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Abstract  
Computational simulation tools, once trusted to a select 
few individuals with powerful computers and “mystical” 
codes are now becoming commonplace in biomedicine, 
geospatial analysis, predictive social network studies, 
materials science, and engineering design. While analysts 
have traditionally been able to focus on the mastery of a 
single discipline, the US Department of Defense’s recent 
shift to capability-based acquisition places an increasing 
focus on systems-of-system interoperability. This requires 
engineers and analysts to have working knowledge of a 
number of tasks, and the complexity endemic to this 
problem set complicates the use of simulation-based 
methods. Furthermore, in many cases, simulation tools 
are executed in a deterministic manner (as dictated by 
requirements for expediency and clarity of presentation); 
however, a quantification of uncertainty is often useful in 
assessing risk and understanding the limitations of a 
design. A number of complex issues arise in the 
quantification of the myriad sources of uncertainty in 
systems-of-systems problems. This paper summarizes 
some of the recurring and emerging challenges in 
uncertainty quantification for systems-of-systems design 
and highlights recommendations to address them where 
possible. 

1  Introduction 
“There are known unknowns. That is to say, there are 
things that we now know we don’t know. But there are 
also unknown unknowns. There are things we do not know 
we don’t know” 

Former U.S. Secretary of Defense Donald Rumsfeld 
February 12, 2002  

 
Uncertainty, literally, the lack of what is known, is a 

concept that is central to the world around us and 
pervasive in the design of aerospace systems. Engineering 
design can be thought of as the application of scientific 
and mathematical principles to make rational decisions 
that guide the creation of products or processes. The 
purpose of design is therefore to narrow a quasi-infinite 
constrained opportunity space to the handful of rational 

decisions that meet a set of requirements or fulfill a need. 
The concept of uncertainty confounds the engineer’s 
ability to reliably differentiate between the many 
alternatives in this space and identify the “correct” 
defining parameters with confidence. 

Since the introduction of the Rumsfeld-directed Joint 
Capabilities Integration and Development System 
(JCIDS) in the summer of 2003, the U.S. aerospace 
community has been increasingly faced with a new 
challenge: engineering complex systems to purposefully 
provide joint capabilities in uncertain future environments 
[1]. Engineering efforts that traditionally focused on a 
small, well-defined set of physical phenomena and used 
models validated against precise scenarios were 
confronted with the need to extend systems engineering 
methods to large-scale “systems-of-systems.” This shift 
induces new challenges that must be addressed by a mix 
of proven and nascent methods.  

To be sure, this expansive topic cannot be definitively 
addressed in any single work. This paper focuses 
primarily on the application of probabilistic methods for 
uncertainty quantification in the aerospace 
multidisciplinary design optimization community and 
summarizes challenges that have co-evolved with the 
impetus toward capability-based systems engineering 
over the last several years.  

2 Types of Uncertainty 
There are many different ways of classifying 

uncertainty for a variety of applications: 
• Objective vs. Subjective [2] 
• Vagueness vs. Ambiguity [3] 
• Epistemic vs. Aleatory [4], [5] 
• Parameter vs. Model [6], [7] 
Choi provides a detailed overview of these types of 

uncertainty and Talley categorizes the various classes in a 
taxonomy with relevance to systems-of-systems 
applications [8], [9]. Of the classifications mentioned 
above, the final two distinctions are more applicable to 
this discussion. 

Epistemic uncertainty, from the Greek episteme 
meaning “of or pertaining to knowledge” is defined by 
Oberkampf as “any lack of knowledge or information in 
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any phase or activity of the modeling process” [10], [11]. 
This type of uncertainty is also called reducible because 
its impact can be minimized by gaining additional 
information about the system or its environment. 
Engineering design is concerned with gathering 
knowledge through experiments and studies that quantify 
and reduce the impact of epistemic uncertainty. 

Aleatory uncertainty, whose Latin root āleātor 
(meaning gambler) pertains to random chance and may 
only be quantified statistically. Also referred to as 
irreducible uncertainty, this type cannot be reduced by 
the addition of more knowledge. The natural variability of 
the physical properties of the system or its environment 
typify sources of aleatory uncertainty. In engineering 
design, this type of uncertainty is usually represented by a 
random variable or a probability distribution.  

