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Abstract  

This paper presents a methodology for the 
development of health monitoring solutions for 
complex systems. The goal of monitoring is 
early detection of system failures based on 
present and historic values of signals from built-
in sensors and detectors. The methodology is 
illustrated on an example of health monitoring 
for an aircraft bleed air control system. The 
monitoring solution was developed using more 
than 100 signals collected from a real 
commercial aircraft over more than 50 flights. 
The system failures are detected using 
reasoning on a graphical probabilistic model; 
more specifically a Bayesian network. The 
model was created from both knowledge of the 
bleed air control system and learned from the 
data. The operation of the monitoring software 
was verified on test data and resulted in more 
than a 98% success rate of failure 
identification. 

1 Introduction  

Advanced complex systems, such as 
commercial aircraft systems, consist of a very 
large number of components which closely 
interact with each other. As the cost of 
electronic and computer hardware decreases, the 
systems are equipped with increasing numbers 
of sensors, detectors and computerized 
controllers. The additional hardware makes it 
possible to monitor the health of the systems 
with improving accuracy. However, the 
complexity of health monitoring solutions also 
rapidly increases. It therefore becomes 
necessary to use advanced methodology and 

software tools to develop effective monitoring 
systems.  

System health monitoring is a form of 
system diagnosis, in which the goal is to detect 
system failure and identify, which component is 
responsible for it. In monitoring, the diagnosis is 
based only on observations derived from signals 
originating from built-in sensors and detectors, 
e.g. pressure sensors or valve position detectors. 
It does not take into account the symptoms of 
failure, e.g. abnormal sounds or vibrations, or 
measurements performed by means of external 
devices, such as portable testers, which are often 
used during troubleshooting of the aircraft 
systems in repair shops. Although health 
monitoring is limited to the built-in devices, it 
has an advantage of providing real-time health 
status either during the flight and/or soon after 
its completion. It is very useful for a go-no-go 
decision at the airport gate and may be of 
critical importance in decisions affecting loss of 
human life and/or damage to expensive 
hardware. 

We illustrate the application of system 
health monitoring on an example of a 
commercial aircraft air bleed control system [1]. 
The system provides air to several other aircraft 
systems including the passenger cabin air 
conditioning system. There are over a hundred 
different signals available in a typical 
commercial aircraft, which are of potential 
utility in monitoring this system’s health. Real-
time monitoring of the signals results in tens of 
thousands of data records per flight. 

This paper describes a methodology and 
supporting software tools used for the 
development of monitoring solutions for 
complex systems. Our methodology involves 
two steps: derivation of diagnostic observations 
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and creation of diagnostic models. The 
observations are derived from the sensor and 
detector signals. We begin with identifying 
these signals that individually or in combination 
provide an indication of the component failure. 
Next, we develop algorithms, which take in the 
selected signals and produce diagnostic 
observations.  

The second step is the creation of a 
diagnostic model. We use a form of graphical 
probabilistic models – Bayesian networks [2]. 
The models capture relations between 
diagnostic observations and component failure 
modes. We use the models and a probabilistic 
reasoning engine to derive the likelihood of 
component failure given the state of the 
diagnostic observations.  

For efficient development of diagnostic 
observations and creation of the diagnostic 
models we use a number of commercial and 
custom software tools. The tools are necessary 
to be able to handle the large numbers of signals 
and data records. 

Some examples of other work that have 
focused on model based diagnosis of aircraft 
systems include [3]-[8]. A more thorough 
analysis of the Bayesian approach to diagnosis 
and prognosis has also been undertaken [9]. 
Model based approaches and other related 
pattern recognition methods have also been 
applied to many other domains [10]-[13]. 

2 Methodology for Development of Health 
Monitoring Systems  

This section is devoted to the discussion of our 
methodology for development of health 
monitoring solutions for complex systems. We 
will also describe the software tools which 
support our methodology. 

We assume that we are developing health 
monitoring for an existing system, for which the 
sensors and detectors have already been 
selected. Also the sampling and collection of 
signal data has been determined. 

2.1 Procedure for Monitoring System 
Development 

The development of health monitoring solutions 
begins with the collection of data and 
knowledge about the system. The data are 
sampled values of all the pertinent signals over 
an extended period of time. For an aircraft 
system the data for tens to hundreds of flights 
are needed. We also expect that the data contain 
signals documenting failure modes of the 
system components and that there are 
annotations indicating when and what failure 
occurred. The data on component reliability are 
also very beneficial. The information about the 
system would typically include a diagram or 
schematics and a functional description. 
Alternatively system knowledge may be 
acquired directly from an expert. 

