unsteady 

VLM and the structural damping can be 

integrated into the simulation. On the practical 

side, the building of a large radio-controlled 

model can be started in order to test and 

demonstrate the flight and deformation 

controller under development. 
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