The division by these two classes is not clear-cut. 
Haukaas notes that aleatory and epistemic uncertainty 
may not be treated disjunctively because aleatory 
uncertainty is often also pervasive in variables which are 
traditionally dominated by epistemic uncertainty [8], [12].  

An additional classification popular in the literature is 
the distinction between parameter uncertainty and model 
uncertainty. 

Parameter uncertainty, also referred to as natural 
uncertainty or data uncertainty, is related to the lack of 
knowledge about the model parameters (inputs). Systems 
design is often concerned with parameter uncertainty, as 
the specification of values for design parameters “closes” 
the design problem. One of the major focuses of 
Taguchi’s robust design method is on parameter design, 
that is, the determination of design factors under 
uncertainty [13].  

While parameter uncertainty is related to the physical 
parameters themselves, model uncertainty refers to lack of 
knowledge about the relationships between parameters 
and the underlying phenomenologies. According to Choi, 
model uncertainty “is due to lack of understanding of 
physical phenomena (ignorance) and the use of simplified 
structural models and probabilistic models (errors of 
simplification)” [8]. 

When designs are created based on historical data, the 
focus of uncertainty quantification is almost exclusively 
in the realm of parameter uncertainty since the underlying 
models are semi-empirical and well-understood. As 
conceptual design requires knowledge of untested 
physics, implements advanced technologies, or adds 
degrees-of-freedom for which few models exist, model 
uncertainty may begin to dominate. Unfortunately, as 
explained below, for certain types of problems the impact 
of model uncertainty can become overwhelming. 

3 History of Uncertainty Quantification in 
Robust Design   

For most of the early 20th century, aerospace design 
was largely a craft. Practiced by hobbyists and artisans, 
knowledge gained on aerospace disciplines came largely 

through experimentation and flight test. Scientific 
advancement in the nascent field was largely focused on 
the discipline level and was isolated rather than 
integrative. Following World War II, the scientific 
principles behind flight were steadily codified. 
Educational programs grew into discipline-focused 
practices and knowledge transfer shifted from a solely 
apprentice-based paradigm to one based on both 
application and theory. In the time period from 1950-
1980, design was largely thought of as a practice which 
integrated the disciplines. Decisions were made based on 
testing, experimentation, and reliance on historical data 
and personal experience. 
 Digital computers proliferated as desktop engineering 
tools in the mid-1980’s and the iterative practices for 
aircraft design began to take the form of deterministic 
computer software. The phrase “design tools” gradually 
began to refer to sizing routines and CAD packages as 
opposed to T-squares and French curves. Many 
discipline-level models were integrated to form the first 
mature aircraft design tool suites. For example, in the 
1970s, NASA Ames research center began to develop the 
AirCraft SYNThesis (ACSYNT) tool, a conceptual design 
aid that integrated modules for aerodynamics, propulsion, 
mission performance, and eventually geometry [14], [15]. 
In the early 1980s, NASA Langley introduced the FLight 
OPtimization System (FLOPS), a multidisciplinary design 
tool for predicting overall aircraft performance, weight, 
cost, and environmental factors [16], [17]. Both of these 
tools are deterministic, iterative, semi-empirical design 
aids that automate the workflow of synthesis and sizing 
while incorporating some disciplinary analyses. The 
notion that one could perform a conceptual design process 
in hours to days using a handful of computers was new 
and exciting. By the late 1980s, the concept of design-as-
a discipline was beginning to take hold1.  
 Around this time, the confluence of design tools, 
Moore’s Law, and the growing popularity of Taguchi’s 
robust design methods gave birth to the notion of 
performing practical probabilistic aircraft design. Codes 
which had previously been used to perform deterministic 
trade studies could be modified to quantify uncertainty by 
wrapping their “namelist” input files within a 
probabilistic simulator that fed user-specified 
distributions into the tool one case at a time. The resultant 
outputs represented probability distributions that could be 
used to ascertain the technical feasibility and economic 
viability of proposed aircraft concepts across a user-
defined range of uncertainty on the parameter 
assumptions. 
 Also in the early 1990s, designers saw utility in 
linking multiple discipline-level design tools with 
automated synthesis and sizing routines such as FLOPS 
and ACSYNT. Software tools such as iSIGHT by 
Engineous software entered the market. Originally 
                                                 