Our approach to health monitoring requires 
definitions of the diagnostic observations and 
the diagnostic model, Fig. 1. They are obtained 
from data and domain knowledge. The 
diagnostic observations are computed using one 
or more signals from the sensors and detectors. 
The computations extract from the raw signals 
the information useful for diagnosing 
component failures. A simple example of such a 
processing is smoothing of a signal by filtering, 
followed by comparison of the value to a 
predefined threshold. The observation derived 
from the signal may take two states: “high” – 
when the filtered signal is above the threshold 
and “normal” – when it is below the threshold.  
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Fig. 1. Development of a health monitoring solution for a 
complex system. 
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We use Bayesian networks for our 
diagnostic model, [2]. The model is an 
annotated graph, whose nodes represent 
elements of the domain, i.e. components, 
systems, diagnostic observations, and measures 
of usage, Fig. 2. The directed links between the 
nodes encode relations, i.e. a link between given 
component node (a parent) and observation 
node (a child) indicates that failures of the 
component result in a change of the state of 
observation. The annotations are conditional 
probabilities, which represent the strength of the 
relations. We use layered Bayesian networks for 
diagnosis, because they are easier to create and 
are less demanding computationally [14]. 
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Fig. 2. Layered Bayesian network model for diagnosis. 
 
The diagnostic model is then used to obtain 

the probability of component failure given the 
states of the diagnostic observations. The model 
represents a joint probability distribution Pr 
over the variables X1 , X2 , …, Xn , which 
according to the chain rule is computed as: 
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For a Bayesian network this rule can be written 
as: 
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where Pai represents all parent nodes of the 
node  Xi . 

Once the algorithms for diagnostic 
observations and the diagnostic model are 
developed, we are ready to implement the 
complete health monitoring system, Fig. 3. The 
system takes in the sensor and detector signals 
and produces from them the diagnostic 
observations. The observation states and the 
diagnostic model are combined using a 

probabilistic reasoning engine, which 
implements formulas such as (2). The engine 
produces the probability of component failure 
given the observation states, i.e. system 
diagnosis. 

We will consider two possible scenarios 
for health monitoring. One is a real-time 
monitoring, in which a new sample of signals is 
processed as soon as it is available and updated 
health results are immediately available. The 
other is batch processing, in which data are 
collected over an extended period of time and 
the results are computed for all the collected 
data. In the case of aircraft health monitoring, 
the batch results could be available at the end of 
a flight phase, e.g. take off, or at the end of the 
entire flight. The choice of the scenario depends 
on the monitoring requirements for the specific 
system, as well as capabilities of the on-board 
hardware.  

General similarities can be drawn between 
our proposed methodology for health 
monitoring systems and the process of 
knowledge discovery in databases [15]. For 
example, one can see how our derivation of 
diagnostic observations ties in with the KDD 
process of data reduction/projection, with the 
end goal of both methodologies to build a model 
capable of efficiently analyzing/monitoring 
data.  

2.2 Software Tools for Health Monitoring 
System Development 
Efficient development of the diagnostic 
observations and the diagnostic models for a 
complex system requires software tools. The 
tools help in manipulating the large data sets, in 
developing observation algorithms and 
diagnostic models as well as evaluating the 
different algorithms and models.  
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Fig. 3. Implementation of a health monitoring solution for 
a complex system. 

 
Our first challenge is to select signals that 

are pertinent to health monitoring of our system 
from all the signals available to us. In the 
selection we need to use both the understanding 
of the system and of the data. The understanding 
of system operation helps in focusing on a 
candidate subset of signals. The subset may 
include signals that appear unrelated, but may 
be useful in detecting abnormal system 
behavior, e.g. equivalent signals for another 
aircraft engine. 

Our understanding of the data can be 
significantly improved by visualization of the 
signals with the failure annotations. The visual 
inspection also helps in identifying errors and 
noise in the data, e.g. dropped signals, spikes, 
etc.  

The visualization can be implemented in a 
commercial tool such as Mathworks Matlab. For 
manipulation of the data, i.e. selection of 
individual signals and fragments of signal 
history, we will need a database and database 
management tools such as Microsoft SQL 
Server. 

The cleaning of data and preprocessing for 
visualization may be implemented using the 
database tools as well as off-the-shelf and 
custom data mining tools, e.g. Microsoft’s Data 
Mining Tools. These tools contain routines such 
as min, max, average and various forms of 
filtering. To develop diagnostic observation 
algorithms we need to be able to process and 
visualize multiple signals at a time. Here custom 
algorithms may be most suitable.  