1 As evidenced by the increased numbers of design-related 
textbooks and the proliferation of “design-oriented” academic 
programs around this time. 
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developed by Dr. Siu Tong, under funding from General 
Electric Corporation from 1979-1983, Engineous began to 
commercialize iSIGHT in 1996 [18], [19]. After 
incubation at Virginia Tech in the 1980’s, Phoenix 
Integration was founded in 1995 to commercialize the 
ModelCenter software as a visual environment for 
integrating design tools and performing trade studies. 
These Process Integration and Design Optimization 
(PIDO) tools provided engineers with an off-the shelf 
software package that replaced the manual integration 
process pejoratively referred to as “sneaker net” by which 
the outputs from one tool were manually handed off to 
another engineer or “thrown over the wall.” While 
deterministic trade studies were the norm in the early 
1990s, it was not long before computers were powerful 
enough to allow the aforementioned probabilistic 
wrapping of the suite of design tools to become practical. 
During this era, the term multidisciplinary design 
optimization (MDO) was popularized2 to refer to the 
ability to integrate and optimize multiple disciplinary 
tools and perform uncertainty quantification across a 
range of input parameters. 
 The desire for increasing integration of more 
disciplinary tools was quickly stymied by the curse of 
dimensionality: the tendency for problems to become 
exponentially harder as variables are added. Disciplinary 
tools were developing, maturing, and proliferating around 
the community at record speeds and the advancement of 
computing power could not keep up with the development 
of tools and methods. 
 Beginning in 1995, Schrage, Mavris, and their 
colleagues promulgated the concept of IPPD through 
robust design simulation [20], [21]. Central to this 
concept is the cross-fertilization of the response surface 
equation (RSE) technique from the field of applied 
mathematics and agriculture. While the concept began to 
be applied in isolated instances throughout the 1970s and 
1980s (notably by Healy, Kowalik, and Ramsey in 1975), 
Mavris and Schrage advanced the notion that one could 
build practical and accurate approximations of physics-
based design tools using the software and methods 
matured in the intervening time [23], [24]. Demonstrating 
the viability of the concept using an integrated 
engine/aircraft design suite for NASA’s High Speed Civil 
Transport (HSCT), Bandte, Mavris, and Schrage 
demonstrated the viability of quickly performing accurate 
deterministic design using RSEs [25]. With a dramatic 
increase in speed exchanged for a slight degradation in 
accuracy. It was a logical step to reintroduce the concept 
of probabilistic systems design, only this time, the 
probability distributions were executed through surrogate 
models (in the form of RSEs) created from the original 
suite of tools. Around the same time, the Boeing 
Corporation began developing a set of mathematical 
techniques that would eventually be known as Design 

                                                 
2 Though introduced twenty years earlier, the term proliferated 
during this time. 

Explorer in partnership with Rice University [26]. Design 
Explorer uses adaptive surrogate models based on the 
Kriging approach for design and optimization [27]. (In 
2004, the tool was licensed to Phoenix Integration and 
included in ModelCenter) [28]. 
 As the thirst for expansion continued, the curse of 
dimensionality again reared its ugly head: this time, in the 
difficult of creating surrogate models with large 
dimensionality. Koch et. al. explored the dimensionality 
problem for multidisciplinary, multiobjective problems 
and examined the use of Kriging and compromise design 
[29]. In 1997, the Southwest Research Institute’s “Fast 
Probability Integration” (FPI) tool was examined to 
abandon the RSE-based approach by alternatively 
approximating the Monte Carlo Simulation (MCS) [30]. 
After extensive experimentation, it was determined to be 
more practical to simply reduce the degrees of freedom to 
the canonical set of variables most significant to the 
variability of the set of responses using the ANOVA 
statistical technique [31]. This constrained the 
dimensionality of RSEs but made probabilistic 
multidisciplinary design possible. 
 In 1998, Daberkow and Mavris also explored the 
feasibility of artificial neural networks as surrogate 
models but deemed the additional burden in their creation 
impractical when there was only a slight discernable 
advantage over polynomial surrogates for the class of 
problems studied [32]. However, as a harbinger of things 
to come, the pair noted that appropriately trained neural 
networks are likely to yield better approximations as the 
dimensionality and complexity of the problem increase. 
Other types of surrogate models including radial basis 
functions and Kriging models were implemented for other 
aerospace applications and met with success [25-29]. 
 As previously mentioned, a majority of the 
mathematical techniques matured during this era were 
focused on the quantification of parameter uncertainty. 
For well-posed problems, model uncertainty is either 
considered to be negligible or is treated as aleatory 
uncertainty. This categorization is appropriate when: 

• Physics and phenomena are well understood 
• Proven, validated design tools exist 
• Assumptions can be stated and/or proven 
• Simulation tools are non-noisy and repeatable 
• Problem setup approaches do not vary widely 

across practitioners with similar backgrounds 
• Educational programs are available that provide 

training and produce practitioners that can 
address the requisite design issues 

By the end of the 20th century, the concept of aircraft 
design-as-a-discipline provoked less consternation from 
disciplinary traditionalists. Many challenges in tool 
integration, design optimization, and uncertainty 
quantification were largely “solved” by the explosion of 
new methods development in the late 1990s and the 
methods development community was well-poised to 
address a new set of challenges that lurked just around the 
corner. 
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4   The Shift to Systems-of-Systems 
The downturn in commercial aviation following the 

events of September 11, 2001 had impacts on the 
development of new methods in aerospace academics. 
Industry sponsors limited expenditures on new 
technologies and methods as their order backlog 
dwindled. The turmoil in the US aeronautics sector was 
further exacerbated by President Bush’s January 2004 
announcement of a new vision for space exploration. 
From FY 2000 to 2007, the budget for NASA aeronautics 
activities has been reduced by nearly 30%3 [38].  

On the other hand, defense spending during the same 
time period has increased dramatically. The Philadelphia 
Stock Exchange defense index fund which represents the 
top 18 defense companies, has risen 150% from 2002 to 
2007 and the spending as a percentage of US GDP has 
trended upwards from 3% to 4% between 2000 to 2007, 
though not nearly to the thirty-year high of the Reagan 
administration (6.2%)4. Simply put, this dramatic shift in 
resources has redirected methods development research 
toward the defense sector. As opposed to the tightly 
coupled problems endemic to commercial aircraft design, 
the defense establishment is more concerned with the 
design of “systems-of-systems” (SoS). These large-scale 
complex systems are often comprised of geographically 
distributed, loosely coupled independent systems that 
reconfigure dynamically both physically and temporally5. 
DoD acquisition guidance is concerned with the 
acquisition of SoS and their integration into the larger 
DoD enterprise for the purpose of accomplishing joint 
warfighting missions, providing joint capabilities, and 
achieving joint effects.  

To address uncertainty quantification for SoS, the 
logical step was to synthesize the lessons learned to date: 
integrate the system-level design tools in a PIDO 
framework, generate surrogate models, and perform 
probabilistic analysis using MCS. In 2004, the US Air 
Force Research Laboratory (AFRL), Pratt and Whitney, 
and Raytheon funded a collaborative study to demonstrate 
an integrated design environment of a propulsion system 
and a weapon in support of a Long-Range Strike (LRS) 
military campaign simulation [39]. In this study, the 
aforementioned approach met with significant difficulties 
as it was not possible to create RSEs of sufficient 
accuracy to reliably approximate the integrated suite of 
                                                 
3 NASA’s budgeting practices have changed from direct to full-
cost to direct since the late 1990s, making a precise evaluation 
of the budget situation difficult. The President’s budget request 
for FY 2009 (direct) is $593.8 M. 
4 4% of US GDP is approximately half-a-trillion dollars. 
5 The US DoD also uses the term “families-of-systems,” (FoS) 
which are “a set of systems that provides similar capabilities 
through different approaches to achieve similar or 
complementary effects” [1]. One illustrative example of a FoS is 
the pantheon of manned aircraft, unmanned aircraft, satellites, 
and ground-based special forces that are capable of tracking 
moving targets (one FoS, several SoS and systems). The 
distinction between FoS and SoS is not germane to this paper. 

design tools. The source of error was traced to significant 
discontinuities in the military campaign simulation which 
were not erroneous, but rather, functions of the nonlinear 
nature of combat. To account for this phenomenon, the 
concept of using artificial neural networks as surrogate 
models was revisited.  