Development of diagnostic models requires 
still different tools. Some commercial tools 
provide support for generation of simple models 
from data; for example decision trees or naïve 
Bayesian networks can be created using 
Microsoft’s Data Mining Tools. However, to 
combine domain knowledge with the data more 
sophisticated tools are required. HRL has 
developed a family of tools for creation, 
debugging, evaluation, and updating of layered 
Bayesian networks from data [14],[16]-[17].  

Our work on the development of system 
monitoring solutions involved integration of 
several commercial and custom software tools 
as depicted in Fig. 4.  
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Fig. 4. Software tools for development of health 
monitoring solution. 

3 Application Example  

3.1 Aircraft Bleed Air Control System 
In this section we apply our methodology to 
build a health monitoring solution for a real-
world domain, that of the bleed air control 
system (BACS) of a commercial aircraft. This 
system is part of the environmental control 
system (ECS) and is responsible for providing 
air at the appropriate pressure and temperature 
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for use by other aircraft systems, including the 
passenger cabin. 

The first step in the process is to 
understand the problem domain. Fig. 5 depicts a 
simplified schematic of the bleed air control 
system of the commercial aircraft we studied. 
More detailed information on the BACS system 
in another related aircraft can be obtained from 
[1]. In the diagram, hot air is extracted from the 
aircraft’s engine through either the intermediate 
stage or high stage, depending on the setting of 
the high pressure valve. This air then passes 
through another safety valve to a mechanical 
heat exchanger called the precooler. In addition 
to the hot air, cold air is also extracted from the 
engine and regulated by another valve before 
reaching the precooler. This cold air is used to 
regulate the temperature of the hot air resulting 
in an air supply for other aircraft systems at a 
safe temperature and pressure. There are many 
feedback, control, and safety mechanisms in 
place in this system. Therefore, domain 
knowledge is especially important for accurate 
diagnosis, as simple analysis of the observations 
may not be sufficient, if the redundancy and 
control mechanisms are initially able to 
compensate for a failure. 
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Fig. 5. Diagram of a commercial aircraft bleed air control 
system. 

 
Some previous work has also been done 

examining this aircraft system [18]-[21]. This 
previous work has examined methods for 
optimal troubleshooting and analysis of system 
reliability and maintainability. 

The second step is to create or select a 
target dataset. The data used in our experiments 
were collected from a real commercial aircraft 
and consist of a subset of raw signals (we 
examined more than 100 signals) and over 50 
flights worth of data (hundreds of thousands of 
records for each signal). These signals were 
annotated with timestamps, allowing flights to 
be distinguished, and additionally includes the 
time of the replacement of one of the system 
components. 

In our work, we examined this dataset and 
used it to derive diagnostic observations. We 
then used some of the data from these 
observations to train our diagnostic model, 
while the remainder was used for model 
validation. The final output of the project was a 
solution for system health monitoring. 

3.2 Derivation of Diagnostic Observations  
The first step in our derivation of diagnostic 
observations, after importing our data into a 
database management system, was to use 
domain knowledge and simple signal statistics 
to select an initial subset of signals which may 
be of direct relevance to the system. These 
included many signals shown in Fig. 5, such as 
the temperature and pressure signals and the 
states of the valves. In addition, other signals 
from the engine and flight data such as speed 
and altitude were included. We also used system 
redundancy and symmetry. For example we 
compared signals from two different engines 
and analyzed differences in pressures from 
different points within the BACS system. 

During this stage we also analyzed the 
signals for unusual changes across individual 
flights or across multiple flights. These were 
sometimes determined to be valid diagnostic 
observations and sometimes were indicative of 
noise in the signal. We therefore leveraged the 
ability of the database system and created a 
general filtering mechanism to remove data 
during signal loss or out of range values.  

We then visualized individual signals in 
order to analyze their changes and see their 
correspondence with the external annotations. In 
addition to analyzing and visualizing entire 
flights we also partitioned flights into segments 
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and analyzed different flight segments such as 
takeoff, cruising, and landing. We then 
compared data attributes such as minima, 
maxima, and averages across flights and flight 
segments. 

In addition to analyzing and visualizing 
individual signals and signal statistics we also 
developed methods for analyzing pairs of 
signals, as shown in Fig. 6. In this figure we 
depict the interdependence of two signals in a 
2D XY plot (the different types of data points 
depicted in the legend will be explained in the 
next section). We also incorporated methods for 
visualizing subsets of signals which depend 
very heavily on one another (e.g. the pressure 
signals are very closely tied to the settings of the 
valves). 