The artificial neural network (ANN) technique can 
trace its origin to a 1943 article by neurophysiologist 
Warren Mc-Culloch and mathematician Walter Pitts 
entitled “A Logical Calculus of Ideas Immanent in 
Nervous Activity” [40]. As in biological systems, a single 
neuron can be connected to many other neurons to create 
very complex networks of structures. Artificial neural 
networks have found widespread application in pattern 
recognition and classification, control processes, artificial 
intelligence, optical character recognition, autonomous 
robots, and the development of adaptive software agents. 
Their ability to model processes also makes them ideal for 
regression tasks, especially those with discontinuous or 
highly non-linear responses. 

As illustrated by Biltgen in Fig. 1, the application of a 
neural network to a system-of-systems problem generally 
results in a higher value for the coefficient of 
determination (R2), a better fit in the actual-by-predicted 
plot, and a distribution of error that approximates the 
standard normal. This is due to the ability of the neural 
network to capture the nonlinearities and discontinuities 
present in combat models which are required to accurately 
simulate the operation of the system and its environment. 
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Fig. 1. Comparison of Polynomial RSEs and Neural 
Networks for a System-of-Systems Problem [41]. 
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One of the major difficulties in using neural networks 
for parameter uncertainty quantification is the need for 
extremely accurate surrogate models.  

RSEs for well-behaved system level problems can 
often be created with an R2 value on the 0.999 level. 
When applied to the same problems, neural networks 
typically perform about the same; however, when 
extended to systems-of-systems problems, even the neural 
network technique may have a dramatically lower R2 even 
when multiple network topologies and long training times 
are used. While these surrogates provide interesting 
insight into SoS-level trends and enable identification of 
sensitivities to design parameters, Fig. 2 illustrates the 
large discrepancies encountered when MCS is used on 
surrogates of less authoritative accuracy. 

In this example, a simplified operations analysis code 
of a “Scud-hunt” time-critical strike mission is used [41]. 
The dependent variable in each of the nine plots shown is 
the percentage of time critical targets (mobile Scud 
missile launchers) destroyed and the independent variable 
represents uncertainty on the attacking aircraft’s sensor 
range due to environmental, operational, and electronic 
warfare concerns. The charts answer the question “what is 
the probability of killing a target on this mission” under 
the operational circumstances which confound the ability 
to precisely define how far the aircraft can see (sensor 
range). To demonstrate the use of ANNs, a uniform 
distribution was used across the sensor range parameter 
on three separate neural network models of the same data. 
The three rows represent different levels of increasing 
accuracy in the ANNs with the lower-left plot most 

closely approximating the actual analysis. Non-linearities 
due to the complexities of military combat (which appear 
in the actual code) are accurately captured by the 21 node 
ANN that has an R2 of 0.9633. On the other hand, when 
compared to the 9-node neural network and the 3 node 
neural network with R2

 values of 0.8121 and 0.7419 
respectively, the nonlinearities are lost. Note also that this 
example includes only the impact of uncertainty due to 
variability in the specification of a single parameter: 
“sensor range.”  

The second column illustrates the uncertainty analysis 
results when a second uniform distribution is added to 
examine the joint probability outcomes across sensor 
range and friendly speed (the speed of the attacking 
aircraft). Here, the bottom center plot illustrates in red the 
impact of a single variable (from the lower left plot). The 
“fuzziness” around the red line depicts the additional 
variability due to the second parameter. Using the 21-
node ANN, the maximum uncertainty in the estimation of 
targets killed is approximately 5-10% across the range of 
inputs while the 3-node ANN has a maximum variability 
of up to 40%, illustrating the need for very accurate 
surrogates6. 

Moving from left to right, it is also evident that even 
within a model of a given accuracy, the addition of 
multiple probability distributions on the inputs obviously 
creates compounding uncertainties on the responses. Even 
when highly mathematically accurate surrogates (or even 
the true models themselves) are used, the problem of 
uncertainty quantification now becomes a problem of 
visualization and understanding. Most traditional 

engineering texts contain 
plots that more closely 
mimic the left-side of Fig. 2: 
they are simplified “partial 
derivatives” illustrating the 
impact of a response due to a 
single factor. As one moves 
to the right and adds more 
variables to the exploratory 
study, the “fuzziness” in the 
outputs more closely 
resembles a “total deri-
vative.” It quickly becomes 
                                                 

6 It should be noted that many 
designers are unwilling to accept a 
5-10% uncertainty and that the 
surrogate technique appears ill-
suited for this application. This is 
not precisely true as exceptionally 
large ranges of uncertainty (tens 
of miles on sensor range and 
hundreds of knots on aircraft 
speed) were used to create 
illustrative and comparative 
examples. In practice, much more 
refined ranges would likely be 
used. 

 
Fig. 2. Comparison of Neural Network Accuracy and Impact of Multiple Variables. 



Patrick T. Biltgen 

6 

very difficult for engineers to understand the significance 
of impacts when all variables are changing 
simultaneously.  

In systems-of-systems problems the curse of 
dimensionality not only refers to the ability to compute 
accurate uncertainty-bounded solutions in realistic time 
frames, but also the ability to then visualize, understand, 
and make decisions regarding the generated information. 
As Marsaw et. al. note, the use of probabilistic methods 
across multiple input variables drives the need to shift 
from two-dimensional bivariate plots to a multi-
dimensional visualization environment which “consists of 
a matrix of bivariate scatterplots showing all parameters 
simultaneously” [42]. The multivariate environment for 
the ANN-enabled 2004 Air Force Research Laboratory 
technology study is shown in Fig. 3. Here, output 
measures-of-effectiveness are shown in the upper leftmost 
area of the plot and independent variables are shown with 
decreasing class significance in the SoS hierarchy as one 
moves down and to the right. 
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Fig. 3. Multivariate Plot for the 2004 Air Force 
Research Laboratory Study. 

Techniques such as dynamic linking of data points, 
dynamic filtering based on design assumptions, color 
coding, and manipulation of histograms and scatterplots 
are all used to “slice” the data in different ways. While 
such an environment provides a wealth of information, 
much research is needed on the concise presentation of 
this type of information in a format easily interpretable by 
decision makers. 

5 Uncertainty in Assumptions and Model 
Validation 

Though the integration of aircraft design tools with 
operations analysis models provides the means to trace 
the impact of system-level technology parameters to 
capability-level measures-of-effectiveness, this research 
highlighted the social disconnect that engineers have with 
the difficulty of simulating system operations. For 
systems design problems (models based on physics), the 

assumption space is relatively well-defined. Terms like 
“straight and level flight”, “clamped beam”, “inviscid”, 
and “low speed” all have a set of parameters tacitly 
associated with them. In SoS design, the assumption 
space includes phrases like “intermittent 
communications”, “hostile threat environment”, “forward 
presence”, and “off-board sensing” to name a few. These 
phrases carry with them ambiguous assumption sets; 
engineers and analysts from different backgrounds set up 
the problem differently depending on how they interpret 
these phrases. Consequently, solutions vary widely due to 
misrepresentation of the operational assumptions. In 
system-level problems, these sources of model 
uncertainty were largely neglected; however, for systems-
of-systems design problems, the influencing aspects of the 
operating environment (and its uncertainty) often 
dominate the impacts on capability-level measures-of-
effectiveness. Varying these assumptions probabilistically 
is often not practical as the multiple assumption sets often 
require different discrete setups, compounding the 
complexity of the analysis task exponentially. Currently, 
there is no well-defined taxonomy of assumptions for 
systems-of-systems analysis in the aerospace community. 
Decision makers often focus on the variables they know 
(lift, drag, fuel consumption) while harmonization of the 
model parameters that often dominate these technical 
factors is often much more critical. As systems 
engineering moves firmly into the realm of systems-of-
systems, engineers and managers must be careful not to 
confuse the unfamiliar with the unimportant. 

Another challenge facing the community is the 
perceived need for “verified,” “validated,” or “accredited” 
models. The definition of these terms is as follows [43]7: 

• Verification: “The process of determining that a 
model implementation and its associated data 
accurately represents the developer's conceptual 
description and specifications.” 