 

X

Y

X

Y

 
Fig. 6. XY Plot of two related signals. 

3.3 Learning of the Diagnostic Model  
Through the data analysis and visualization 
techniques discussed above we were able to 
define distinct classes (or modes of operation) 
which we were interested in distinguishing. 
Differentiating these classes then became the 
goal of the health monitoring solution. In Fig. 6, 
the legend depicts 5 modes of operation and 
each mode is plotted using a distinct color 
allowing the user to observe patterns in the 
diagnostic observations’ interaction related to 
the mode of operation. In preparation for 
building and validating our classifier model we 

split the data into a set of training data (75%) 
and a set of testing data (25%). 

The next steps of the process are to select 
specific algorithms and build the models. We 
used the training data to learn the parameters of 
many different classification models. For 
example, we examined different types of 
classifiers such as Naïve Bayes networks and 
decision trees. Additionally we also examined 
different combinations of possible diagnostic 
observations. In this paper we further discuss 
the Naïve Bayes models we developed. 

Naïve Bayesian classifiers [22] make 
strong assumptions on the independence of 
observations, however they have been used very 
successfully in practice [23]. In Fig. 7 we depict 
a simplified version of our model. In the center 
of the figure you can see a variable depicting the 
system health (the mode of system operation). 
Surrounding that in the figure is a subset of the 
relevant diagnostic observations used in our 
model. The model also consists of a set of 
parameters for each edge specifying the weight 
of the dependence. 

Once we learned the model from our 
training data we were able to analyze the 
sensitivity of the model to individual diagnostic 
observations. These techniques allow for 
distinguishing observations which are most 
relevant and determining how sensitive the 
model is to changes in parameters and 
observations [24]-[25]. This allowed us to 
further reduce our set of diagnostic observations 
and iteratively refine our model and analyze its 
robustness. 
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Fig. 7. Simplified Bayesian network diagnosis model 
obtained by learning from real aircraft data. 
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3.4 Failure Detection Results  
Once our health monitoring solution was 
created we used it to examine the testing data to 
validate the model and interpret the results. Our 
testing data consisted of 25% of the initial data 
set, which was still quite large (hundreds of 
thousands of records). We then classified each 
record into the different modes of operation and 
compared that with our labeled ground truth. 

The resulting confusion matrix is shown in 
Table I. In the table, each column corresponds 
to one of the classes in the ground truth, while 
each row corresponds to the values predicted by 
the model. The classes include one for normal 
operation and three for abnormal operation. As 
you can see, the model was very accurate at 
predicting the correct class (values along the 
diagonal). For example, it was able to accurately 
classify all samples which were actually class 1. 
It was most inaccurate (98.1%) predicting class 
3, because the diagnostic observations are very 
similar to class 1. Overall the model was 99.8% 
accurate at distinguishing between these classes 
on the testing data. 

The final step we undertook was to 
formalize an interface to the system health 
monitoring solution and to demonstrate the 
technology to potential end users. 

 
Table I. 

Diagnosis results obtained using the diagnostic model and 
real test data for aircraft system. 

98.7%0%0%0%4 (Predicted)

0%98.1%0.2%0%3 (Predicted)

0.1%0.2%99.6%0%2 (Predicted)

1.2%1.7%0.2%100.0%1 (Predicted)

4 (Actual)3 (Actual)2 (Actual)1 (Actual)

98.7%0%0%0%4 (Predicted)

0%98.1%0.2%0%3 (Predicted)

0.1%0.2%99.6%0%2 (Predicted)

1.2%1.7%0.2%100.0%1 (Predicted)

4 (Actual)3 (Actual)2 (Actual)1 (Actual)

 

4 Conclusions and Future Work  
Development of health monitoring solutions for 
complex systems requires a systematic approach 
and use of software tools. The tools are 
indispensable for manipulation of large sets of 
field data and assist in derivation of diagnostic 
observations from raw sensor and detector 
signals. They are also necessary for efficient 
development of accurate diagnostic models. 

The methodology and tools described in 
this paper offer an example of an approach that 
has been verified on the development of a real 
monitoring solution for a complex aircraft 
system and the use of a large set of real field 
data. We believe that the methodology worked 
well and produced an accurate and efficient 
solution. The toolset put together during the 
project can be easily reused for other similar 
systems, offering an environment for rapid 
development of new solutions. 

We are planning to continue the work 
described in this paper. In particular we would 
like to extend our results from system health 
diagnosis to health prognosis. System health 
prognosis is a much harder task and will require 
more advanced techniques, e.g. models based on 
dynamic Bayesian networks, etc., and 
significantly more field data. 
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