• Validation: “The process of determining the 
degree to which a model and its associated data 
are an accurate representation of the real world.” 

• Accreditation: “The official certification that a 
model, simulation, or federation of models and 
simulations and its associated data are acceptable 
for use for a specific purpose.”  

It is a US DoD policy that “models and simulations 
used to support major DoD decision-making 
organizations and processes… shall be accredited for that 
specific purpose” [44].  The accredited models typically 
used for these purposes include monolithic simulations 
that take days or weeks to run and often center around one 
or several inflexible point scenarios. They usually 
represent present-day or near-term systems exercising 
known capabilities in well-studied operational 
environments.  

Recently there has been much work on topics such as 
agent-based modeling, constructive simulation, discrete 

                                                 
7 Emphasis added. 
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event simulation, system dynamics, graph theory, network 
theory, real options, Petri nets, and other techniques for 
modeling cognition (behaviors), networks, emergence, 
deep uncertainty, complexity, and other irregular 
disciplines which dominate these types of problems. To 
date there are few structured methods which deal 
holistically with these disciplines, and based on the 
definitions above, models are usually verified, sometimes 
validated, and seldom accredited. 

The operations analysis, modeling and simulation, and 
aerospace design community have long been focused on 
the precise specification of performance metrics using 
validated or accredited phenomenology models. In a 
traditional application, MCS is used to quantify 
uncertainty around these points and allows decision 
makers to understand the risk of certain courses of action. 

On the other hand, the cognitive science and 
exploratory analysis communities have tended to focus on 
broad-brush, low-fidelity, high-speed models designed to 
provide insight into a wide range of potential outcomes. 
Many network models and military simulations now rely 
more extensively on behaviors of human-simulating 
agents than the system-simulating physics-based codes. 
Simply running a MCS around these unvalidated (and in 
some cases unvalidatable) models does not tend to reveal 
accurate or useful results primarily because the 
parameters related to model uncertainty cannot be 
defined a priori. Customers cannot always state 
assumptions and requirements clearly at the study onset 
because of the inherent uncertainty in even the problem 
statement. Simulation efforts therefore often take a 
“build-observe-tweak-observe” iterative development 
approach to model construction and portray a “hand-
waving” attitude toward validation.  

This disconnect appears to arise from the need for 
systems-designers to venture into the operations analysis 
community to comply with the mandate for capability-
based acquisition. The shift unfortunately necessitates a 
broad understanding of many different systems and 
phenomena. For example, aircraft designers often have 
extensive knowledge of flight physics but little 
understanding of how threat surface-to-air missile systems 
perform (much less how they are typically integrated or 
operated as a network).  

A framework for understanding the VV&A needs of 
the simulation tools with respect to the decisions it will be 
used for is needed. This framework should advise the 
simulationist on the type of model required and the 
assumptions that must be defined (or uncertainty-
bounded) to support the required decisions. Analysts must 
then work with decision makers and other experts to 
bound the parameters defining model uncertainty. This 
necessary but oft-overlooked step is needed before any 
simulation or surrogate can be reliably constructed to 
study the impacts of parameter uncertainty and determine 
the values of design parameters. 

 

6 “New” Challenges 
The emergence of systems-of-systems as a focus of 

design and systems engineering activities seems to 
identify several “new” sources of uncertainty: 

• Scenarios assumptions ambiguous and evolving 
• Measures of Effectiveness are difficult to define  
• The operational characteristics including strategy 

and tactics are unknown 
• Physical phenomena are focused more on 

interactions with the environment and other 
systems 

• Validation needs are not straightforward 
• Problem setup approaches vary widely across 

different experts (even within the same field) 
In reality, these are not new effects. While traditional 

systems design focuses on uncertainty due to natural or 
parameter uncertainty, capability-based systems-of-
systems design must be more concerned with model 
uncertainty. In fact, parameter uncertainty and in many 
cases the parameters themselves at each individual system 
level have a negligible contribution to the overall 
variability of the capability-level response. This 
realization highlights the fundamental challenge of this 
new era, as few of the aforementioned factors can be 
handled by simply using a Monte Carlo Simulation. 

Engineering problems are often solved through 
scientific reductionism by recognizing the dominant 
impacts of a physical phenomenon and summarily 
simplifying the requisite models. It is not clear where this 
reduction-based approach loses the “essence” of the 
complexity that is under study. The interesting, 
interrelating, and “game changing” behaviors in systems-
of-systems are the ones which must be modeled. 

The acquisition community will also have to come to 
grips with the fact that models are often unvalidated and 
are sometimes unvalidatable. Concept of validation 
breaks down when considering unknown systems, and 
exercising unknown functions in an unknown 
environment. For the present, an understanding of bounds 
and insight into relationships may be the limits of the 
analytical craft. Precise quantification of uncertainty due 
to so many factors that dramatically change the topology 
of the modeling environment may be unachievable for 
some time. 

That is not to say that these issues are not being 
addressed across various communities; however, in many 
instances, these disparate stakeholders have yet to come 
together, cross-fertilize best practices, and harmonize an 
approach to studying systems-of-systems problems. The 
same impasse is encountered each time a new layer of 
complexity is included in the model of the world. This 
complexity is always addressed in time through the 
development of new tools, techniques, and skills. 

The various challenges outlined in this paper related to 
uncertainty quantification for capability-based systems-
of-systems design and analysis are summarized in relation 
to traditional system-level challenges in Fig. 4. 
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7 Summary and Conclusions 
The maturation of disciplinary science and the 

emergence of design-as-a-discipline allowed the physics 
of the aerospace domain to be understood, taught, and 
modeled. Over the past several years, these methods have 
been linearly extended to address the problems classified 
as “systems-of-systems,” which in many cases are 
dominated more by the interactions between systems than 
the parameters of the systems themselves. This poses 
several challenges for uncertainty quantification in 
aerospace design as the methods and techniques were 
primarily developed to quantitatively evaluate parameter 
uncertainty as opposed to model uncertainty. Model 
uncertainty tends to dominate systems-of-systems 
problems resulting from a variety of sources, not the least 
of which stems from the inability to crisply define the 
system interrelationships, operating environment, and 
assumptions of the problem. In fact, for these classes of 
systems, the environment and the interactions between 
systems are often more significant on the overall response 
than the system design parameters themselves.  

While it appears new sources of uncertainty have been 
uncovered as this field evolves, the sources are not new, 
merely more dominant than they had been considered in 
the past. Methods for quantifying uncertainty for 
unvalidated models are needed (if such a concept is even 
useful or makes sense). Engineers and decision makers 
must also learn to collaboratively develop models and 
understand the sources of and bounds on uncertainty. A 
process for defining ambiguous scenario assumptions at 
pre-defined “checkpoints” is likely needed to avoid the 

tendency of assumptions to co-develop with results until 
the simulation is “overcalibrated” to a familiar and 
uninteresting solution. 

As shown in this work, for the aforementioned 
reasons, the quantification of uncertainty in systems-of-
systems is not merely as simple as “throw a Monte Carlo 
around it” or “figure out the right distribution to use.” 
Engineers need intelligent ways of quickly focusing on 
the important parameters, which unfortunately may 
include many factors outside their traditional purview.  

The use of probabilistic methods combined with 
surrogate models for uncertainty quantification is only 
advised when the predictive model very closely 
approximates the actual code. Settling for lower levels of 
accuracy than traditionally recommended for polynomial 
surrogates is appropriate only for insight-providing design 
space exploration studies. The lack of fit appears to be 
due to more than the neural network topology, training 
algorithms, and training time. New methods for 
narrowing the model uncertainty associated with 
scenarios, assumptions, and behaviors are needed in 
conjunction with statistical techniques for improving the 
fit of the ANN-based surrogates. 

Finally, as the size and complexity of systems-of-
systems problems increases, new visualization techniques 
that inform and do not overwhelm the decision maker are 
sorely needed. The difficulty in understanding the 
problem domains will only continue to increase as new 
layers of complexity are considered non-negligible in the 
study of systems-of-systems.  

 
   Fig. 4. Comparison of Performance-Based Systems Design and Capability-Based Systems-of-Systems Design. 
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